TIF081 DEL C Experimentell Fysik 1-Mätteknik F 2 VT 12
|
|
- Peter Larsson
- för 6 år sedan
- Visningar:
Transkript
1 TIF081 DEL C Experimentell Fysik 1-Mätteknik F 2 VT 12 Examinator: Igor Zoric f7xiz@chalmers.se Tel: F5117
2 UPPGIFTER Uppgift 1. Mekaniska svängningar GRUNDUPPGIFT Bestäm luftmotståndets inverkan på en pendel och en enkel harmonisk oscillator. EXTRAUPPGIFT Studera andra aspekter av dämpade och kopplade mekaniska svängningar. Uppgift 2. Gravitation GRUNDUPPGIFT Bestäm jordacceleration på Trapphuset plan 3 med tre siffrors någranhet. EXTRAUPPGIFT Studera andra aspekter av gravitation. Studera overgången från periodisk till kaotisk rörelse Uppgift 3. Energi och implulsöverföring GRUNDUPPGIFT Studera hur väl ni kan realisera elastiska stötar i en och två dimensioner och vad avikelserna berör på.! EXTRAUPPGIFT Studera andra aspekter av energi-, impuls- och rörelsemängdsmoment-överföring
3 UPPGIFT 4 (för ambitiösa kursdeltagare) Kaotiskt läckande kran:
4 VERKTYG????? F=ma 1) Kausalitet 2) Recept. a(t), v(t), r(t) MCREFLEX SYSTEM- 2D- r(t), v(t) IR fotoner Reflektiv markör Kamera Video Mac Monitor r(t), v(t), a(t) Δt 1/60s Δx 0.1mm
5 En samling av artiklar som kan användas som inspirationskälla arbetet med extrauppgifter: (finns på kursens hemsidan) 1) The pendulum-rich physics from a simple system, R.A. Nelson and M. G. Olsson, American Journal of Physics, 54, 112, ) Bessel's improved Kater pendulum in the teaching lab, D. Candela et al., American Journal of Physics, 69, 714, ) An accurate determination of the acceleration of gravity g in the undergraduate laboratory, A. Dupré and P. Janssen, Am. J. Phys. 68, 704 (2000). 4) On the rise and fall of a ball with linear or quadratic drag, Peter Timmerman and Jacobus P. van der Weele, Am. J. Phys. 67, 538 (1999). 5) An accurate measurement of g using falling balls, Kurt Wick and Keith Ruddick, Am. J. Phys. 67, 962 (1999). 6) Variable mass oscillator, José Flores, Guillermo Solovey, and Salvador Gil, Am. J. Phys. 71, 721 (2003). 7) Rutherford experiment 8) An accurate formula for the period of a simple pendulum osccilationg beyond the small angle limit, F. M. S. Lima and P. Arun, Am. J. Phys. 74, 892 (2006). 9) A simple mathematical model for a dripping tab, T. Schmidt and M. Marhl, Eur. J. Physics, 18 (1997) ) Chaos in dripping faucet, H. N. Nunez Yepes et al., Eur. J. Physics, 10 (1989) ) Bifurcations induced by periodic forces and taming chaos in dripping faucets, K. Kiyono and N. Fuchikami, Journal of the Physical Society of Japan, 71 (2002) The chaotic dripping faucet, P. Coullet, L. Mahadevan and C. Riera, (preprint)
6 Uppgift 2: Bestäm g med 3 siffrors någranhet Varför plågar man teknologer med detta! Dagis barn känner att: g= ( x10-3 sin ϕ x10-5 sin 4 ϕ)cm/s 2 ϕ= latitude Avvikelser: lokal mass fördelning SYFTET framsteg experiment Utförandet (peanuts): Θ.. + g L sin Θ = 0 nyskapande någranhet Minimera Δg (dvs ΔL och ΔT)!!!! Θ L m Θ <<1; g = 4πL2 T 0 2 Δg = g = g ± Δg ( g L ) 2 (ΔL) 2 +( g T 0 ) 2 (ΔT 0 ) 2 BOOOOAAAA!!!!!!
