Mätteknik Del C. Kreativitet
|
|
- Joakim Martinsson
- för 6 år sedan
- Visningar:
Transkript
1 Mätteknik Del C Syftet med dessa projekt är inte att ni skall verifiera Newtons lagar utan att undersöka hur väl ni i ert laboratorium kan realisera de idealiserade förhållanden, som dessa lagar förutsätter. Med andra ord kan vi åstadkomma en matematisk pendel, hur stor är effekten av olika friktioner, kan vi skapa en helt elastisk stöt, osv. Kreativitet Mekaniken är nog det område där det är lättast att testa egna idéer, bl.a. därför att vi har tillgång till en bra verkstad där vi snabbt kan tillverka utrustning efter era ritningar. MacReflex är också oerhört kraftfullt-använd den till något roligt. Låt därför fantasin flöda i Extrauppgiften.
2 UPPGIFTER Uppgift 1. Mekaniska svängningar GRUNDUPPGIFT Bestäm luftmotståndets inverkan på en pendel och en enkel harmonisk oscillator. EXTRAUPPGIFT Studera andra aspekter av dämpade och kopplade mekaniska svängningar. Uppgift 2. Gravitation GRUNDUPPGIFT Bestäm jordacceleration på Trapphuset plan 3 med tre siffrors någranhet. EXTRAUPPGIFT Studera andra aspekter av gravitation. Studera overgången från periodisk till kaotisk rörelse Uppgift 3. Energi och implulsöverföring GRUNDUPPGIFT Studera hur väl ni kan realisera elastiska stötar i en och två dimensioner och vad avikelserna berör på. EXTRAUPPGIFT Studera andra aspekter av energi-, impuls- och rörelsemängdsmoment-överföring
3 UPPGIFT 4 (för ambitiösa kursdeltagare) Kaotiskt läckande kran:
4 VERKTYG F=ma 1) Kausalitet 2) Recept. a(t), v(t), r(t) MCREFLEX SYSTEM- 2D- r(t), v(t) IR fotoner Reflektiv markör Kamera Video Mac Monitor r(t), v(t), a(t) Δt 1/60s Δx 0.1mm
5 En samling av artiklar som kan användas som inspirationskälla arbetet med extrauppgifter: (finns på kursens hemsidan) 1) The pendulum-rich physics from a simple system, R.A. Nelson and M. G. Olsson, American Journal of Physics, 54, 112, ) Bessel's improved Kater pendulum in the teaching lab, D. Candela et al., American Journal of Physics, 69, 714, ) An accurate determination of the acceleration of gravity g in the undergraduate laboratory, A. Dupré and P. Janssen, Am. J. Phys. 68, 704 (2000). 4) On the rise and fall of a ball with linear or quadratic drag, Peter Timmerman and Jacobus P. van der Weele, Am. J. Phys. 67, 538 (1999). 5) An accurate measurement of g using falling balls, Kurt Wick and Keith Ruddick, Am. J. Phys. 67, 962 (1999). 6) Variable mass oscillator, José Flores, Guillermo Solovey, and Salvador Gil, Am. J. Phys. 71, 721 (2003). 7) Rutherford experiment 8) An accurate formula for the period of a simple pendulum osccilationg beyond the small angle limit, F. M. S. Lima and P. Arun, Am. J. Phys. 74, 892 (2006). 9) A simple mathematical model for a dripping tab, T. Schmidt and M. Marhl, Eur. J. Physics, 18 (1997) ) Chaos in dripping faucet, H. N. Nunez Yepes et al., Eur. J. Physics, 10 (1989) ) Bifurcations induced by periodic forces and taming chaos in dripping faucets, K. Kiyono and N. Fuchikami, Journal of the Physical Society of Japan, 71 (2002) The chaotic dripping faucet, P. Coullet, L. Mahadevan and C. Riera, (preprint)
6 Uppgift 2: Bestäm g med 3 siffrors någranhet Varför plågar man teknologer med detta! Dagis barn känner att: g= ( x10-3 sin ϕ x10-5 sin 4 ϕ)cm/s 2 ϕ= latitude Avvikelser: lokal mass fördelning SYFTET framsteg experiment nyskapande någranhet Utförandet (peanuts):!.. + g L sin! = 0 Minimera Δg (dvs ΔL och ΔT)!!!! Θ L m! <<1; g = 4"L2 T 0 2 #g = ( $g $L ) 2 (#L) 2 +( $g $T 0 ) 2 (#T 0 ) 2 g = g ± #g BOOOOAAAA!!!!!!
