18 december (skrivningstid 5 timmar) LÖSNINGAR. Vid tveksamma fall: kontakta skrivningsvakten innan hjälpmedlet används.

Storlek: px
Starta visningen från sidan:

Download "18 december (skrivningstid 5 timmar) LÖSNINGAR. Vid tveksamma fall: kontakta skrivningsvakten innan hjälpmedlet används."

Transkript

1 Department of ppied Meanis Tentamen i Håfastetsära för I 18 deember (skrivningstid 5 timmar) FORMLI LÖSNINGR Hjäpmede 1. Läroböker i åfastetsära o mekanik.. Handböker, formesamingar o sammanfattningsbad i åfastetsära, matematik o fysik. Dok ej sammanfattningar med östa exempe eer OHkopior från föreäsningarna om avanerad åfastetsära. 3. Eementarfa för bakböjning (4 sid). 4. reakonstanter ( sid). 5. Ordböker o språkexikon. a medtagna böker måste vara skrivna på svenska, engeska, tyska, franska eer ryska; de får inneåa normaa marginaantekningar (inkusive omskrivningar av ingående former), men inga ösningar ti probemuppgifter. Lösa antekningar, varken andskrivna eer trykta, är inte tiåtna. 6. Miniräknare med tangentbord o sifferfönster i en enet (periferieneter, såsom t.ex skrivare o bandspeare, tiåts inte). Vid tveksamma fa: kontakta skrivningsvakten innan jäpmedet används. Lärare nders Ekberg, te (77) 3480 Lösningar nsås på ansagstavan vid ingången ti institutionens okaer (a våningen i södra trappuppgången, nya maskinuset) på förmiddagen dagen efter tentan. Betygsättning En fuständig o korrekt ösning på en uppgift ger poäng enigt vad som anges på uppgiftsappen. Smärre fe eder ti poängavdrag. Ofuständig 1

2 ösning, många fe, eer metodfe eder ti att uppgiften inte ger något poäng. Normat görs en eetsbedömning av skrivningen när poängsätts; en snä bedömning av en ösning kan kompenseras av en årdare bedömning på en annan. Maxima poäng på tentan är 15 o betygsgränserna är enigt föjande: 6-8 poäng ger betyg poäng ger betyg poäng ger betyg 5 Resutatista nsås på samma stäe som ösningarna senast onsdagen den 9/1 00. Granskning Måndag den 14/1 k ats meddeas på kursens emsida samt på rättningsistor (p.g.a. ombyggnation i M-uset) Tänk på: Uppgifterna är inte ordnade efter svårigetsgrad väj ut de uppgifter du tyker att du beärskar o börja med dessa. nge varifrån du ämtar de ekvationer som används. Om du gör antaganden utöver vad som anges i uppgiftstexten: förkara dessa. Bedöm om möjigt rimigeten i dina ösningar. Om du tyker resutatet verkar orimigt, men inte kan itta några fe i ösningen eer tror att du räknat rätt, så påpeka detta. Kontroera dimensionen i dina svar en ösning med fe dimension i svaret ger inga poäng. Skriv så att den som ska rätta kan äsa (d v s skriv tydigt) o ge förkaringar så att beräkningarna går att föja. Rita tydiga figurer; det måste framgå vad som är positiva/negativa riktningar på krafter, förskjutningar, et.

3 UGIFTER 1. En träbak består av två iopspikade pankor enigt Fig. 1. Spikarna sitter med ett entrumavstånd. Baksektionen beastas med en tvärkraft, T. Bestäm (uttrykt i T, o ) den skjuvkraft, F varje spik måste överföra. (3p) /5 T T /5 FIG. 1 Fritt uppagd träbak beastad med en punktast o med en sektion uppbyggd av två iopspikade pankor. a) Sidvy av den spikade baken; b) den sammansatta tvärsektionen med spikpaering. * /5 tyngdpunkt t F t /5 Tyngdpunktsäget ges av ( 5 ) 10 = ( ) = ( 5) + ( 5) Yttrögetsmomentet är ( 5) 3 I y ( 5) = + + ( 5) -- = 4 Statiska ytmomentet av avskjuvad de är S ( 5) = = Detta ger en skjuvspänning i snittet adees under fänsen, som är: S τ T ( 3 0) T = = = T I y ( 5) ( 4 4) ( 5) Skjuvkraften i varje spik bir då F τ T = = = -- T