7 Uppgift 2: Bestäm g med 3 siffrors någgranhet Analysen är baserad på (ideal fall) : Verkligheten: T=T 0 +ΔT g = 4πL2 T 0 2 ideal period Uppskatta om Δg/g<10-3 Verkligheten????? 1) Θ<<1? 2) Mass fördelning? 3) Pendeln svänger i luften? 3a) Arhimedes 3b) Friktionen (Reynolds tal R=?; laminar eller turbulent?) 3c) Extra mass? 4) Upphangningsstelhet? + mycket mer!!! ΔT T 0 = n 2n! 2 2n (n!) 2 1 T = 2π( I mgh )2 sin 2n ( Θ max 2 )
8 F=ma Uppgift 2: Ett alternativ Fritt fall -1D rörelse MCREFLEX SYSTEM- 1D- r(t), v(t) Sfär; radius R IR fotoner v(t) Kamera Video Mac Monitor r(t), v(t), a(t) g Men Fritt fall i medium (Landau Lifshic-Fluid Mechanics) m d 2 x dt 2 = mg + 1 2πρR3 3 dv dt + 3υv R R υ π t dv dτ dτ t τ Ajaaaajajajaaaa!!!!- livet är komplex
9 Uppgift 1. GRUNDUPPGIFT Bestäm luftmotståndets inverkan på en pendel och en enkel harmonisk oscillator. EXTRAUPPGIFT Studera andra aspekter av dämpade och kopplade mekaniska svängningar. IR fotoner Kamera Video Mac T ε ( C) 220V Monitor Från γ till η via Stokes
10 Från γ till η via Stokes η(t)= konst e -E/kT
11 Uppgift 1. GRUNDUPPGIFT Bestäm luftmotståndets inverkan på en pendel och en enkel harmonisk oscillator. Motiveringen Vardagsliv a) Vätska eller gas Golfboll, flygplan, skepp, F drag = g(ρ,ν,u,d) F drag / Area = f (Re) = f = friktion coefficient ρu 2 F drag = f (Re)ρu 2 area u b) u fluid Vad bestämmer storleken på motståndskraften dvs f? a) Formen+Re b)ytstruktur
12 Vad bestämmer storleken på motståndskraften dvs f? a) Formen+Re b) Ytstruktur θ Flow
13 Mjuka ytor med hår?
14 Uppgift 3. Energi och implulsöverföring GRUNDUPPGIFT Studera hur väl ni kan realisera elastiska stötar i en och två dimensioner och vad avikelserna berör på.! EXTRAUPPGIFT Studera andra aspekter av energi-, impuls- och rörelsemängdsmoment-överföring Inspirationen? NO v, E k? Vad är mekanismen för vib excitering v, E k, E v FFY501-02/03-Intro-22
15 Är han galen??? Man disponerar med ett luft bord och Al puckar+ Mc Reflex????? Atom -molekyl och molekul-yta stötar NO v, E k? M v K v, E k, E v K v M 2MKR experiment+2-3manår! M 2 Kan man vib excitera M 2????? Svaret: Det berör på v?
16 Fano resonanser Dagis fysik Kopplingstyrka imellan två HO dikterar energi issipationskannalen luft honung ω 1 Γ 1 liten ω 2 Γ 2 stor
17
18 Rutherford Experiment!
Mätteknik Del C. Kreativitet
Mätteknik Del C Syftet med dessa projekt är inte att ni skall verifiera Newtons lagar utan att undersöka hur väl ni i ert laboratorium kan realisera de idealiserade förhållanden, som dessa lagar förutsätter.
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:
TFYA16/TEN2. Tentamen Mekanik. 12 januari :00 13:00. Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa ng.
Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Tentamen Mekanik 12 januari 2015 8:00 13:00 Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 19/4 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
4. Deformerbara kroppar och fluider [Pix-SE, IR-11]
4. Deformerbara kroppar och fluider [Pix-SE, IR-11] 4.1 Massa-fädersystem 4.2 Gaser och vätskor Kontinuerligt medium - e fixa positioner, deformerbar kropp TSBK03: Fysik, Ht2009 86 4. Deformerbara kroppar
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen 1/8 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 10/1 017, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Tentamen i Mekanik - Partikeldynamik TMME08
Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen /8 016, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,
Kursinformation i Partikeldynamik för M (TMME08)
Kursinformation i Partikeldynamik för M (TMME08) 18h föreläsningar, 6h lektioner och h datorlaboration i period VT, 009. Kurshemsida www.mechanics.iei.liu.se/edu ug/tmme08/ Föreläsare och examinator Jonas
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,
TFYA16/TEN :00 13:00
Link opings Universitet Institutionen f or fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Ovningstentamen Mekanik 2015 8:00 13:00 Tentamen best ar av 6 uppgifter som vardera kan ge upp till 4 po ang.