7 Uppgift 2: Bestäm g med 3 siffrors någgranhet Analysen är baserad på (ideal fall) : Verkligheten: T=T 0 +ΔT g = 4!L2 T 0 2 ideal period Uppskatta om Δg/g<10-3 Verkligheten????? 1) Θ<<1? 2) Mass fördelning? 3) Pendeln svänger i luften? 3a) Arhimedes 3b) Friktionen (Reynolds tal R=?; laminar eller turbulent?) 3c) Extra mass? 4) Upphangningsstelhet? + mycket mer!!!!t T 0 = n 2n! " 2 2n (n!) 2 sin 2n ( # max 2 ) 1 T = 2!( I mgh )2
8 F=ma Uppgift 2: Ett alternativ Fritt fall -1D rörelse MCREFLEX SYSTEM- 1D- r(t), v(t) Sfär; radius R IR fotoner v(t) Kamera Video Mac Monitor r(t), v(t), a(t) g Men Fritt fall i medium (Landau Lifshic-Fluid Mechanics) m d 2 x dt 2 =!mg + ( 1 2"#R3 ) * 3 dv dt + 3$v R R $ " t '!& dv d% d% +, t! % - Ajaaaajajajaaaa!!!!- livet är komplex
9 Uppgift 1. GRUNDUPPGIFT Bestäm luftmotståndets inverkan på en pendel och en enkel harmonisk oscillator. EXTRAUPPGIFT Studera andra aspekter av dämpade och kopplade mekaniska svängningar. IR fotoner Kamera Video Mac T ε ( C) 220V Monitor Från γ till η via Stokes
10 Från γ till η via Stokes η(t)= konst e -E/kT
11 Uppgift 1. GRUNDUPPGIFT Bestäm luftmotståndets inverkan på en pendel och en enkel harmonisk oscillator. Motiveringen Vardagsliv a) u Golfboll, flygplan, skepp, F drag = g(",#,u,d) Vätska eller gas F drag / Area "u 2 = f (Re) = f = friktion coefficient F drag = f (Re)"u 2 $ area b) u fluid Vad bestämmer storleken på motståndskraften dvs f? a) Formen+Re b)ytstruktur
12 Vad bestämmer storleken på motståndskraften dvs f? a) Formen+Re b) Ytstruktur Flow θ
13 Mjuka ytor med hår?
14 Uppgift 3. Energi och implulsöverföring GRUNDUPPGIFT Studera hur väl ni kan realisera elastiska stötar i en och två dimensioner och vad avikelserna berör på. EXTRAUPPGIFT Studera andra aspekter av energi-, impuls- och rörelsemängdsmoment-överföring Inspirationen? NO v, E k? Vad är mekanismen för vib excitering v, E k, E v FFY501-02/03-Intro-22
15 Är han galen??? Man disponerar med ett luft bord och Al puckar+ Mc Reflex????? Atom -molekyl och molekul-yta stötar NO v, E k? M v K v, E k, E v K v M 2MKR experiment+2-3manår! M 2 Kan man vib excitera M 2????? Svaret: Det berör på v?
16 Hur stor är tidskala för stötet? v
17 Rutherford Experiment!
TIF081 DEL C Experimentell Fysik 1-Mätteknik F 2 VT 12
TIF081 DEL C Experimentell Fysik 1-Mätteknik F 2 VT 12 Examinator: http://fy.chalmers.se/~f7xiz/tif081c/tif081c.html Igor Zoric f7xiz@chalmers.se Tel:772 3371 F5117 UPPGIFTER Uppgift 1. Mekaniska svängningar
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:
4. Deformerbara kroppar och fluider [Pix-SE, IR-11]
4. Deformerbara kroppar och fluider [Pix-SE, IR-11] 4.1 Massa-fädersystem 4.2 Gaser och vätskor Kontinuerligt medium - e fixa positioner, deformerbar kropp TSBK03: Fysik, Ht2009 86 4. Deformerbara kroppar
TFYA16/TEN2. Tentamen Mekanik. 12 januari :00 13:00. Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa ng.
Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Tentamen Mekanik 12 januari 2015 8:00 13:00 Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa
Tentamen i Mekanik - Partikeldynamik TMME08
Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,
Mekanik SG1108 Mekanikprojekt Dubbelpendel
Mekanik SG1108 Mekanikprojekt Dubbelpendel Studenter: Peyman Ahmadzade Alexander Edström Robert Hurra Sammy Mannaa Handledare: Göran Karlsson karlsson@mech.kth.se Innehåll Sammanfattning... 3 Inledning...
LEONARDO DA VINCI ( )
LEONARDO DA VINCI (1452 1519) En kropp som rör sig med en viss hastighet i stillastående luft erfar samma strömningsmotstånd som om kroppen vore stillastående och utsatt för en luftström med samma hastighet.
TFYA16/TEN :00 13:00
Link opings Universitet Institutionen f or fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Ovningstentamen Mekanik 2015 8:00 13:00 Tentamen best ar av 6 uppgifter som vardera kan ge upp till 4 po ang.
Laboration 1 Mekanik baskurs
Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen
Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.
Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 19/4 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 15 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 : Kapitel 15.1 15.8 Ljud och
Kursinformation i Partikeldynamik för M (TMME08)
Kursinformation i Partikeldynamik för M (TMME08) 18h föreläsningar, 6h lektioner och h datorlaboration i period VT, 009. Kurshemsida www.mechanics.iei.liu.se/edu ug/tmme08/ Föreläsare och examinator Jonas
Mekanik FK2002m. Repetition
Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r
Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010
Modellering av Dynamiska system - Uppgifter till övning 1 och 2 17 mars 21 Innehållsförteckning 1. Repetition av Laplacetransformen... 3 2. Fysikalisk modellering... 4 2.1. Gruppdynamik en sciologisk modell...
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen 1/8 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
Gunga med Galileo matematik för hela kroppen
Ann-Marie Pendrill Gunga med Galileo matematik för hela kroppen På en lekplats eller i en nöjespark finns möjlighet att påtagligt uppleva begrepp från fysik och matematik med den egna kroppen. Med hjälp
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 10/1 017, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)
Två gränsfall en fallstudie
19 november 2014 FYTA11 Datoruppgift 6 Två gränsfall en fallstudie Handledare: Christian Bierlich Email: christian.bierlich@thep.lu.se Redovisning av övningsuppgifter före angiven deadline. 1 Introduktion
Tid läge och accelera.on
Tid läge och accelera.on Tid t Läge x = x(t) Hastighet v(t) = dx dt x(t) = Acceleration a(t) = dv dt v(t) = t t0 v(t)dt t t 0 a(t)dt Eq 1 Eq 2 Eq 3 MEN KOM IHÅG: 1. För a> de>a skall vara användbart måste.dsberoendet
MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007
I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt
1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg.
Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 1 juni, 16, Eklandagatan 86. Examinator: Marina Axelson-Fisk. Tel: 7-88113. Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte
Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.
öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen /8 016, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Uppgifter 2 Grundläggande akustik (II) & SDOF
Uppgifter Grundläggande akustik (II) & SDOF. Två partiklar rör sig med harmoniska rörelser. = 0 u ( Acos( där u ( Acos( t ) 6 a. Vad är frekvensen för de båda rörelserna? b. Vad är periodtiden? c. Den
Kollisioner, impuls, rörelsemängd kapitel 8
Kollisioner, impuls, rörelsemängd kapitel 8 ! Sida 4/4 Laboration 1: Fallrörelse på portalen ikväll Institutionen för Fysik och Astronomi! Mekanik HI: 2014 Fallrörelse Institutionen för Fysik och Astronomi!
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt
SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)
Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,
2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.