4 . En bak, med ängden L = 3 m o med ett tunnväggigt, irkuärt tvärsnitt med diametern d = 0. m o tjokeken t = 0.01 m, monteras o beastas med en exentrisk punktast enigt Fig.. (unktasten angriper via en et ste ävarm). Bestäm maximat som kan tiåtas om ögsta tiåtna effektivspänning enigt Tresa får vara σ e = 300 Ma i punkt. (3p) r r t = 0.01 m z ϕ EI = L = m d = 0. m d = 0. m FIG. Konsobak beastad med exentrisk punktast (OBS! ej proportione skiss) a) Sidvy; b) konsobakens tvärsnitt. o den exentriska astens paering. I punkt ger asten ger ett vridande moment M v = ( 3 )d o ett böjande moment M = L. πtd 3 d Sektionen ar ett areatrögetsmoment I y = , radien a = -- o tjokeken 8 = t (enigt Lunds betekningar). M 4L Detta ger, i punkten, en böjnormaspänning σ z = ----z = o en I y πtd M skjuvspänning av det vridande momentet τ v 3 zϕ = = Här är L = 10d, πa πdt 4030 viket ger en spänningsmatris som: ( z, ϕ, r) = S πtd Eftersom skjuvspänningen är no på ett pan med norma i r -riktning, så får vi direkt en uvudspänning som σ r = 0. Övriga uvudspänningar fås ur: σ σ + z σ ϕ σ z + σ 1, ϕ. Numrera τ = ± + = 0 ± 409 zϕ uvudspänningarna i storeksordning. Detta ger σ 1 = , σ = 0 o σ 1 = x [ ( πtd) ]. Huvudspänning enigt Tresa fås som σ et = σ 1 σ 3 = 409 ( πtd). Krav 6 πtd 6 σ et max = kn (med insatta värden)

5 3. Baken i Fig. 3 ar eastiitetsmoduen E, areatrögetsmomentet I o ängder enigt figuren. Den beastas med en punktast i ena änden (D). a) Beräkna nedböjningen δ under punktasten om baken enbart är beastad med denna punktast! (p) b) Beå D. Hur stor punktast B (strekad i figuren) måste appieras i punkt B för att totaa ändnedböjningen δ (av D o B ) ska bi no? (1p) D B D B C D δ FIG. 3 Sidvy av baken i probem 3. a) Nedböjning av D : Dea upp i två eementarfa enigt figur. δ D 3 D1 = , M, o, viket ger 3EI C = D Θ D C = δ D 3 3EI D1 = EI δ D 3 a D = = δ. EI D b) Nedböjning av B : Θ B ( ) C B = = o δ B 3 b. 16EI 4EI D = = δ 4EI D a b Sätt δ D = δ D 3 B 3 D. Detta ger = EI 4EI B = 4 D a D d M C D1 + M C Q C Q C D d D b B Q C d D Q C 4. Den fritt uppagda baken i Fig. 4 ar ett rektanguärt tvärsnitt o beastas med en vertika o en orisonte ast (båda med magnituden ) i en sektion enigt Fig. 4. Beräkna största böjnormaspänningen i baken! (3p) 5

6 Notera att stöden ritats som s k gaffestöd i perspektivritningen. Detta betyder inget annat än att de beter sig som fritt uppagda ( triange- o ru- ) stöd i såvä vertika som orisonte riktning. a x b z y / FIG. 4 Fritt uppagd bak beastad med en vertika o en orisonte ast a) Sidvy av baken; b) bakens tvärsektion; ) perspektivskiss av baken med de angripande asterna. I sektionen där asterna angriper fås: M y = M z = = reatrögetsmomenten är ( ) 3 4 ( ) 3 4 I y = = o I 1 4 z = = Största böjnormaspänningen bir (p g a negativt M z ): M y σ x, max I y M z 3 z min y I max = = = z a) Eementstyvetsmatrisen för ett stångeement är K e = E L Visa med ett enket exempe ur assembering av eementstyvetsmatriser ti en goba styvetsmatris går ti. Det ska framgå vad de oika dearna av den gobaa styvetsmatrisen kommer ifrån! (1p) 6

7 1 3 eement 1 eement Studera en stång indead i två stångeement. Den gobaa styvetsmatrisen bir (förutsatt att eementängderna, eementareorna o eementens E-moduer är desamma): K = E L δ 1 1 E o används i ekvationen L 1 1 δ = δ 3 3 Här är δ förskjutningarna o krafterna i de tre noderna. I den gobaa styvetsmatrisen kommer de fyra översta vänstra eementen från det första eementet o de nedersta fyra eementen från det andra eementet. b)varför är den maximaa spänningen vid en sprikspets ett dåigt mått på materiapåkänningen vid sprikan? Ge exempe på ett mått man kan använda istäet! Vad beskriver detta mått? (1p) Vid sprikspetsen bir spänningen teoretiskt oändig om man använder eastisk teori (använder man pastiitetsteori, så får man ett ändigt värde, men ändå probem p g a öga gradienter o, i faet med ideapastiskt materia, ett maxvärde som är oberoende av astnivån). Istäet är det ämpigt att använda spänningsintensitetsfaktorn. Den beskriver storeken på (den eastiska) spänningssinguariteten. ) Vad innebär åfastetsmässig redundans? (1p) tt man byggt in en övertaiget i strukturen. Ett exempe är när man bygger en bro som karar att fungera även då en bropeare bir avsagen. 7

