MATLAB-metoderna är (från MATLAB help): fler än vi behöver! men här är de. Computes the model's state at the next time step using a multistep

Storlek: px
Starta visningen från sidan:

Download "MATLAB-metoderna är (från MATLAB help): fler än vi behöver! men här är de. Computes the model's state at the next time step using a multistep"

Transkript

1 F BE & Page of 5 Ordiära differetialevatioer, PP CH 6, forts. Vi ser u på de valigaste lassera av steg-metoder, explicita Ruge-Kutta-metoder oc Implicita flerstegs-metoder. MATLAB-metodera är (frå MATLAB elp: fler ä vi beöver! me är är de Default: ode5 (Dormad-Price ode5 (Dormad-Price Computes te model's state at te ext time step usig a explicit Ruge-Kutta (,5 formula (te Dormad-Price pair for umerical itegratio. ode5 is a oe-step solver, ad terefore ol eeds te solutio at te precedig time poit. Use ode5 as a first tr for most problems. ode (Bogaci-Sampie Computes te model's state at te ext time step usig a explicit Ruge-Kutta (, formula (te Bogaci-Sampie pair for umerical itegratio. ode is a oe-step solver, ad terefore ol eeds te solutio at te precedig time poit. ode is more efficiet ta ode5 at crude toleraces ad i te presece of mild stiffess. ode (Adams ode5s (stiff/ndf Computes te model's state at te ext time step usig a variable-order Adams-Basfort-Moulto PECE umerical itegratio tecique. ode is a multistep solver, ad tus geerall eeds te solutios at several precedig time poits to compute te curret solutio. ode ca be more efficiet ta ode5 at striget toleraces. Computes te model's state at te ext time step usig variable-order umerical differetiatio formulas (NDFs. Tese are related to, but more efficiet ta te bacard differetiatio formulas (BDFs, also o as Gear's metod. ode5s is a multistep solver, ad tus geerall eeds te solutios at several precedig time poits to compute te curret solutio. ode5s is efficiet for stiff problems. Tr tis solver if ode5 fails or is iefficiet. odes (stiff/mod. Rosebroc Computes te model's state at te ext time step usig a modified Rosebroc formula of order. odes is a oe-step solver, ad terefore ol eeds te solutio at te precedig time poit. odes is more efficiet ta ode5s at crude toleraces, ad ca solve stiff problems for ic ode5s is ieffective. odet (Mod. stiff/trapeoidal Computes te model's state at te ext time step usig a implemetatio of te trapeoidal rule it a "free" iterpolat. odet is a oe-step solver, ad terefore ol eeds te solutio at te precedig time poit. Use odet if te problem is ol moderatel stiff ad ou eed a solutio it o umerical dampig. odetb (stiff/tr-bdf Computes te model's state at te ext time step usig a multistep implemetatio of TR-BDF, a implicit Ruge-Kutta formula it a trapeoidal rule first stage, ad a secod stage cosistig of a bacard differetiatio formula of order to. B costructio, te same iteratio matrix is used i evaluatig bot stages. odetb is more efficiet ta ode5s at crude toleraces, ad ca solve stiff problems for ic ode5s is ieffective.

2 F BE & Page of 5 Explicita Ruge-Kutta-metoder E S-stage Ruge-Kutta metod aväder S evaluerigar av f(x, i ett steg. Ju större S dess ögre oggraetsordig är möjlig. Med S = a ma få e metod med ordig för =,, oc me ögre ordig räver äu större S. Valiga metoder: Heu stage, ordig = f(x, = f(x+, +; (x+ = (x + / ( + ; Klassis RK -stage, ordig = f(x, = f(x+/, +/; = f(x+/, +/; = f(x+, +; (x+ = (x + /6 ( ; Exempel Kotrollera RK på test-evatioe = = Sätt a = = a (+/ = a (+/a; = a (+/ = a (+/ a(+/a = a(+ = a (+a (+/ a(+/a (x+ = + /6 (a+ a(+/a + a (+/ a(+/a + a(+ a (+/ a(+/a (x+/(x = (+a+a /+a /6+a / = e a - / a 5 + O(a 6 ODE: I ode ser vi: A = [/, /, ]; B = [ / /9 / / /9 ]; E = [-5/7; /; /9; -/8]; = f(x, = f(x + a, + b = f(x + a, + b (x+ = (x + b + b + b Ordig? testa på =, = a, etc, = a = a( + b a = a( + b a = a( + b a( + b a (x+/(x = + b a + b a(+b a + b a( + b a ( + b a = + a(b + b + b + a (b b + b b + a b b b = + a + a (/ / + /9 / + a /9 / / = + a + a / + a /6 = e a + O(a således S =, p =