Linköpings Universitet, Hållfasthetslära, IEI/IKP TENTAMEN i Mekaniska svängningar och utmattning, TMMI09 2007-10-16 kl 14-18 L Ö S N I N G A R ---- SOLUTIONS 1. Ange sambanden mellan vinkelfrekvens ω,
Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen
Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från
Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av
Mekanik 2 Live-L A TEX:ad av Anton Mårtensson 2012-05-08 I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av ṗ = m r = F Detta är ett postulat och grundläggande för all Newtonsk
Introduktion till kursen. Fysik 3. Dag Hanstorp
Introduktion till kursen Fysik 3 Dag Hanstorp Vi har fem sinnen: Syn Hörsel Smak Lukt Känsel Hur stor är räckvidden på de olika sinnena? Hur skulle vår världsbild påverkas om vi människor hade saknat
Mekanik FK2002m. Kraft och rörelse I
Mekanik FK2002m Föreläsning 4 Kraft och rörelse I 2013-09-05 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 4 Introduktion Hastighet Langt under 3x10 8 Nara : 3x10 8 Storlek 10 9 Langt over : 10 9 Klassisk
Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B
Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft
KVANTFYSIK för F3 2009 Inlämningsuppgifter I5
ALMERS TEKNISKA ÖGSKOLA Mikroteknologi och nanovetenskap Elsebeth Schröder (schroder vid chalmers.se) 2009-11-12 KVANTFYSIK för F3 2009 Inlämningsuppgifter I5 Bedömning: Bedömningen av de inlämnade lösningarna
Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad. Institutionen för Astronomi och teoretisk fysik Lunds Universitet. S:t Petri,
Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad Institutionen för Astronomi och teoretisk fysik Lunds Universitet S:t Petri, 12.09.05 Higgs 1 Leif Lönnblad Lund University Varför är Higgs viktig?
Introduktion till kursen. Fysik 3. Dag Hanstorp
Introduktion till kursen Fysik 3 Dag Hanstorp Vi har fem sinnen: Syn Hörsel Smak Lukt Känsel Hur stor är räckvidden på de olika sinnena? Hur skulle vår världsbild påverkas om vi människor hade saknat
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats
Tentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge
Andra EP-laborationen
Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med
Kulstötning. Israt Jahan Martin Celander Andreas Svensson Jonathan Koitsalu
Kulstötning Israt Jahan Martin Celander Andreas Svensson Jonathan Koitsalu Abstract I detta projekt undersöktes en kulstötning med starthöjden meter och en längd på,5 meter med hjälp av matematiska modeller.
Var i en nöjespark får man uppleva de starkaste krafterna? Enligt
Ann-Marie Pendrill & David Eager Studsmattematte fritt fall och harmonisk svängningsrörelse Studsmattor finns i många trädgårdar och lekplatser. Under studsandet rör man sig huvudsakligen i vertikalled
Tentamen i FTF140 Termodynamik och statistisk fysik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,
Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt
Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer
tentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod F6T Kursnamn Fysik 3 Datum Material Laborationsrapport svängande skiva Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Labbrapport TCTDA Amanda
(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).
STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när
Preliminär timplanering: Plasmafysik
Vågor, plasmor antenner F700T Preliminär timplanering: Plasmafysik Litteratur: Chen F. F., Plasma physics and controlled fusion, Plenum, nd ed. Etra problem i plasmafysik. X-plasma (Från hemsidan) Pass
Mekanik HI Andreas Lindblad
Mekanik HI 2014 Andreas Lindblad F2 Föreläsningsplan Tema F1 Kinematik i linjär- och cirkulär-rörelse Kapitel 1,2,3 samt 9.1-9.3 F2 Newtons lagar 4,5 F3 Arbete & Kinetisk Energi 6,7 F4 Impuls & Rörelsemängdsmoment
= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O
1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning
Bevarandelagar för fluidtransport, dimensionsanalys och skalning (Kapitel 3)
Bearandelagar för flidtransport, dimensionsanals och skalning (Kapitel 3) Idag: Kapitel 3 Blodets reologi (rest från kapitel ) Generella balansekationerna på differentiell form: bearande a massa och rörelsemängd
6. Räkna ut integralen. z dx dy dz,
Institutionen för Matematik, TH Flervariabelanalys SF626. Tentamen den 23 november 29 kl. 8-3 Tillåtet hjälpmedel är Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga
7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.
Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),
YTKEMI. Föreläsning 8. Kemiska Principer II. Anders Hagfeldt
YTKEMI. Föreläsning 8. Kemiska Principer II. Anders Hagfeldt Under föreläsningarna 8 och 9 kommer vi att gå igenom ett antal koncept som är viktiga i ytkemi och försöka göra en termodynamisk beskrivning
9.1 Kinetik Rotation kring fix axel Ledningar
9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn
TFYA16: Tenta Svar och anvisningar
150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket
Den inverterade pendeln med oscillerande fästpunkt
Den inverterade pendeln med oscillerande fästpunkt Den inverterade pendeln är ett klassiskt reglertekniskt problem, här behandlas den för de olika periodiska rörelser av fästpunkten som kan ge stabil jämvikt.