Tentamen i Hållfasthetslära för I2

Tentamen i Hållfasthetslära för I2 Department of pplied Mecanics FORMLI Tentamen i Hållfastetslära för I2 18 december 2001 14.15 19.15 (skrivningstid 5 timmar) Hjälpmedel 1. Läroböcker i ållfastetslära oc mekanik. 2. Handböcker, formelsamlingar

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR I2 MHA 051. 6 april 2002 08.45 13.45 (5 timmar) Lärare: Anders Ekberg, tel 772 3480

TENTAMEN I HÅLLFASTHETSLÄRA FÖR I2 MHA 051. 6 april 2002 08.45 13.45 (5 timmar) Lärare: Anders Ekberg, tel 772 3480 2002-04-04:anek TENTAMEN I HÅFASTHETSÄRA FÖR I2 MHA 051 6 april 2002 08.45 13.45 (5 timmar) ärare: Anders Ekberg, tel 772 3480 Maximal poäng är 15. För godkänt krävs 6 poäng. AMÄNT Hjälpmedel 1. äroböcker

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014 Institutionen för tillämpad mekanik, halmers tekniska högskola TETME I HÅFSTHETSÄR F MH 81 1 UGUSTI 14 Tid och plats: 14. 18. i M huset. ärare besöker salen ca 15. samt 16.45 Hjälpmedel: ösningar 1. ärobok

Läs mer

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel) ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib

Läs mer

Tentamen i FEM för ingenjörstillämpningar (SE1025) den 15 mars 2011 kl

Tentamen i FEM för ingenjörstillämpningar (SE1025) den 15 mars 2011 kl KTH HÅFASTHETSÄRA Tentamen i FEM för ingenjörstiämpningar (SE5) den 5 mars k. -9. Resutat kommer att finnas tigängigt senast den 5apri. Kagomå på rättningen ska vara framförda senast en månad därefter.

Läs mer

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 011-1-08 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) DEL 1 - (Teoridel utan hjälpmedel) 1. Vilken typ av ekvation är detta: LÖSNINGAR γ y 1 G τ y Ange vad storheterna γ y, τ y, och G betyder och ange storheternas enhet (dimension) i SI-enheter. Ett materialsamband

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR I1 MME januari (5 timmar) Lärare: Lars Sonnerup, tel:

TENTAMEN I HÅLLFASTHETSLÄRA FÖR I1 MME januari (5 timmar) Lärare: Lars Sonnerup, tel: 2002-01-18:anek ENAMEN I HÅFASHESÄRA FÖR I1 MME170 18 januari 2002 08.5 1.5 (5 timmar) ärare: ars Sonnerup, tel: 070 850689 Maimal poäng är 18. För gokänt krävs 9 poäng. Betyg ges sammanvägt me el A i

Läs mer

Tentamen i Hållfasthetslära för I2 MHA 051

Tentamen i Hållfasthetslära för I2 MHA 051 Tentamen i Hållfasthetslära för I2 MHA 051 28 augusti 2004, 8 45 12 45 (4 timmar) Lärare: Anders Ekberg, tel: 772 480 Maximal poäng är 15. För godkänt krävs 6 poäng Allmänt Hjälpmedel 1. Läroböcker i hållfasthetslära

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA JUNI 2014

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA JUNI 2014 Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I ÅLLFASTETSLÄRA F MA 081 JUNI 014 Lösningar Tid och plats: 14.00 18.00 i M huset. Lärare besöker salen ca 15.00 samt 16.0 jälpmedel:

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081) TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA081) Tid: Fredagen den 19:e augusti 2005, klockan 08.30 12.30, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 9.30 och 11.30. ösningar: anslås på

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2015

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2015 Institutionen för tillämpad mekanik, Chalmers tekniska högskola ENAMEN I HÅFASHESÄA F MHA 8 5 AI 5 ösningar id och plats: 8.3.3 i V huset. ärare besöker salen 9.3 samt. Hjälpmedel:. ärobok i hållfasthetslära:

Läs mer

Byggställning. Scaffold

Byggställning. Scaffold Byggstäning För bruk i trappor Scaffod For use in staircases Björn Larsson Högskoeingenjörseamen i maskiningenjör inriktning produktdesign, 10 Nr /008 Byggstäning Scaffod Björn Larsson mittibushen@hotmai.com

Läs mer

UPPSTÄLLDA SAMBAND SKALL MOTIVERAS (gärna med en enkel skiss). Uppgifterna är inte avsiktligt ordnade efter hur svåra de är.