3 F BE & Page of 5 Trapetsregel (x+-(x = / (f(x, + f(x+,+, oggraetsordig oc Baåteuler (x+-(x = f(x+,+, oggraetsordig Se PP p. Vi provar på exemplet d A,, A, ( dt a där vi vet att för a = - blir lösige = - = e -t. Då blir Trapetsmet ode :( Baåteuler:( I A I A ( I A : B Beul :, B B Beul Trap, B ( I A Trap ( I A ( I A Egevärdea för A är - oc - så (t = Ce -t + De -t. Om ite a väljs precis = - blir C ite oll oc lösige visar e sabb trasiet, som sulle räva steglägder O(/ för oggraet. Vi provar för a = med =. oc Baåteuler oc Trapets:.5 Beul Egevärde B: prim.5 Trap Egevärde B: prim (observera de olia salora på -axel Baåteuler ger e lösig som är orret efter ett par steg (säg. me trapetsmetode ger stara avligade oscillatioer i i börja. Orsae ses i egevärdea till matrise B: för trapetsmetode är ett egevärde ugefär -/ oc lösige ar i e ompoet D(-/ Numeris tillämpig på IVP Vi fic ova att RK vid tillämpig på = ger x x x P(, P( x x 6 oc vi frågar oss: För vila q = i omplexa plaet blir P(q <=? För dessa q blir de umerisa lösige begräsad för alla oc det ger upplsig om ur litet ma måste aväda för umeris stabilitet. Området där P(q <= allas därför för stabilitets-området. Eftersom egevärde för reella matriser i allmäet är omplexa måste vi ut i omplexa plaet. Gräse för området ges av P(q = oc origo ligger alltså på gräse. Det fis tterligare e särig mella real-axel oc gräse, där P = -. Det blir vid x = Särig med imagiäraxel q = i ser vid, t P( i s s s s s s s( 6 s s ( s ( : s s s 6 Därmed ar vi fra puter på gräse. Me ur ser reste ut? i(,( 6 s ( 6, s ; 8 7 s

4 F BE & Page of 5 Låt oss besriva gräs-urva som parameter-urva. På gäller P(q( = e i, e reell viel. Vi deriverar P m a p : i dq dq ie P i ( q ie, q( : d d q q / q / 6 oc provar om MATLABs ode larar omplexa tal. RK P = Jomevisst: f i*exp(i*fi/(+q*(+/*q*(+q/; [fiout,qout]=ode(f,[ 8*pi],; plot(qout,'.' oc tillsggad plot ger bilde t. Kurva sluter sig ite - orret, av samma aledig som Euler framåt gjorde e spiral av e ösad cirel: - qout(ed =.8 -.i Strägare toleras ger midre opp vid q =. - ger - qout(ed =.988e-9-7.5e-i efter 86 steg. Ma oterar att det fis puter i ögra alvplaet, dvs. med Re >, som ger avtagade umeris lösig, me bara för stora steglägder = O(. Gräsurva ar lodrät taget i origo (Visa! oc för tillräcligt små steglägder blir det rätt. När vi u åller på så visar vi figure för ODE själv. De ar (som vi räade ut ova efter smgtitt i programode x x x P( x x, P x 6 så det är bara att ta bort e term frå ode för RK. Övig:. Det beövdes (,8 för RK me bara (,6 för ODE. Varför?. Visa, att figurera ser liadaa ut för alla -stage ordig- oc -stage ordig- metoder ODE: P = Im Im Re Re Som avslutig på dea iledig visar vi att Eulers metod overgerar mot lösige till iitialvärdesproblemet d f (t,, ( c dt Vi förutsätter, Lipscit (L-otiuitet os f: f(t, - f(t, <= L -. Att de exata lösiges adraderivata är begräsad, (t < K i (,T. Evidistata steg, t =, =,,. att vi ger exat startvärde, = c. Det första villoret är ödvädigt för etdig lösig, det tredje är oödigt me uderlättar formelsrivige. Det adra räver lite mer av f ä det första, oc a försvagas. Det fjärde a försvagas. Då får vi umeris lösig som approximatio till (t oc vi ar (se figure ( ( f (, ( / d, d '( t r f (, K