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Fredagen 1/1 018, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt
Bevarandelagar för fluidtransport, dimensionsanalys och skalning (Kapitel 3)
Bearandelagar för flidtransport, dimensionsanals och skalning (Kapitel 3) Idag: Kapitel 3 Blodets reologi (rest från kapitel ) Generella balansekationerna på differentiell form: bearande a massa och rörelsemängd
Mekanik FK2002m. Repetition
Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r
Chalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar
Chalmers Tekniska Högskola och Mars 003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson Svängningar Introduktion I mekanikkurserna arbetar vi parallellt med flera olika metoder
9.1 Kinetik Rotation kring fix axel Ledningar
9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn
1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg.
Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 1 juni, 16, Eklandagatan 86. Examinator: Marina Axelson-Fisk. Tel: 7-88113. Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 15 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 : Kapitel 15.1 15.8 Ljud och
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Onsdagen 30/3 06, kl 08:00-:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad. Institutionen för Astronomi och teoretisk fysik Lunds Universitet. S:t Petri,
Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad Institutionen för Astronomi och teoretisk fysik Lunds Universitet S:t Petri, 12.09.05 Higgs 1 Leif Lönnblad Lund University Varför är Higgs viktig?
Föreläsning 2. Reglerteknik AK. c Bo Wahlberg. 3 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 2 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 3 september 2013 Introduktion Förra gången: Dynamiska system = Differentialekvationer Återkoppling
LEONARDO DA VINCI ( )
LEONARDO DA VINCI (1452 1519) En kropp som rör sig med en viss hastighet i stillastående luft erfar samma strömningsmotstånd som om kroppen vore stillastående och utsatt för en luftström med samma hastighet.
93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar
17317 93FY51 1 93FY51/ TN1 Elektromagnetism Tenta 17317: svar och anvisningar Uppgift 1 a) Av symmetrin följer att: och därmed: Q = D d D(r) = D(r)ˆr E(r) = E(r)ˆr Vi väljer ytan till en sfär med radie
2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.
Linköpings Universitet, Hållfasthetslära, IEI/IKP TENTAMEN i Mekaniska svängningar och utmattning, TMMI09 2007-10-16 kl 14-18 L Ö S N I N G A R ---- SOLUTIONS 1. Ange sambanden mellan vinkelfrekvens ω,
Var i en nöjespark får man uppleva de starkaste krafterna? Enligt
Ann-Marie Pendrill & David Eager Studsmattematte fritt fall och harmonisk svängningsrörelse Studsmattor finns i många trädgårdar och lekplatser. Under studsandet rör man sig huvudsakligen i vertikalled
Mekanik SG1108 Mekanikprojekt Dubbelpendel
Mekanik SG1108 Mekanikprojekt Dubbelpendel Studenter: Peyman Ahmadzade Alexander Edström Robert Hurra Sammy Mannaa Handledare: Göran Karlsson karlsson@mech.kth.se Innehåll Sammanfattning... 3 Inledning...
Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.
Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,
Preliminär timplanering: Plasmafysik
Vågor, plasmor antenner F700T Preliminär timplanering: Plasmafysik Litteratur: Chen F. F., Plasma physics and controlled fusion, Plenum, nd ed. Etra problem i plasmafysik. X-plasma (Från hemsidan) Pass
TFYA16/TEN2. Tentamen Mekanik. 7 april :00 19:00. Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa ng.
Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Tentamen Mekanik 7 april 2015 14:00 19:00 Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa
Tentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge
Tid läge och accelera.on
Tid läge och accelera.on Tid t Läge x = x(t) Hastighet v(t) = dx dt x(t) = Acceleration a(t) = dv dt v(t) = t t0 v(t)dt t t 0 a(t)dt Eq 1 Eq 2 Eq 3 MEN KOM IHÅG: 1. För a> de>a skall vara användbart måste.dsberoendet
Påtvingad svängning SDOF
F(t)=F 0 cosω 0 t Förflyttning x M k Vi betraktar det vanliga fjäder-massa systemet men nu påverkas systemet med en kraft som varierar periodiskt i tiden: F(t)=F 0 cosω 0 t Den periodiskt varierande kraften
TFYA16: Tenta Svar och anvisningar
150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket
KVANTFYSIK för F3 2009 Inlämningsuppgifter I5
ALMERS TEKNISKA ÖGSKOLA Mikroteknologi och nanovetenskap Elsebeth Schröder (schroder vid chalmers.se) 2009-11-12 KVANTFYSIK för F3 2009 Inlämningsuppgifter I5 Bedömning: Bedömningen av de inlämnade lösningarna
Gunga med Galileo matematik för hela kroppen
Ann-Marie Pendrill Gunga med Galileo matematik för hela kroppen På en lekplats eller i en nöjespark finns möjlighet att påtagligt uppleva begrepp från fysik och matematik med den egna kroppen. Med hjälp
tentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod F6T Kursnamn Fysik 3 Datum Material Laborationsrapport svängande skiva Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Labbrapport TCTDA Amanda
BESTÄMNING AV C P /C V FÖR LUFT
FYSIK Institutionen för ingenjörsvetenska, fysik och matematik Se00 BESTÄMNING A C P /C FÖR LUFT En av de viktigare storheterna i termodynamiken är värmekaacitetskvoten γ, vilken är kvoten mellan den isobar
Tentamen i FTF140 Termodynamik och statistisk fysik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,
TFYA16: Tenta Svar och anvisningar
170418 TFYA16 1 TFYA16: Tenta 170418 Svar och anvisningar Uppgift 1 a) Vi är intresserade av största värdet på funktionen x(t). Läget fås genom att integrera hastigheten, med bivillkoret att x(0) = 0.
Den inverterade pendeln med oscillerande fästpunkt
Den inverterade pendeln med oscillerande fästpunkt Den inverterade pendeln är ett klassiskt reglertekniskt problem, här behandlas den för de olika periodiska rörelser av fästpunkten som kan ge stabil jämvikt.
TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007
TENTAMEN I KVANTFYSIK del (5A4 och 5A45) samt KVANTMEKANIK (5A) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 7 HJÄLPMEDEL: Formelsamling i Fysik (teoretisk fysik KTH), matematiska tabeller, dock
Materiens Struktur. Lösningar
Materiens Struktur Räkneövning 3 Lösningar 1. Studera och begrunda den teoretiska förklaringen till supralednigen så, att du kan föra en diskussion om denna på övningen. Skriv även ner huvudpunkterna som
MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007
I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt
.4-6, 8, , 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse
.4-6, 8, 12.5-6, 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse Exempel på roterande koordinatsystem planpolära eller cylindriska koordinater Storhet Beteckning Enhet Fysikalisk
Introduktion. Torsionspendel
Chalmers Tekniska Högskola och Göteborgs Universitet November 00 Fysik och teknisk fysik Kristian Gustafsson och Maj Hanson (Anpassat för I1 av Göran Niklasson) Svängningar Introduktion I mekanikkursen
Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520)
Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520) Tid och plats: Tisdagen den juni 2014 klockan 08.0-12.0 i M-huset. Lösningsskiss: Christian Forssén Obligatorisk del 1. Ren summering över de fyra
Innehåll 1. Kapitel 6: Separation of Variables 1
SF629 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 5 KARL JONSSON Innehåll. Kapitel 6: Separation of Variables.. Upp. 6.2: Dirichlets problem på enhetsskivan med randdata polära koordinater) u,
Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :
FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING 1 februari 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFNDET 1. Enligt energiprincipen är det rörelseenergin som bromsas bort i friktionsarbetet. Detta ger mv sambandet
YTKEMI. Föreläsning 8. Kemiska Principer II. Anders Hagfeldt
YTKEMI. Föreläsning 8. Kemiska Principer II. Anders Hagfeldt Under föreläsningarna 8 och 9 kommer vi att gå igenom ett antal koncept som är viktiga i ytkemi och försöka göra en termodynamisk beskrivning