UPPSTÄLLDA SAMBAND SKALL MOTIVERAS (gärna med en enkel skiss). Uppgifterna är inte avsiktligt ordnade efter hur svåra de är. GÖTEBORGS UNIVERSITET Institutionen för Fysik och teknisk fysik LÖSNINGAR TILL TENTAMEN I FYP34 TILLÄMPAD FOURIERANALYS Tid: Lördag 9 apri 8, k 8 3 3 3 Pats: V Ansvarig ärare: Uf Torkesson, te. 3-77 336

Läs mer

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25 Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en

Läs mer

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 01-1-07 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström

Läs mer

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 KTH - HÅFASTHETSÄRA Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 Resultat anslås senast den 8 januari 2007 kl. 13 på institutionens anslagstavla,

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA JUNI 2016

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA JUNI 2016 Institutionen för tillämpad mekanik, Chalmers tekniska högskola ösningar TENTAMEN I HÅFASTHETSÄRA KF OCH F MHA 081 3 JUNI 2016 Tid och plats: 14.00 18.00 i M huset. ärare besöker salen ca 15.00 samt 16.30

Läs mer

Institutionen för teknikvetenskap och matematik. Kurskod/kursnamn: F0004T, Fysik 1. Tentamen datum: Skrivtid:

Institutionen för teknikvetenskap och matematik. Kurskod/kursnamn: F0004T, Fysik 1. Tentamen datum: Skrivtid: Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 018-10-9 Skrivtid: 9.00 14.00 Totaa antaet uppgifter: 5 Jourhavande ärare: Corina Etz, 090-49335 (mobi

Läs mer

Analytisk mekanik för MMT, 5C1121 Tentamen, , kl

Analytisk mekanik för MMT, 5C1121 Tentamen, , kl Kung Tekniska Högskoan 4 Institutionen för Mekanik Anaytisk mekanik för MMT, 5C Tentamen, 4, k 4.-8. Räkneproem Uppgift : En pende estår av en sma homogen stav, av ängd och massa m. Den kan svänga kring

Läs mer

TENTAMEN I KURSEN BYGGNADSMEKANIK 2

TENTAMEN I KURSEN BYGGNADSMEKANIK 2 UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN BYGGNADSMEKANIK Datum: 014-08-6 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström och Fredrik Häggström

Läs mer

Lösning: ε= δ eller ε=du

Lösning: ε= δ eller ε=du Tekniska Högskolan i inköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMH02, 2008-06-04 kl ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Definiera begreppet töjning (ε) och ange

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081) TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA81) Tid: Fredagen den 19:e januari 27, klockan 14 18, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 15 och 17 ösningar: anslås på kurshemsidan

Läs mer

P R O B L E M

P R O B L E M Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)

Läs mer

Hållfasthetslära Z2, MME175 lp 3, 2005

Hållfasthetslära Z2, MME175 lp 3, 2005 Hållfasthetslära Z2, MME175 lp 3, 2005 Examinator: Magnus Ekh (mekh@am.chalmers.se), tele: 7723479 Kurspoäng: 3 Kurslitteratur: "Grundläggande hållfasthetslära", Hans Lundh, KTH, Stockholm. "Exempelsamling

Läs mer

Tentamen i Hållfasthetslära för K4 MHA 150

Tentamen i Hållfasthetslära för K4 MHA 150 Tentamen i Hållfasthetslära för K4 HA 150 aximal poäng är 18. För godkänt krävs 9 poäng 17 april 004, 8.45 1.45 4 timmar) Allmänt Hjälpmedel 1. Läroböcker i hållfasthetslära och mekanik.. Handböcker, formelsamlingar,

Läs mer

Mekanik och maritima vetenskaper, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA OKTOBER 2017

Mekanik och maritima vetenskaper, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA OKTOBER 2017 Mekanik och maritima vetenskaper, Chalmers tekniska högskola ENAMEN I HÅFASHESÄRA KF OCH F MHA 8 6 OKOBER 7 i och plats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt.3 Hjälpmeel: ösningar. ärobok i

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011 Institutionen för tillämad mekanik, Chalmers tekniska högskola TENTAMEN I HÅFASTHETSÄRA F MHA 8 3 MAJ ösningar Tid och lats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt. Hjälmedel:. ärobok i hållfasthetslära:

Läs mer

Tentamen i Hållfasthetslära AK

Tentamen i Hållfasthetslära AK Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-04-18 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den

Läs mer

Mekanik 2 f or F Obligatorisk del

Mekanik 2 f or F Obligatorisk del Tentamen i Mekanik 2 för F, FFM521 och FFM520 Tisdagen 15 apri 2015, 8.30 12.30 Examinator: Martin Cederwa Jour: Martin Cederwa, ankn. 3181, besöker tentamenssaarna c:a k. 9.30 och 11.30. Tiåtna hjäpmede:

Läs mer

Tentamen i SG1140 Mekanik II, Inga hjälpmedel. Lycka till! Problem

Tentamen i SG1140 Mekanik II, Inga hjälpmedel. Lycka till! Problem Institutionen för Mekanik Nichoas paidis te: 79 748 epost: nap@mech.kth.se hemsida: http://www.mech.kth.se/~nap/ Institutionen för Mekanik Erik Lindborg te: 79 7583 epost: erik@mech.kth.se Tentamen i SG4