5 F BE & Page 5 of 5 Kalla globala felet (t för E. Subtraera evatioera, så får vi E E ( f(, ( f(, / d oc uppsattige E E E E f (, ( f (, / ( L ( L E L / K Här a vi jämföra med reursios-formel (C = +L, B = / K u Cu B u som ar lösige B u ( C B( C C... C C L K K K Lt E (( L (( L L ( e då L, L L L oc därmed är det lart att felet går mot oll som första potese av steglägde. d ( E (t + (+LE + O( + r E + t

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

DN1240 numi12 1

DN1240 numi12 1 F7 Ssem av ODE - iiialvärdesproblem Exises & edige Lipsciz Euler overges fel overgesordig Lösigssaror fasrum Sabilie äslige Högre ord. evaio ill försa ord. ssem Ruge-Kua-meoder seglägdsreglerig Sva evaioer

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto Raphsos metod NEWTON-RAPHSONS METOD (e metod ör umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR. Med andra ord: Vi kan approximera integralen från båda sidor

UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR. Med andra ord: Vi kan approximera integralen från båda sidor Armi Halilovic: EXTRA ÖVNINGAR Summor och itegraler UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR Om vi betratar e futio ff() som är otiuerlig i itervallet [aa, bb] då atar futioe sitt mista

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Uiversitet Matematisa Istitutioe Thomas Erladsso LÄSANVISNINGAR VECKA -5 BINOMIALSATSEN Ett uttryc av forme a + b allas ett biom eftersom det är summa av två moom. För uttrycet (a + b) gäller de

Läs mer

101. och sista termen 1

101. och sista termen 1 Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +

Läs mer

Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL

Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL Fourierserie fortsättig Ortogoalitetsrelatioera och Parsevals formel Med hjälp av ortogoalitetsrelatioera Y Â m W t, Â W t ] =, m ¹, m = () där Xf, g\ = Ÿ T f HtL g HtL, där W ã p, ka ma bevisa följade

Läs mer

LINJÄR ALGEBRA II LEKTION 4

LINJÄR ALGEBRA II LEKTION 4 LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer

Läs mer

Multiplikationsprincipen

Multiplikationsprincipen Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter

Läs mer

APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL

APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL Armi Halilovic: EXTRA ÖVNINGAR Approimatio av erie umma med e delumma APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL Låt vara e poitiv och avtagade utio ör åda att erie overgerar. Vi a

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Att repetera.

Uppsala Universitet Matematiska Institutionen Bo Styf. Att repetera. Uppsala Uiversitet Matematisa Istitutioe Bo Styf rasformmetoder, 5 hp gyl, I, W, X 20-0-26 Att repetera. Vi samlar här e del material frå tidigare urser som a vara avädbart uder urses gåg. Serier. E serie

Läs mer

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle

Läs mer

Föreläsning 3. Signalbehandling i multimedia - ETI265. Kapitel 3. Z-transformen. LTH 2015 Nedelko Grbic (mtrl. från Bengt Mandersson)

Föreläsning 3. Signalbehandling i multimedia - ETI265. Kapitel 3. Z-transformen. LTH 2015 Nedelko Grbic (mtrl. från Bengt Mandersson) Sigalbeadlig i multimedia - ETI65 Föreläsig 3 Sigalbeadlig i multimedia - ETI65 Kapitel 3 Z-trasforme LT 5 Nedelo Grbic mtrl. frå Begt Madersso Departmet of Electrical ad Iformatio Tecolog Lud Uiversit

Läs mer

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R. P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6.

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6. Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN6 09-03-17 Hedvig Kjellström hedvig@csc.kth.se Repetition av FN5 (GNM kap 6.1-2B) Differentialekvationer Standardform för begynnelsevärdesproblem

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?

Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren? Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok

Läs mer

= (1 1) + (1 1) + (1 1) +... = = 0

= (1 1) + (1 1) + (1 1) +... = = 0 TALFÖLJDER OCH SERIER Läs avsitte - och 5 Lös övigara, abcd, 4, 5, 7-9, -5, 7-9, -abcd, 4, 5 Läsavisigar Avsitt Defiitioe av talföljd i boe är ågot ryptis, me egetlige är det ågot väldigt eelt: e talföljd

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Runge-Kuttas metoder. Repetition av FN6 (GNM kap 6.

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Runge-Kuttas metoder. Repetition av FN6 (GNM kap 6. Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN7 09-03-23 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN6 (GNM kap 6.1G-2G)! Runge-Kuttas metoder ökad noggrannhet!

Läs mer

EGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET

EGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET EGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET INLEDNING Ett polyom ( i variabel λ ) av grad är ett uttryc på forme P( λ) a λ + aλ + aλ + a, där a Polyomets ollställe är lösigar ( rötter) till evatioe

Läs mer

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1 UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Svar till övigsteta ENVARIABELANALYS 0-0- Svar till övigsteta. Del A. Bestäm e ekvatio för tagete till kurva y f x) x 5 i pukte där x. Skissa kurva.

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. cos(3 xdx ) Från labben: Informationsteknologi

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. cos(3 xdx ) Från labben: Informationsteknologi Itegrler Frå le: Itegrler Beräkigsveteskp I/KF Trpetsformel oc Simpsos formel Itegrler Itegrler Frå le: Frå le: Adptiv metod (dptiv Simpso) Lösig v itegrl i Mtl: är itegrde är kotiuerlig fuktio: väd itegrl.

Läs mer

TATM79: Föreläsning 3 Binomialsatsen och komplexa tal

TATM79: Föreläsning 3 Binomialsatsen och komplexa tal TATM79: Föreläsig 3 Biomialsatse och omplexa tal Joha Thim augusti 016 1 Biomialsatse Ett miestric för att omma ihåg biomialoefficieter (åtmistoe för rimligt små är Pascals triagel: 0 1 1 1 1 1 1 3 1 3

Läs mer

Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].

Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b]. MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella

Läs mer

Digital signalbehandling Digital signalbehandling

Digital signalbehandling Digital signalbehandling Istitutioe för data- och eletrotei --8 Ly, Fuerst: Itroductory Digital Sigal Processig Kapitel. 7 Mbit/s. 96 Mbit/s., bit/s. a) b) - - CHALMERS LINDHOLMEN Sida Istitutioe för data- och eletrotei Sve Kutsso

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Målen för föreläsningen Stabilitet vid diskretisering av ODE med numeriska metoder Definition: Den analytiska lösningen till en ODE är begränsad. En numerisk metod för

Läs mer

Tenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2

Tenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2 Teta i MVE5/MVE95, Komplex (matematisk) aalys, F och TM/Kf 6, 8.3-.3 Hjälpmedel: Formelblad som delas ut av tetamesvaktera Telefovakt: Mattias Leartsso, 3-535 Betygsgräser: -9 (U), -9 (3), 3-39 (4), 4-5

Läs mer

Analys av polynomfunktioner

Analys av polynomfunktioner Aals av polomfutioer Aals36 (Grudurs) Istuderigsuppgifter Dessa övigar är det tät du sa göra i aslutig till att du läser huvudtete. De flesta av övigara har, om ite lösigar, så i varje fall avisigar till

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Vilka metoder har vi tagit upp? Euler framåt Euler bakåt Trapetsmetoden y k+ = y k + hf(t k, y k ), explicit y k+ = y k + hf(t k+, y k+ ), implicit y k+ = y k + h (f(t

Läs mer

4. Uppgifter från gamla tentor (inte ett officiellt urval) 6

4. Uppgifter från gamla tentor (inte ett officiellt urval) 6 SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.

Läs mer

Exempel ode45 parametrar Miniprojekt 1 Rapport. Problemlösning. Anastasia Kruchinina. Uppsala Universitet. Januari 2016

Exempel ode45 parametrar Miniprojekt 1 Rapport. Problemlösning. Anastasia Kruchinina. Uppsala Universitet. Januari 2016 Problemlösning Anastasia Kruchinina Uppsala Universitet Januari 2016 Anastasia Kruchinina Problemlösning 1 / 16 Exempel ode45 parametrar Miniprojekt 1 Rapport Anastasia Kruchinina Problemlösning 2 / 16