Tentamen i FTF140 Termodynamik och statistisk fysik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Onsdagen den /, kl 4.-8. i Maskin -salar. Hjälpmedel: Physics Handbook,
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 7 januari 2012 klockan 08.30-12.30 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4
mg F B cos θ + A y = 0 (1) A x F B sin θ = 0 (2) F B = mg(l 2 + l 3 ) l 2 cos θ
Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 019-01-19 Examinator: Magnus Gustafsson 1. Friläggning av balken och staget: Staget är en tvåkraftsdel
BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL12/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 22 mars 216 8: 12: Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
6. Räkna ut integralen. z dx dy dz,
Institutionen för Matematik, TH Flervariabelanalys SF626. Tentamen den 23 november 29 kl. 8-3 Tillåtet hjälpmedel är Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga
WALLENBERGS FYSIKPRIS
WALLENBERGS FYSKPRS FNALTÄVLNG 3 maj 2014 SVENSKA FYSKERSAMFUNDET LÖSNNGSFÖRSLAG 1. a) Fasförskjutningen ϕ fås ur P U cosϕ cosϕ 1350 1850 ϕ 43,1. Ett visardiagram kan då ritas enligt figuren nedan. U L
Uppgifter 2 Grundläggande akustik (II) & SDOF
Uppgifter Grundläggande akustik (II) & SDOF. Två partiklar rör sig med harmoniska rörelser. = 0 u ( Acos( där u ( Acos( t ) 6 a. Vad är frekvensen för de båda rörelserna? b. Vad är periodtiden? c. Den
Tentamen: Lösningsförslag
Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:
Harmonisk oscillator Ulf Torkelsson
1 Haronisk rörelse Föreläsning 13/9 Haronisk oscillator Ulf Torkelsson Betrakta en potentiell energi, V (x), so har ett iniu vid x, och studera rörelsen i närheten av detta iniu. O vi släpper en partikel
Lösningar Heureka 2 Kapitel 7 Harmonisk svängningsrörelse
Lösningar Heureka Kapitel 7 Harmonisk svängningsrörelse Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 7 7.1 a) Av figuren framgår att amplituden är 0,30 m. b) Skuggan utför en
Navier-Stokes ekvationer och mikrofluiddynamik
Navier-Stokes ekvationer och mikrofluiddynamik Gästföreläsning i PDE för F2, 2003-05-19 Erik Svensson Beräkningsmatematik Chalmers Notation Funktioner: Om inte annat anges förutsätter vi att de funktioner
Två gränsfall en fallstudie
19 november 2014 FYTA11 Datoruppgift 6 Två gränsfall en fallstudie Handledare: Christian Bierlich Email: christian.bierlich@thep.lu.se Redovisning av övningsuppgifter före angiven deadline. 1 Introduktion
A. Egenskaper hos plana figurer (MTM458)
uleå tekniska universitet Hans Åkerstedt Aerodynamik f37t 8/9 FORMESAMING I AEROYNAMIK INNEHÅ:. Hydrostatik och standard atmosfären. Kinematik 3. Konserveringslagar 4. Modellförsök och likformighet 5.
Övning 3. Introduktion. Repetition
Övning 3 Introduktion Varmt välkomna till tredje övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Nästa gång är det datorövning. Kontrollera att ni kan komma in i XQ-salarna. Endast en kort genomgång,
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med
LABKOMPENDIUM. TFYA76 Mekanik
Linköpings universitet IFM, Institutionen för Fysik, Kemi och Biologi Rev. 2014-08-27 LABKOMPENDIUM TFYA76 Mekanik INNEHÅLL: LAB 1: RÖRELSE. 3 Uppgift 1 3 Uppgift 2 5 LAB 2: STÖT 6 2 LAB 1: RÖRELSE Målsättning
Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0
LÖSNINGAR TILL Deltentamen i kvantformalism, atom och kärnfysik med tillämpningar för F3 9-1-15 Tid: kl 8.-1. (MA9A. Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. Poäng: Vid varje uppgift
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).
Grundläggande maskinteknik II 7,5 högskolepoäng
Grundläggande maskinteknik II 7,5 högskolepoäng Provmoment: TEN 2 Ladokkod: TH081A Tentamen ges för: KENEP 15h TentamensKod: Tentamensdatum: 2016-01-15 Tid: 09:00 13:00 Hjälpmedel: Bifogat formelsamling,
Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen
Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från
Mekanik II repkurs lektion 4. Tema energi m m
Mekanik II repkurs lektion 4 Tema energi m m Rörelseenergi- effekt P v P (hastighet hos P) dt/dt= F P v P F P för stel kropp När kan rörelseenergi- effekt användas? Effektbidrag från omgivningen (exempelvis
Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010
Modellering av Dynamiska system - Uppgifter till övning 1 och 2 17 mars 21 Innehållsförteckning 1. Repetition av Laplacetransformen... 3 2. Fysikalisk modellering... 4 2.1. Gruppdynamik en sciologisk modell...