Läs mer

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 016-0-3 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

Biomekanik Belastningsanalys

Biomekanik Belastningsanalys Biomekanik Belastningsanalys Skillnad? Biomekanik Belastningsanalys Yttre krafter och moment Hastigheter och accelerationer Inre spänningar, töjningar och deformationer (Dynamiska påkänningar) I de delar

Läs mer

Grundläggande maskinteknik II 7,5 högskolepoäng

Grundläggande maskinteknik II 7,5 högskolepoäng Grundläggande maskinteknik II 7,5 högskolepoäng Provmoment: TEN 2 Ladokkod: TH081A Tentamen ges för: KENEP 15h TentamensKod: Tentamensdatum: 2016-01-15 Tid: 09:00 13:00 Hjälpmedel: Bifogat formelsamling,

Läs mer

TENTAMEN i Hållfasthetslära; grundkurs, TMMI kl 08-12

TENTAMEN i Hållfasthetslära; grundkurs, TMMI kl 08-12 Linköpings Universitet Hållfasthetslära, IK TENTAMEN i Hållfasthetslära; grundkurs, TMMI17 2001-08-17 kl 08-12 Kursen given lp 4, lå 2000/01 Examinator, ankn (013-28) 1116 Tentamen Tentamen består av två

Läs mer

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 014-0-5 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 016-05-06 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

Belastningsanalys, 5 poäng Balkteori Deformationer och spänningar

Belastningsanalys, 5 poäng Balkteori Deformationer och spänningar Spänningar orsakade av deformationer i balkar En från början helt rak balk antar en bågform under böjande belastning. Vi studerar bilderna nedan: För deformationerna gäller att horisontella linjer blir

Läs mer

Tentamen i Hållfasthetslära AK2 för M Torsdag , kl

Tentamen i Hållfasthetslära AK2 för M Torsdag , kl Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 för M Torsdag 2015-06-04, kl. 8.00-13.00 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts

Läs mer

Tentamen i Hållfasthetslära AK

Tentamen i Hållfasthetslära AK Avdelningen för Hållfasthetslära unds Tekniska Högskola, TH Tentamen i Hållfasthetslära AK1 2017-03-13 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den visas

Läs mer

Ordinarie tentamen i Mekanik 2 (FFM521)

Ordinarie tentamen i Mekanik 2 (FFM521) Ordinarie tentamen i Mekanik 2 (FFM521) Tid och plats: Fredagen den 1 juni 2018 klockan 08.30-12.30 Johanneberg. Hjälpmedel: Matte Beta och miniräknare. Examinator: Stellan Östlund Jour: Stellan Östlund,

Läs mer

1. Ett material har dragprovkurva enligt figuren.

1. Ett material har dragprovkurva enligt figuren. 1. Ett material har dragprovkurva enligt figuren. a) Vad kallas ett sådant materialuppträdande? b) Rita i figuren in vad som händer vid avlastning till spänning = 0 från det markerade tillståndet ( 1,

Läs mer

TENTAMEN I KURSEN TRÄBYGGNAD

TENTAMEN I KURSEN TRÄBYGGNAD UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN TRÄBYGGNAD Datum: 013-03-7 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel: Limträhandboken

Läs mer

TENTAMEN I KURSEN TRÄBYGGNAD

TENTAMEN I KURSEN TRÄBYGGNAD UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN TRÄBYGGNAD Datum: 013-05-11 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel: Limträhandboken

Läs mer

Formelblad, lastfall och tvärsnittsdata

Formelblad, lastfall och tvärsnittsdata Strukturmekanik FE60 Formelblad, lastfall och tvärsnittsdata Formelblad för Strukturmekanik Spännings-töjningssamband för linjärt elastiskt isotropt material Enaiell normalspänning: σ = Eε Fleraiell normalspänning:

Läs mer

Föreläsning 9. Induktionslagen sammanfattning (Kap ) Elektromotorisk kraft (emk) n i Griffiths. E(r, t) = (differentiell form)

Föreläsning 9. Induktionslagen sammanfattning (Kap ) Elektromotorisk kraft (emk) n i Griffiths. E(r, t) = (differentiell form) 1 Föreäsning 9 7.2.1 7.2.4 i Griffiths nduktionsagen sammanfattning (Kap. 7.1.3) (r, t) E(r, t) = t (differentie form) För en stiastående singa gäer E(r, t) d = d S (r, t) ˆndS = dφ(t) (integraform) Eektromotorisk

Läs mer

SOLIDA GÄNGFRÄSAR. ThreadBurr

SOLIDA GÄNGFRÄSAR. ThreadBurr TM SOLIA GÄNGFRÄSAR ThreadBurr TiACN Fördeen med ThreadBurr är att du kan gänga och grada i samma operation. Ingen extra tid för och försänkning. Gradoperationen sker automatiskt vid gängfräsningen viket