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )

Läs mer

vara en funktion av n variabler som har kontinuerliga derivator av andra ordningen i närheten av punkten )

vara en funktion av n variabler som har kontinuerliga derivator av andra ordningen i närheten av punkten ) rmi Hliloi: EXTR ÖVNINGR Tlors ormel ör utioer ler riler TYLORS FORMEL FÖR FUNKTIONER V FLER VRIBLER PPROXIMTIONER FELNLYS --------------------------------------------------------------------------------------------

Läs mer

Inledande matematisk analys. 1. Utred med bevis vilket eller vilka av följande påståenden är sana:

Inledande matematisk analys. 1. Utred med bevis vilket eller vilka av följande påståenden är sana: TATA79/TEN3 Tetame, 08-04-06 Iledade matematisk aalys. Utred med bevis vilket eller vilka av följade påståede är saa: (a) Om x 7 är x(x 3) 5; (b) Om (x )(x 6) 0 är x 6; (c) (x + 6)(x ) > 0 om x > 6. Solutio:

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 11 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

Tentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH

Tentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH 1 Matematiska Istitutioe KTH Tetame i Lijär Algebra, SF164 14 december, 21. Kursexamiator: Sadra Di Rocco OBS! Svaret skall motiveras och lösige skrivas ordetligt och klart. Iga hjälpmedel är tillåta.

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Liöpigs uiversitet Matematisa istitutioe Matemati och tillämpad matemati Kursod: TATA4 Provod: TEN Iga hjälpmedel är tillåta. Tetame i Evariabelaalys 4-4-3 l 4 9 Lösigara sall vara fullstädiga, välmotiverade,

Läs mer

Ekvationen (ekv1) kan beskriva vågutbredning, transversella svängningar i en sträng och andra fysikaliska förlopp.

Ekvationen (ekv1) kan beskriva vågutbredning, transversella svängningar i en sträng och andra fysikaliska förlopp. VÅGEKVATIONEN Vi betratar följade PDE u( u( x t, där > är e ostat, x, t (ev) Evatioe (ev) a besriva vågutbredig, trasversella svägigar i e sträg och adra fysialisa förlopp Radvärdesproblemet består av

Läs mer

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl

Läs mer

Uppgifter i simuleringskursen

Uppgifter i simuleringskursen Uppgifter i simuleringskursen 10 december 2008 Uppgifter med (O) betecknar obligatoriska inlämningsuppgifter. För de uppgifter som är värda extra Ladok-poäng, prata med kursledning om bedömning, omfattning

Läs mer

Tentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl

Tentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl TEN HF9 Tetame i Matematik, HF9, Fredag september, kl. 8.. Udervisade lärare: Fredrik ergholm, Elias Said, Joas Steholm Eamiator: rmi Halilovic Hjälpmedel: Edast utdelat formelblad miiräkare är ite tillåte

Läs mer

Svar till tentan

Svar till tentan UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Prov i matematik ES, K, KadKemi, STS, X ENVARIABELANALYS 0-03- Svar till teta 0-03-. Del A ( x Bestäm e ekvatio för tagete till kurva y = f (x =

Läs mer

= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1.

= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1. Lösigsförslag till tetamesskrivig i Matematik IV, 5B0 Torsdage de 6 maj 005, kl 0800-00 Hjälpmedel: BETA, Mathematics Hadbook Redovisa lösigara på ett sådat sätt att beräkigar och resoemag är lätta att

Läs mer

Tillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik

Tillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik Pla rörelse Kiematik vid rotatio av stela kroppar Iledade kiematik för stela kroppar. För de två lijera, 1 och, i figure bredvid gäller att deras vikelpositioer, θ 1 och θ, kopplas ihop av ekvatioe Θ =

Läs mer

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion. Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).