Andra EP-laborationen
Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 23-- Sal () T,T2,KÅRA (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
Vågfysik. Vilka typer av vågor finns det? Fortskridande vågor. Mekaniska vågor Elektromagnetiska vågor Materievågor
Vågysik Fortskridande ågor Knight, Kap. 0 Vilka typer a ågor inns det? Mekaniska ågor Elektromagnetiska ågor Materieågor 1 Vad är en åg? En ortskridande åg är en lokal störning som utbreder sig på ett
Lösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan
Laboration 1 Mekanik baskurs
Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen
Föreläsning 1 Reglerteknik AK
Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en
Projektilrörelse med flera tillämpningar inom fotboll
Projektilrörelse med flera tillämpningar inom fotboll Många sportgrenar baseras på någon form av projektilrörelse. Projektilen som används kan antingen vara den egna människokroppen (som i exempelvis längdhopp,
F2: Kvantmekanikens ursprung
F2: Kvantmekanikens ursprung Koncept som behandlas: Energins kvantisering Svartkroppsstrålning Värmekapacitet Spektroskopi Partikel-våg dualiteten Elektromagnetisk strålning som partiklar Elektroner som
Lösningar Reglerteknik AK Tentamen
Lösningar Reglerteknik AK Tentamen 15 1 3 Uppgift 1a Systemet är stabilt ( pol i ), så vi kan använda slutvärdesteoremet för att bestämma Svar: l = lim y(t) = lim sg(s)1 t s s = G()1 = 5l = r = 1 Uppgift
Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen
Föreläsning Att uppbygga en bild av atomen Rutherfords experiment Linjespektra och Bohrs modell Vågpartikel-dualism Korrespondensprincipen Fyu0- Kvantfysik Atomens struktur Atomen hade ingen elektrisk
Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)
Introduktion till kursen. Fysik 3. Dag Hanstorp
Introduktion till kursen Fysik 3 Dag Hanstorp Vi har fem sinnen: Syn Hörsel Smak Lukt Känsel Hur stor är räckvidden på de olika sinnena? Hur skulle vår världsbild påverkas om vi människor hade saknat
Analytisk mekanik för MMT, 5C1121 Tentamen, , kl
Kung Tekniska Högskoan 4 Institutionen för Mekanik Anaytisk mekanik för MMT, 5C Tentamen, 4, k 4.-8. Räkneproem Uppgift : En pende estår av en sma homogen stav, av ängd och massa m. Den kan svänga kring
Tentamen i Flervariabelanalys, MVE , π, kl
Tentamen i Flervariabelanalys, MVE35 216-3-14, π, kl. 14.-18. Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Raad Salman För godkänt krävs minst 2 poäng. Betyg 3: 2-29 poäng, betyg
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 21 maj 2012 klockan 14.00-18.00 i M. Lösningsskiss: Christian Forssén Obligatorisk del 1. Lösningsstrategi: Använd arbete-energi principen
1.3 Uppkomsten av mekanisk vågrörelse
1.3 Uppkomsten av mekanisk vågrörelse För att en mekanisk vågrörelse skall kunna uppstå, behövs ett medium, något som rörelsen kan framskrida i. Det kan vara vatten, luft, ett bord, jordskorpan, i princip
Laboration 1: Gravitation
Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver
Tentamen i Modern fysik, TFYA11, TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Tisdagen den 26/4 2011 kl. 08.00-12.00 i TER3 Tentamen består av 4 sidor (inklusive denna sida)
Föreläsning 6: Polarisation
1 Föreläsning 6: Polarisation Tre saker behövs för att förstå polaroidglasögon och deras begränsningar. Först måste vi veta vad polarisations är, sedan hur polarisationsfilter fungerar, och till sist varför
Tentamen Fysikaliska principer
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 16 8: 1: Tentamen består av två
Re(A 0. λ K=2π/λ FONONER
FONONER Atomerna sitter inte fastfrusna på det regelbundna sätt som kristallmodellerna visar. De rubbas ur sina jämviktslägen av tillförd värme, ljus, ljud, mekaniska stötar mm. Atomerna i kristallen vibrerar
YTTERLIGARE information om regler angående A- och B-uppgifter finns på sista sidan. LYCKA TILL! Program och grupp:
UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren och Staffan Yngve ID-Kod: Program: TENTAMEN 14-01-11 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 14.00-19.00, Polacksbacken,
TENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011
TENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011 Tid: Lokal: 2011-03-18 förmiddag VV salar Hjälpmedel: Hjälpmedel: Physics Handbook, bifogad formelsamling, typgodkänd räknare eller annan räknare i fickformat