Läs mer

TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2007/08

TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2007/08 TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2007/08 Föreläsare och handledare: Lennart Josefson, lennart.josefson@chalmers.se, (772)1507 Föreläsare, övningsledare och handledare:

Läs mer

TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2008/09

TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2008/09 TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2008/09 Föreläsare och handledare: Lennart Josefson, lennart.josefson@chalmers.se, (772)1507 Föreläsare, övningsledare och handledare:

Läs mer

Tentamen i kursen Balkteori, VSM-091, , kl

Tentamen i kursen Balkteori, VSM-091, , kl Tentamen i kursen Balkteori, VSM-091, 009-10-19, kl 14.00-19.00 Maximal poäng på tentamen är 40. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och alfemmanual.

Läs mer

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm Hållfasthetslära VT2 7,5 p halvfart Janne Färm Fredag 27:e Maj 10:15 15:00 Föreläsning 19 Repetition PPU203 Hållfasthetslära Fredagens repetition Sammanfattning av kursens viktigare moment Vi går igenom

Läs mer

Belastningsanalys, 5 poäng Balkteori Moment och tvärkrafter. Balkböjning Teknisk balkteori Stresses in Beams

Belastningsanalys, 5 poäng Balkteori Moment och tvärkrafter. Balkböjning Teknisk balkteori Stresses in Beams Balkböjning Teknisk balkteori Stresses in Beams Som den sista belastningstypen på en kropps tvärsnitt kommer vi att undersöka det böjande momentet M:s inverkan. Medan man mest är intresserad av skjuvspänningarna

Läs mer

Tentamen i Hållfasthetslära för K4 MHA 150

Tentamen i Hållfasthetslära för K4 MHA 150 Tentamen i Hållfasthetslära för K4 MHA 150 28 augusti 2004, 8 45 12 45 (4 timmar) Lärare: Anders Ekberg, tel: 772 480 Maximal poäng är 18. För godkänt krävs 9 poäng Allmänt Hjälpmedel 1. Läroböcker i hållfasthetslära

Läs mer

Lunds Tekniska Högskola, LTH

Lunds Tekniska Högskola, LTH Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 2017-08-21 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den

Läs mer

Hållfasthetslära Sammanfattning

Hållfasthetslära Sammanfattning 2004-12-09 Enaxlig drag/tryck & skjuvning Anders Ekberg Hållfasthetslära Sammanfattning Anders Ekberg Ekvationsnummer hänvisar till Hans Lundh, Grundläggande Hållfasthetslära, Stockholm, 2000 Denna sammanfattning

Läs mer

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 014-08-8 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

Tentamen i kursen Balkteori, VSM-091, , kl

Tentamen i kursen Balkteori, VSM-091, , kl Tentamen i kursen Balkteori, VSM-091, 008-10-1, kl 08.00-13.00 Maimal poäng på tentamen är 0. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och Calfemmanual.

Läs mer

TENTAMEN I REGLERTEKNIK Y/D

TENTAMEN I REGLERTEKNIK Y/D TENTAMEN I REGLERTEKNIK Y/D SAL: TER1, TER2, TER3 TID: 15 mars 2017, klockan 8-13 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i inköping, IK DE 1 - (Teoridel utan hjälpmedel) NAMN... 1. Vilken typ av ekvation är detta: ε = d u(x) d x Ange vad de ingående storheterna betyder, inklusive deras dimension i SI-enheter.

Läs mer

Tentamen i Hållfasthetslära AK

Tentamen i Hållfasthetslära AK Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-08-17 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den

Läs mer

LÖSNING

LÖSNING TMHL09 2013-05-31.01 (Del I, teori; 1 p.) Strävan i figuren ska ha cirkulärt tvärsnitt och tillverkas av antingen stål eller aluminium. O- avsett vilket material som väljs ska kritiska lasten mot knäckning

Läs mer

övningstentamen I DYNAMISKA SYSTEM OCH REGLERING

övningstentamen I DYNAMISKA SYSTEM OCH REGLERING övningstentamen I DYNAMISKA SYSTEM OCH REGLERING SAL: - TID: mars 27, klockan 8-2 KURS: TSRT2 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Inger Erlander Klein, 73-9699 BESÖKER SALEN:

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017 Insiuionen för illämpad mekanik, Chalmers ekniska högskola ösningar TENTMEN I HÅFSTHETSÄR KF OCH F MH 081 16 UGUSTI 017 Tid och plas: 8.30 1.30 i M huse. ärare besöker salen ca 9.30 sam 11.30 Hjälpmedel:

Läs mer

K-uppgifter. K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft. i regeln och illustrera spänningen i en figur.