TFYA16/TEN2. Tentamen Mekanik. 7 april :00 19:00. Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa ng.
Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Tentamen Mekanik 7 april 2015 14:00 19:00 Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa
Tentamen i Flervariabelanalys, MVE , π, kl
Tentamen i Flervariabelanalys, MVE35 216-3-14, π, kl. 14.-18. Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Raad Salman För godkänt krävs minst 2 poäng. Betyg 3: 2-29 poäng, betyg
Ord att kunna förklara
Rörelse och kraft Ord att kunna förklara Rörelse Hastighet Acceleration Retardation Fritt fall Kraft Gravitationskraft (=tyngdkraft) Friktionskraft Centripetalkraft Tyngdpunkt Stödyta Motkraft Rörelse
LABKOMPENDIUM. TFYA76 Mekanik
Linköpings universitet IFM, Institutionen för Fysik, Kemi och Biologi Rev. 2014-08-27 LABKOMPENDIUM TFYA76 Mekanik INNEHÅLL: LAB 1: RÖRELSE. 3 Uppgift 1 3 Uppgift 2 5 LAB 2: STÖT 6 2 LAB 1: RÖRELSE Målsättning
CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16
CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg TME055 Strömningsmekanik 2015-01-16 Tentamen fredagen den 16 januari 2015 kl 14:00-18:00 Ansvarig lärare: Henrik Ström Ansvarig lärare besöker
PTG 2015 övning 1. Problem 1
PTG 2015 övning 1 1 Problem 1 Enligt mätningar i fortfarighetstillstånd producerar en destillationsanläggning 12,5 /s destillat innehållande 87 vikt % alkohol och 19,2 /s bottenprodukt innehållande 7 vikt
mg F B cos θ + A y = 0 (1) A x F B sin θ = 0 (2) F B = mg(l 2 + l 3 ) l 2 cos θ
Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 019-01-19 Examinator: Magnus Gustafsson 1. Friläggning av balken och staget: Staget är en tvåkraftsdel
Definitioner: hastighet : v = dr dt = r fart : v = v
KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK
) / (c l) -A R ) = (A L. -ε R. Δε = (ε L. Tentamen i Biomätteknik (TFKE37), 9 januari Uppgift 1 (10p)
Tentamen i Biomätteknik (TFKE37), 9 januari 2014. Uppgift 1 (10p) För akronymerna FT- IR, AUC, AFM, UV och MALDI: a) Skriv ut förkortningen! b) Föreslå för varje metod två egenskaper hos biomolekyler som
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Fredagen 1/1 018, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Arbete är ingen tillståndsstorhet!
VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:
Simulering av kontaktkrafter och nötning i transportörsystem för malm
Simulering av kontaktkrafter och nötning i transportörsystem för malm John Nordberg 1, Martin Servin 1,2 1 UMIT Research Lab vid Umeå universitet 2 Algoryx Simulation 2011-08-25 Med stöd av ProcessIT Innovations
Mekanik II repkurs lektion 4. Tema energi m m
Mekanik II repkurs lektion 4 Tema energi m m Rörelseenergi- effekt P v P (hastighet hos P) dt/dt= F P v P F P för stel kropp När kan rörelseenergi- effekt användas? Effektbidrag från omgivningen (exempelvis
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Arbetet beror på vägen
VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:
Chalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar
Chalmers Tekniska Högskola och Mars 003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson Svängningar Introduktion I mekanikkurserna arbetar vi parallellt med flera olika metoder
1.3 Uppkomsten av mekanisk vågrörelse
1.3 Uppkomsten av mekanisk vågrörelse För att en mekanisk vågrörelse skall kunna uppstå, behövs ett medium, något som rörelsen kan framskrida i. Det kan vara vatten, luft, ett bord, jordskorpan, i princip
university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11
Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd
Modeller för dynamiska förlopp
Föreläsning 3 Modeller för dynamiska förlopp 3.1 Aktuella avsnitt i läroboken (.1) Population Models. (.) Equilibrium Solutions and Stability. (.3) Acceleration-Velocity Models. 19 FÖRELÄSNING 3. MODELLER
II. Partikelkinetik {RK 5,6,7}
II. Partikelkinetik {RK 5,6,7} med kraft att beräkna och förstå Newtons lagar och kraftbegreppet är mycket viktiga för att beskriva och förstå rörelse Kenneth Järrendahl, 1: Tröghetslagen Newtons Lagar
Tentamen i Mekanik SG1130, baskurs. Problemtentamen
013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på
KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe
Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.