Läs mer

Systemdesign fortsättningskurs

Systemdesign fortsättningskurs Systemdesig fortsättigskurs Orgaisatio Föreläsare Potus Boström Assistet? Tider mådagar och tisdagar kl. 8-10 Börjar 3.9 och slutar 16.10 Rum B3040 Orgaisatio Iga föreläsigar 24.9, 25.9, 1.10 och 2.10

Läs mer

5. Linjer och plan Linjer 48 5 LINJER OCH PLAN

5. Linjer och plan Linjer 48 5 LINJER OCH PLAN 48 5 LINJER OCH PLAN 5. Lijer och pla 5.. Lijer Eempel 5.. Låt L ara e lije i rummet. Atag att P är e pukt på L och att L är parallell med e ektor, lijes riktigsektor. Då gäller att e pukt P ligger på

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel

Läs mer

Laboration 2 Ordinära differentialekvationer

Laboration 2 Ordinära differentialekvationer Matematisk analys i en variabel, AT1 TMV13-1/13 Matematiska vetenskaper Laboration Ordinära differentialekvationer Vi skall se på begynnelsevärdesproblem för första ordningens differentialekvation u =

Läs mer

b 1 och har för olika värden på den reella konstanten a.

b 1 och har för olika värden på den reella konstanten a. Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras

Läs mer

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak Armi Hlilovic: EXTRA ÖVIGAR SERIER (OÄDLIGA SUMMOR) Defiitio E serie är e summ v oädligt måg termer I de här stecile etrtr vi huvudslige reell tlserie, dvs serier vrs termer är reell tl (I slutet v stecile

Läs mer

27. NATURLJUD. o k k o k k k. p k k k kz k k o k k k k k k n k k k. k o k. a f4 Fredrik: kk k. k dk. a f4 4 j. k n. k n k k. k n k n k n.

27. NATURLJUD. o k k o k k k. p k k k kz k k o k k k k k k n k k k. k o k. a f4 Fredrik: kk k. k dk. a f4 4 j. k n. k n k k. k n k n k n. 27. NATURLJUD 171 a f4 Fredri: 4 o o p z o o Hysch-hysch! Tys-ta u! Ett ljus som är-mar sej! O ja, det är di-tör. Göm er på stört! Å Pirater: a f4 4 j m 4 j j m l l d d u om-mer visst di - tör! Å ej, u

Läs mer

Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem

Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen

Läs mer

Analys av algoritmer. Beräkningsbar/hanterbar. Stora Ordo. O(definition) Datastrukturer och algoritmer. Varför analysera algoritmer?

Analys av algoritmer. Beräkningsbar/hanterbar. Stora Ordo. O(definition) Datastrukturer och algoritmer. Varför analysera algoritmer? Datastrukturer och algoritmer Föreläsig 2 Aalys av Algoritmer Aalys av algoritmer Vad ka aalyseras? - Exekverigstid - Miesåtgåg - Implemetatioskomplexitet - Förstålighet - Korrekthet - - 29 30 Varför aalysera

Läs mer

Digital signalbehandling Fönsterfunktioner

Digital signalbehandling Fönsterfunktioner Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers

Läs mer

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp) KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),

Läs mer

Uppgifter 3: Talföljder och induktionsbevis

Uppgifter 3: Talföljder och induktionsbevis Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e

Läs mer

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om RIEMANNSUMMOR OCH DEFINITIO ONEN AV INTEGRALI LEN f ( x) dx Låt f ( Låt P={xx 0,x 1,...,x } där = x 0 x 1,..., x = =, vr e idelig vv itervllet [,]. I vrje delitervll [x -1, x ] väljer och e put c. Alltså

Läs mer

Föreläsning 9. Absolutstabilitet

Föreläsning 9. Absolutstabilitet Föreläsning 9 Absolutstabilitet Introduktion För att en numerisk ODE-metod ska vara användbar måste den vara konvergent, dvs den numeriska lösningen ska närma sig den exakta lösningen när steglängden går

Läs mer

LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN

LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN Armi Halilovic: EXTRA ÖVNINGAR, SF7 LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN INLEDNING LINJÄRA DIFFERENTIAL EKVATIONER E DE är lijär om de är lijär med avseede å de obekata fuktioe oc dess derivator

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1 Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers

Läs mer

Datastrukturer och algoritmer

Datastrukturer och algoritmer Iehåll Föreläsig 6 Asymtotisk aalys usammafattig experimetell aalys uasymtotisk aalys Lite matte Aalysera pseudokode O-otatio ostrikt o Okulärbesiktig 2 Mäta tidsåtgåge uhur ska vi mäta tidsåtgåge? Experimetell

Läs mer

Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem

Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem Lennart Edsberg NADA 9 mars 6 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 5 april 6 Efter den här laborationen

Läs mer

TNA001- Matematisk grundkurs Tentamen Lösningsskiss

TNA001- Matematisk grundkurs Tentamen Lösningsskiss TNA00- Matematisk grudkurs Tetame 07-0- - Lösigsskiss. a) Svar: x ], [ [, [. 4x x + 4x 4x (x + ) 0 0 x x + x + x + 0 //Teckeschema// x ], [ [, [ b) I : x I : x I : x x x + = 4 = 4 Lösig sakas x + x + =

Läs mer

Problem 2 löses endast om Du hade färre än 15 poäng på duggan som gavs arctanx sin x. x(1 cosx) lim. cost.

Problem 2 löses endast om Du hade färre än 15 poäng på duggan som gavs arctanx sin x. x(1 cosx) lim. cost. UPPSALA UNIVERSITET Matematiska istitutioe Abrahamsso 7-6796 Prov i matematik IT, W, lärarprogrammet Evariabelaalys, hp 9-6-4 Skrivtid: : 5: Tillåta hjälpmedel: Mauella skrivdo Varje uppgift är värd maimalt

Läs mer

Uppgifter i simuleringskursen

Uppgifter i simuleringskursen Uppgifter i simuleringskursen 18 februari 2013 Uppgifter med (O) betecknar obligatoriska inlämningsuppgifter. För de uppgifter som är värda extra Ladok-poäng, prata med kursledning om bedömning, omfattning

Läs mer

Absolutstabilitet. Bakåt Euler Framåt Euler

Absolutstabilitet. Bakåt Euler Framåt Euler Absolutstabilitet Introduktion För att en numerisk ODE-metod ska vara användbar måste den vara konvergent, dvs den numeriska lösningen ska närma sig den exakta lösningen när steglängden går mot noll. Det

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}: CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal

Läs mer

Sammanfattning av föreläsning 11. Modellbygge & Simulering, TSRT62. Föreläsning 12. Simulering. Föreläsning 12. Numeriska metoder och Simulering

Sammanfattning av föreläsning 11. Modellbygge & Simulering, TSRT62. Föreläsning 12. Simulering. Föreläsning 12. Numeriska metoder och Simulering Sammanfattning av föreläsning 11 Modellbygge & Simulering, TSRT62 Föreläsning 12. Simulering Reglerteknik, ISY, Linköpings Universitet Index för en DAE Antalet derivationer som behövs för att lösa ut ż

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Lokalt trunkeringsfel och noggrannhetsordning Definition: Det lokala trunkeringsfelet är det fel man gör med en numerisk metod när man utgår från det exakta värdet vid

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

Ordinära differentialekvationer (ODE) 1 1

Ordinära differentialekvationer (ODE) 1 1 TMV151/TMV181 Matematisk analys i en variabel M/TD 2009 Ordinära differentialekvationer (ODE) 1 1 I förra datorövningen löste vi begynnelsvärdesproblem av formen u (x) = f(x), x [0, b] (b > 0) u(0) = u

Läs mer

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén FACIT Tetame i matematisk statistik, Statistisk Kvalitetsstyrig, MSN3/TMS7 Lördag 6-1-16, klocka 14.-18. Lärare: Ja Rohlé Ugift 1 (3.5 ) Se boke! Ugift (3.5) Se boke! Ugift 3 (3) a-ugifte Partistorlek:

Läs mer

Sätesventiler (PN 16) VF 2-2-vägsventil, fläns VF 3-3-vägsventil, fläns

Sätesventiler (PN 16) VF 2-2-vägsventil, fläns VF 3-3-vägsventil, fläns Datablad Sätesvetiler (PN 16) VF 2-2-vägsvetil, fläs VF 3-3-vägsvetil, fläs Besrivig Egesaper: Bubbeltät ostrutio. Meais säppaslutig av AMV(E) 335 och AMV(E) 435. Tillhörade 2- och 3-portsvetil ämplig

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är

Läs mer

Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor

Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor Mtte C Översikt Fuktioer Poteslgr Potesuktioer Polomuktioer o Väde/vtgde uktio o M/mi pukter tersspukt o Tget Lösigsmetoder ör : grdre Rtioell uktioer Derivt Deiitio v derivt o Vis ör C Deriverigsregler:

Läs mer

Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.

Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00. Tekiska Högskola i Lud Istitutioe för Elektroveteskap Tetame i Elektroik, ESS010, del 2 de 14 dec 2009 klocka 14:00 19:00. Uppgiftera i tetame ger totalt 60p. Uppgiftera är ite ordade på ågot speciellt

Läs mer

Lösningsanvisningar till vissa av de icke obligatoriska workout-uppgifterna i Beräkningsvetenskap II

Lösningsanvisningar till vissa av de icke obligatoriska workout-uppgifterna i Beräkningsvetenskap II Lösningsanvisningar till vissa av de icke obligatoriska workout-uppgifterna i Beräkningsvetenskap II Kurvanpassning 6. A = [1 1; 2 1; 1 2; 2 3; 2 5; 2 4]; v = [30.006; 44.013; 46.006; 76.012; 108.010;

Läs mer

med tillgång till värden på f: vi anser att vi kan evaluera f för alla x i (a,b) och använder kvadraturformler av typen n

med tillgång till värden på f: vi anser att vi kan evaluera f för alla x i (a,b) och använder kvadraturformler av typen n F HT BE & Page of 6 PP C 5 pp 7 ff Integraler Uppgiften är att beräkna b I f ( ) d a med tillgång till värden på f: vi anser att vi kan evaluera f för alla i (a,b) o använder kvadraturformler av typen

Läs mer

. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.

. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet. Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

polynomfunktioner potensfunktioner exponentialfunktioner

polynomfunktioner potensfunktioner exponentialfunktioner Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give

Läs mer

EXAMENSARBETEN I MATEMATIK

EXAMENSARBETEN I MATEMATIK EXAMENSARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Iterpolatio och approimatio av Elhoussaie Ifoudie 8 - No 5 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 69 STOCKHOLM Iterpolatio

Läs mer

Matlab övningsuppgifter

Matlab övningsuppgifter CTH/GU TMA976-28/29 Matematiska vetenskaper Matlab övningsuppgifter Inledning Vi skall först se hur man beräknar numeriska lösningar till differentialekvationer. Därefter skall vi rita motsvarigheten till

Läs mer

Numeriska metoder, grundkurs II. Dagens program. Gyllenesnittminimering, exempel Gyllenesnittetminimering. Övningsgrupp 1

Numeriska metoder, grundkurs II. Dagens program. Gyllenesnittminimering, exempel Gyllenesnittetminimering. Övningsgrupp 1 Numeriska metoder, grundkurs II Övning 5 för I Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum :006, Roslagstullsbacken 5 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/d0/numi07

Läs mer

Stort massflöde Liten volym och vikt Hög verkningsgrad. Utföranden Kolv (7) Skruv (4) Ving (4) Roots (1,5) Radial (2-4) Axial (1,3) Diagonal.

Stort massflöde Liten volym och vikt Hög verkningsgrad. Utföranden Kolv (7) Skruv (4) Ving (4) Roots (1,5) Radial (2-4) Axial (1,3) Diagonal. Komressorer F1 F Skillad mot fläktar: Betydade desitetsförädrig, ryk mäts ormalt som absolut totaltryk. vå huvudgruer av komressorer: Förträgigskomressorer urbokomressorer Egeskaer Lågt massflöde Höga

Läs mer

Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen

Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-03-18 Del A 1. (a) ODE-systemet kan skrivas på formen z (t) = f(t, z), där z(t) = x(t) y(t) u(t) v(t), f(t, z) = u(t) v(t) kx(t)/ ( x2 (t)

Läs mer

Matematisk statistik

Matematisk statistik Tetame TEN, HF, 8 aug Kursod: HF Srivtid: 8:-: Lärare och examiator: Armi Halilovic Matematis statisti Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile typ som

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för

Läs mer

2. Konfidensintervall för skillnaden mellan två proportioner.

2. Konfidensintervall för skillnaden mellan två proportioner. Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele

Läs mer

Betygsgränser: För (betyg Fx).

Betygsgränser: För (betyg Fx). Tetame TEN, HF2, 4 jui 2 Matematis statisti Kursod HF2 Srivtid: 3:-7: : Lärare och examiator : Armi Halilovic Hjälmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile ty

Läs mer