K-uppgifter. K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft. i regeln och illustrera spänningen i en figur. K-uppgifter K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft på 28 kn som angriper i tvärsnittets tngdpunkt. Bestäm normalspänningen i regeln och illustrera spänningen i

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 23-- Sal () T,T2,KÅRA (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal

Läs mer

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av:

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av: Hållfasthetslära Böjning och vridning av provstav Laboration 2 Utförs av: Habre Henrik Bergman Martin Book Mauritz Edlund Muzammil Kamaly William Sjöström Uppsala 2015 10 08 Innehållsförteckning 0. Förord

Läs mer

Formelsamling i Hållfasthetslära för F

Formelsamling i Hållfasthetslära för F Formelsamling i Hållfasthetslära för F Avd. för Hållfasthetslära Lunds Universitet Oktober 017 1 Spänningar τ σ Normalspänning: σ = spänningskomponent vinkelrät mot snittta Skjuvspänning: τ = spänningskomponent

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-03-17 Sal (1) TER2,TER3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken

Läs mer

8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar:

8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar: Teknisk balkteori 12 8 Teknisk balkteori En balk utsätts för transversella belastningar: 8.1 Snittstorheter N= normalkraft (x-led) T= tvärkraft (-led) M= böjmoment (kring y-axeln) Positiva snittstorheter:

Läs mer

Tentamen i hållfasthetslära fk för M3 (MHA160) måndagen den 23/5 2005

Tentamen i hållfasthetslära fk för M3 (MHA160) måndagen den 23/5 2005 Tentamen i hållfasthetslära fk för M (MHA160) måndagen den /5 005 uppg 1 Spänningsanalys ü Delproblem 1 Studera spänningstillståndet: σ 0 = i j k Huvudspänningar:fås ur: 140 60 0 60 80 0 0 0 10 y z { A

Läs mer

För G krävs minst 16p, för VG minst 24p. Miniräknare och utdelade tabeller

För G krävs minst 16p, för VG minst 24p. Miniräknare och utdelade tabeller ÖRERO UNIVERSITET Handeshögskoan i Örebro Tentamen i Ekonomistyrning, Fö1018, 7,5 hp nta uppgifter: Max poäng: etyg: nsvariga ärare: Tiätna hjäpmede: 6 32 För G krävs minst 16p, för VG minst 24p Kerstin

Läs mer

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall, Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA 081 20 AUGUSTI 2010

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA 081 20 AUGUSTI 2010 Institutionen för tillämpad mekanik, halmers tekniska högskola TENTEN I HÅFSTHETSÄ F H 8 UGUSTI ösningar Tid och plats: 8.3.3 i V huset. ärare besöker salen ca 9.3 samt. Hjälpmedel:. ärobok i hållfasthetslära:

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag

Läs mer

Tentamen Mekanik F del 2 (FFM521 och 520)

Tentamen Mekanik F del 2 (FFM521 och 520) Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge

Läs mer

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C1035, 4C1012) den 4 juni 2007

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C1035, 4C1012) den 4 juni 2007 Tentmen i Hållfsthetslär gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C105, 4C1012) den 4 juni 2007 Resultt finns tillgänglig på Min Sidor senst den 19 juni 2007 kl. 1. Klgomål på rättningen skll vr frmförd

Läs mer

Hus & Anläggningar 7,5 poäng

Hus & Anläggningar 7,5 poäng AF1002 TEN1 Hus & Anäggningar 7,5 poäng Tentamen Tisdag 2010-08-17 k. 09.00-13.00 Saar: V21, V22 Tider studerande som anänder senare än 45 min efter skrivningstidens början äger ej rätt att deta. studerande

Läs mer

.,_, MODELLERING AV SKIVOR PA REGELSTOMME. Examensarbete utfört av: Göran Nilsson Handledare: Sture Akerlund BÄRANDE KONSTRUKTIONER

.,_, MODELLERING AV SKIVOR PA REGELSTOMME. Examensarbete utfört av: Göran Nilsson Handledare: Sture Akerlund BÄRANDE KONSTRUKTIONER BÄRANDE KONSTRUKTIONER TEKNISKA HÖGSKOLAN LUND 'OX 725. 22007 LUND TELE FON: 046/107000 MODELLERING AV SKIVOR PA REGELSTOMME p '. o ~~-~ T R.,_, n s T Examensarbete utfört av: Göran Nisson Handedare: Sture

Läs mer

TENTAMEN I REGLERTEKNIK I

TENTAMEN I REGLERTEKNIK I TENTAMEN I REGLERTEKNIK I SAL: TER2 TID: 6 mars 2, klockan 8-3 KURS: TSRT9, Reglerteknik I PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD): 9 ANSVARIG

Läs mer

Lösningsförslag till Tentamen. TSFS06 Diagnos och övervakning 14 augusti, 2007, kl

Lösningsförslag till Tentamen. TSFS06 Diagnos och övervakning 14 augusti, 2007, kl Lösningsförslag till Tentamen TSFS06 Diagnos och övervakning 14 augusti, 007, kl. 14.00-18.00 Tillåtna hjälpmedel: TeFyMa, Beta, Physics Handbook, Reglerteknik (Glad och Ljung), Formelsamling i statistik

Läs mer

VSMA05 Byggnadsmekanik - Kursprogram HT 2019

VSMA05 Byggnadsmekanik - Kursprogram HT 2019 VSMA05 Byggnadsmekanik - Kursprogram HT 2019 Allmänt Kursen Byggnadsmekanik omfattar 8 hp och ges under läsperiod 2. Kursen syftar till att ge en introduktion till byggnadsmekanik tillämpad på konstruktionstyper

Läs mer

B3) x y. q 1. q 2 x=3.0 m. x=1.0 m

B3) x y. q 1. q 2 x=3.0 m. x=1.0 m B1) En konsolbalk med tvärsnitt enligt figurerna nedan är i sin spets belastad med en punktlast P på de olika sätten a), b) och c). Hur böjer och/eller vrider balken i de olika fallen? B2) Ett balktvärsnitt,

Läs mer

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm Hållfasthetslära VT2 7,5 p halvfart Janne Färm Tisdag 5:e Januari 13:15 17:00 Extraföreläsning Repetition PPU203 Hållfasthetslära Tisdagens repetition Sammanfattning av kursens viktigare moment Vi går

Läs mer

Övning 7 Diffraktion och upplösning

Övning 7 Diffraktion och upplösning Övning 7 Diffraktion och uppösning Diffraktionsbegränsade system Om man tittar på ett objekt genom ett perfekt (aberrationsfritt) optiskt system avgörs hur små saker man kan se av diffraktionen i insen.

Läs mer

TENTAMEN I REGLERTEKNIK Y/D

TENTAMEN I REGLERTEKNIK Y/D TENTAMEN I REGLERTEKNIK Y/D SAL: TER, TER 2, TER E TID: 4 mars 208, klockan 8-3 KURS: TSRT2, Reglerteknik Y/D PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2012-05-21 Sal KÅRA Tid 8-12 Kurskod TSFS04 Provkod TEN1 Kursnamn Elektriska drivsystem Institution ISY Antal uppgifter

Läs mer

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING SAL: G32 TID: 8 juni 217, klockan 8-12 KURS: TSRT21 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Johan Löfberg, 7-311319 BESÖKER SALEN: 9.3,

Läs mer

Föreläsning 9: Beräkning av tröghetsmoment och tröghetsprodukter (kap ) Kinetisk energi för roterande stelt system: T rot

Föreläsning 9: Beräkning av tröghetsmoment och tröghetsprodukter (kap ) Kinetisk energi för roterande stelt system: T rot 1 Föreäsning 9: Beräkning av tröghetsmoment och tröghetsprodukter (kap 3113 Komihåg 8: Tröghetsmoment = r dm = x + y dm m m Kinetisk energi för roterande stet system: T rot = 1 Röresemängdsmomentets zkomponent:

Läs mer

TENTAMEN I TSRT19 REGLERTEKNIK

TENTAMEN I TSRT19 REGLERTEKNIK SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER

Läs mer

Konstruktionsteknik 25 maj 2012 kl Gasquesalen

Konstruktionsteknik 25 maj 2012 kl Gasquesalen Bygg och Miljöteknologi Avdelningen för Konstruktionsteknik Tentamen i Konstruktionsteknik 25 maj 2012 kl. 14.00 19.00 Gasquesalen Tillåtna hjälpmedel: Tabell & Formelsamlingar Räknedosa OBS! I vissa uppgifter

Läs mer

Kursprogram. Byggnadsmekanik VSMA05 HT 2018

Kursprogram. Byggnadsmekanik VSMA05 HT 2018 Byggnadsmekanik VMA05 HT 2018 Kursprogram Allmänt Kursen Byggnadsmekanik omfattar 8 hp och ges under läsperiod 2. Kursen syftar till att ge en introduktion till byggnadsmekanik tillämpad på konstruktionstyper

Läs mer

TENTAMEN I REGLERTEKNIK TSRT03, TSRT19

TENTAMEN I REGLERTEKNIK TSRT03, TSRT19 TENTAMEN I REGLERTEKNIK TSRT3, TSRT9 TID: 23 april 29, klockan 4-9 KURS: TSRT3, TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5.3, 7.3 KURSADMINISTRATÖR:

Läs mer

Program A2.05/A206 Stabiliserande väggar

Program A2.05/A206 Stabiliserande väggar Program A2.05/A206 Stabiliserande väggar Användningsområde Programmet behandlar system av statiskt bestämda eller statiskt obestämda stabiliserande väggar. Med programmet kan man behandla 2 typer av väggsystem:

Läs mer