Ökad dämpning genom rätt design av utloppsstrypningen
Ökad dämpning genom rätt design av utloppsstrypningen Mikael Axin Fluida och mekatroniska system, Institutionen för ekonomisk och industriell utveckling, Linköpings universitet E-mail: mikael.axin@liu.se
Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse
Rotationsrörelse I denna laboration kommer vi att undersöka dynamik rotationsrörelse för stela kroppar. Experimentellt kommer vi att undersöka bevarandet av kinetisk rotationsenergi och rörelsemängdsmoment
Svängningar och frekvenser
Svängningar och frekvenser Vågekvationen för böjvågor Vågekvationen för böjvågor i balkar såväl som plattor härleds med hjälp av elastiska linjens ekvation. Den skiljer sig från de ovanstående genom att
.4-6, 8, , 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse
.4-6, 8, 12.5-6, 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse Exempel på roterande koordinatsystem planpolära eller cylindriska koordinater Storhet Beteckning Enhet Fysikalisk
NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges.
1 NFYA: Svar och lösningar till tentamen 14115 Del A Till dessa uppgifter behöver endast svar anges. Uppgift 1 a) Vi utnyttjar att: l Cx dx = C 3 l3 = M, och ser att C = 3M/l 3. Dimensionen blir alltså
Tillämpad Matematik I Övning 3
HH/ITE/BN Tillämpad Matematik I, Övning 3 1 Tillämpad Matematik I Övning 3 Allmänt Övningsuppgifterna, speciellt Typuppgifter i första hand, är eempel på uppgifter du kommer att möta på tentamen. På denna
A-Ö Ämnet i pdf Ämne - Fysik Fysik är ett naturvetenskapligt ämne som har sitt ursprung i människans behov av att förstå och förklara sin omvärld. Fysik behandlar allt från växelverkan mellan materiens
Mekanik FK2002m. Kraft och rörelse II
Mekanik FK2002m Föreläsning 5 Kraft och rörelse II 2013-09-06 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 5 Introduktion Vi har hittills behandlat ganska idealiserade problem, t.ex. system i avsaknad
Tentamen: Lösningsförslag
Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:
HYDRAULIK Grundläggande begrepp I
HYDRAULIK Grundläggande begrepp I Rolf Larsson, Tekn Vattenresurslära För VVR145, 17 april, 2012 NASA/ Astronaut Photography of Earth - Quick View VVR015 Hydraulik/ Grundläggande begrepp I 19 feb 2014
Tentamen i Mekanik I del 1 Statik och partikeldynamik
Tentamen i Mekanik I del 1 Statik och partikeldynamik TMME27 2016-10-24, kl 14.00-19.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE, TERF Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27
BESTÄMNING AV C P /C V FÖR LUFT
FYSIK Institutionen för ingenjörsvetenska, fysik och matematik Se00 BESTÄMNING A C P /C FÖR LUFT En av de viktigare storheterna i termodynamiken är värmekaacitetskvoten γ, vilken är kvoten mellan den isobar
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med
Föreläsning 17: Jämviktsläge för flexibla system
1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla
Svar och anvisningar
160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:
Vågfysik. Vilka typer av vågor finns det? Fortskridande vågor. Mekaniska vågor Elektromagnetiska vågor Materievågor
Vågysik Fortskridande ågor Knight, Kap. 0 Vilka typer a ågor inns det? Mekaniska ågor Elektromagnetiska ågor Materieågor 1 Vad är en åg? En ortskridande åg är en lokal störning som utbreder sig på ett
Strömning och varmetransport/ varmeoverføring
Lektion 2: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Metaller är kända för att kunna leda värme, samt att överföra värme från en hög temperatur till en lägre. En kombination
Laboration 1: Gravitation
Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver