Numeriska serier Definition av konvergens J amf orelsesatser Vad skall vi j amf ora med? Absolutkonvergens Leibniz kriterium Dagens amnen 1 / 19

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Numeriska serier Definition av konvergens J amf orelsesatser Vad skall vi j amf ora med? Absolutkonvergens Leibniz kriterium Dagens amnen 1 / 19"

Transkript

1 Dagens ämnen 1 / 19

2 Dagens ämnen Numeriska serier 1 / 19

3 Dagens ämnen Numeriska serier Definition av konvergens 1 / 19

4 Dagens ämnen Numeriska serier Definition av konvergens Jämförelsesatser 1 / 19

5 Dagens ämnen Numeriska serier Definition av konvergens Jämförelsesatser Vad skall vi jämföra med? 1 / 19

6 Dagens ämnen Numeriska serier Definition av konvergens Jämförelsesatser Vad skall vi jämföra med? Absolutkonvergens 1 / 19

7 Dagens ämnen Numeriska serier Definition av konvergens Jämförelsesatser Vad skall vi jämföra med? Absolutkonvergens Leibniz kriterium 1 / 19

8 Numeriska serier 2 / 19

9 Numeriska serier I princip samma teori som för genegraler 2 / 19

10 Numeriska serier I princip samma teori som för genegraler Vad skall vi mena med a k? k=1 2 / 19

11 Numeriska serier I princip samma teori som för genegraler Vad skall vi mena med a k? k=1 Studerar delsummorna s N = N k=1 a k 2 / 19

12 Numeriska serier I princip samma teori som för genegraler Vad skall vi mena med a k? k=1 Studerar delsummorna s N = Vad händer med dessa då N? N k=1 a k 2 / 19

13 Definition 10.1, sid 436 Om gränsvärdet existerar lim s N = lim N N N k=1 a k 3 / 19

14 Definition 10.1, sid 436 Om gränsvärdet existerar, dvs om lim s N = lim N N lim N N k=1 a k N a k = S R k=1 3 / 19

15 Definition 10.1, sid 436 Om gränsvärdet existerar, dvs om så säges lim s N = lim N N lim N N k=1 a k N a k = S R k=1 a k vara konvergent och ha värdet S. k=1 3 / 19

16 Numeriska serier 4 / 19

17 Numeriska serier Hur känner man igen konvergens? 4 / 19

18 Numeriska serier Hur känner man igen konvergens? Sats 10.1, sid436 a k konvergent = lim a n = 0. n k=1 4 / 19

19 Numeriska serier Hur känner man igen konvergens? Sats 10.1, sid436 a k konvergent = lim a n = 0. n k=1 OBS! Håll ordning på logiken! Det är = INTE!!. 4 / 19

20 Numeriska serier Hur känner man igen konvergens? Sats 10.1, sid436 a k konvergent = lim a n = 0. n k=1 OBS! Håll ordning på logiken! Det är = INTE!!. D V S att termerna går mot noll innebär INTE att serien är konvergent. 4 / 19

21 Divergenskriteriet 5 / 19

22 Divergenskriteriet Konvergens kräver att termerna går mot noll. 5 / 19

23 Divergenskriteriet Konvergens kräver att termerna går mot noll. Negera påståendet i föregående sats. 5 / 19

24 Divergenskriteriet Konvergens kräver att termerna går mot noll. Negera påståendet i föregående sats. Då fås: 5 / 19

25 Divergenskriteriet Konvergens kräver att termerna går mot noll. Negera påståendet i föregående sats. Då fås: Om termerna INTE går mot noll så är serien INTE konvergent, d v s divergent. 5 / 19

26 Numeriska serier 6 / 19

27 Numeriska serier Hur visar man konvergens då? 6 / 19

28 Numeriska serier Hur visar man konvergens då? I princip samma teori som för genegraler. 6 / 19

29 Numeriska serier Hur visar man konvergens då? I princip samma teori som för genegraler. Sats 10.4 (Integralkriteriet), sid 442: Antag att f är avtagande för x 1. Då gäller 6 / 19

30 Numeriska serier Hur visar man konvergens då? I princip samma teori som för genegraler. Sats 10.4 (Integralkriteriet), sid 442: Antag att f är avtagande för x 1. Då gäller 1 f(x)dx konvergent 6 / 19

31 Numeriska serier Hur visar man konvergens då? I princip samma teori som för genegraler. Sats 10.4 (Integralkriteriet), sid 442: Antag att f är avtagande för x 1. Då gäller 1 f(x)dx konvergent f(k) konvergent k=1 6 / 19

32 Intergralkriteriet 7 / 19

33 Intergralkriteriet Beviset av integralkriteriet bygger på följande sats: 7 / 19

34 Intergralkriteriet Beviset av integralkriteriet bygger på följande sats: Sats A.1, sid 479 Om a n, n = 1, 2,..., är en växande uppåt begränsad talföljd så existerar lim a n som n ett reellt tal. 7 / 19

35 Sats 10.11, sid 456 (Jämförelsesats I) 8 / 19

36 Sats 10.11, sid 456 (Jämförelsesats I) Antag att 0 f(x) g(x). Då gäller: 8 / 19

37 Sats 10.11, sid 456 (Jämförelsesats I) Antag att 0 f(x) g(x). Då gäller: (a) om b a b a g(x)dx är konvergent så är f(x)dx är konvergent 8 / 19

38 Sats 10.11, sid 456 (Jämförelsesats I) Antag att 0 f(x) g(x). Då gäller: (a) om b (b) om b a g(x)dx är konvergent så är f(x)dx är konvergent a b a b a f(x)dx är divergent så är g(x)dx är divergent 8 / 19

39 Sats 10.6, sid (Jämförelsesats I) 9 / 19

40 Sats 10.6, sid (Jämförelsesats I) Antag att 0 a k b k. Då gäller: 9 / 19

41 Sats 10.6, sid (Jämförelsesats I) Antag att 0 a k b k. Då gäller: (a) om b k är konvergent så är a k konvergent k=1 k=1 9 / 19

42 Sats 10.6, sid (Jämförelsesats I) Antag att 0 a k b k. Då gäller: (a) om b k är konvergent så är a k konvergent (b) om k=1 a k är divergent så är k=1 k=1 k=1 b k divergent 9 / 19

43 Jämförelsesats för positiva serier 10 / 19

44 Jämförelsesats för positiva serier Läs satsen i ord istället för i formler: 10 / 19

45 Jämförelsesats för positiva serier Läs satsen i ord istället för i formler: (a) Om den större serien är konvergent så är den mindre serien också konvergent. 10 / 19

46 Jämförelsesats för positiva serier Läs satsen i ord istället för i formler: (a) Om den större serien är konvergent så är den mindre serien också konvergent. (b) Om den mindre serien är divergent så är den större serien också divergent. 10 / 19

47 Vad skall vi jämföra med? 11 / 19

48 Vad skall vi jämföra med? Sats 10.12, sid 456 (a) 1 1 x αdx är { konvergent om α > 1 divergent om α 1 11 / 19

49 Vad skall vi jämföra med? Sats 10.12, sid 456 (a) 1 1 x αdx är { konvergent om α > 1 divergent om α 1 (b) x αdx är { konvergent om α < 1 divergent om α 1 11 / 19

50 Vad skall vi jämföra med? 12 / 19

51 Vad skall vi jämföra med? Sats 10.5, sid k = α α α α k=1 är { konvergent om α > 1 12 / 19

52 Vad skall vi jämföra med? Sats 10.5, sid k = α α α α k=1 är { konvergent om α > 1 divergent om α 1 12 / 19

53 Jämförelse på (slapp) kvotform Sats 10.13, sid / 19

54 Jämförelse på (slapp) kvotform Sats 10.13, sid 458 f, g 0. Om f(x) g(x) A > 0 då x problemet. 13 / 19

55 Jämförelse på (slapp) kvotform Sats 10.13, sid 458 f, g 0. Om f(x) g(x) A > 0 då x problemet. Då gäller: 13 / 19

56 Jämförelse på (slapp) kvotform Sats 10.13, sid 458 f, g 0. Om f(x) A > 0 då x problemet. g(x) Då gäller: b a g(x)dx konvergent 13 / 19

57 Jämförelse på (slapp) kvotform Sats 10.13, sid 458 f, g 0. Om f(x) A > 0 då x problemet. g(x) Då gäller: b a b a g(x)dx konvergent f(x)dx konvergent 13 / 19

58 Jämförelse på (slapp) kvotform Sats 10.13, sid 458 f, g 0. Om f(x) A > 0 då x problemet. g(x) Då gäller: b a b a g(x)dx divergent f(x)dx divergent 13 / 19

59 Jämförelse på (slapp) kvotform Sats 10.7, sid / 19

60 Jämförelse på (slapp) kvotform Sats 10.7, sid 446 a k, b k 0. Om a k b k A > 0 då k. 14 / 19

61 Jämförelse på (slapp) kvotform Sats 10.7, sid 446 a k, b k 0. Om a k b k A > 0 då k. Då gäller: 14 / 19

62 Jämförelse på (slapp) kvotform Sats 10.7, sid 446 a k, b k 0. Om a k A > 0 då k. b k Då gäller: konvergent k=1 a k 14 / 19

63 Jämförelse på (slapp) kvotform Sats 10.7, sid 446 a k, b k 0. Om a k A > 0 då k. b k Då gäller: konvergent k=1 k=1 a k b k konvergent 14 / 19

64 Jämförelse på (slapp) kvotform Sats 10.7, sid 446 a k, b k 0. Om a k A > 0 då k. b k Då gäller: divergent k=1 k=1 a k b k divergent 14 / 19

65 Absolutkonvergens 15 / 19

66 Absolutkonvergens Jämförelsesatserna kräver att f / 19

67 Absolutkonvergens Jämförelsesatserna kräver att f 0. Vad gör vi om f växlar tecken? 15 / 19

68 Absolutkonvergens Jämförelsesatserna kräver att f 0. Vad gör vi om f växlar tecken? Studera f. 15 / 19

69 Absolutkonvergens Jämförelsesatserna kräver att f 0. Vad gör vi om f växlar tecken? Studera f. Definition. säges b a Om b a f(x) dx är konvergent f(x) dx vara absolutkonvergent 15 / 19

70 Absolutkonvergens Jämförelsesatserna kräver att f 0. Vad gör vi om f växlar tecken? Studera f. Definition. säges b a Om b a f(x) dx är konvergent f(x) dx vara absolutkonvergent (och förstås konvergent). 15 / 19

71 Absolutkonvergens Jämförelsesatserna kräver att a k 0. Vad gör vi om f växlar tecken? Studera f. Definition. säges b a Om b a f(x) dx är konvergent f(x) dx vara absolutkonvergent (och förstås konvergent). 15 / 19

72 Absolutkonvergens Jämförelsesatserna kräver att a k 0. Vad gör vi om a k växlar tecken? Studera f. Definition. säges b a Om b a f(x) dx är konvergent f(x) dx vara absolutkonvergent (och förstås konvergent). 15 / 19

73 Absolutkonvergens Jämförelsesatserna kräver att a k 0. Vad gör vi om a k växlar tecken? Studera a k. Definition. säges b a Om b a f(x) dx är konvergent f(x) dx vara absolutkonvergent (och förstås konvergent). 15 / 19

74 Absolutkonvergens Jämförelsesatserna kräver att a k 0. Vad gör vi om a k växlar tecken? Studera a k. Definition. Om a k är konvergent säges b a k=1 f(x) dx vara absolutkonvergent (och förstås konvergent). 15 / 19

75 Absolutkonvergens Jämförelsesatserna kräver att a k 0. Vad gör vi om a k växlar tecken? Studera a k. Definition. Om a k är konvergent säges k=1 a k förstås konvergent). k=1 vara absolutkonvergent (och 15 / 19

76 Sats 10.9, sid 450 Systematiserad jämförelse med geometrisk serie. 16 / 19

77 Sats 10.9, sid 450 Systematiserad jämförelse med geometrisk serie. k Rotkriteriet: ak Q då k 16 / 19

78 Sats 10.9, sid 450 Systematiserad jämförelse med geometrisk serie. k Rotkriteriet: ak Q då k Kvotkriteriet: a k+1 a k Q då k 16 / 19

79 Sats 10.9, sid 450 Systematiserad jämförelse med geometrisk serie. k Rotkriteriet: ak Q då k Kvotkriteriet: a k+1 a k Q då k 0 Q < 1 = a k är absolutkonvergent. k=1 16 / 19

80 Sats 10.9, sid 450 Systematiserad jämförelse med geometrisk serie. k Rotkriteriet: ak Q då k Kvotkriteriet: a k+1 a k Q då k 0 Q < 1 = a k är absolutkonvergent. k=1 Q > 1 = a k är divergent. k=1 16 / 19

81 Sats 10.10, sid 452 Leibniz kriterium 17 / 19

82 Sats 10.10, sid 452 Leibniz kriterium Alternerande serie 17 / 19

83 Sats 10.10, sid 452 Leibniz kriterium Alternerande serie, varannan +, varannan. 17 / 19

84 Sats 10.10, sid 452 Leibniz kriterium Alternerande serie, varannan +, varannan. Om a k är alternerande k=1 17 / 19

85 Sats 10.10, sid 452 Leibniz kriterium Alternerande serie, varannan +, varannan. Om a k är alternerande och k=1 (a) a k 0 då k 17 / 19

86 Sats 10.10, sid 452 Leibniz kriterium Alternerande serie, varannan +, varannan. Om a k är alternerande och k=1 (a) a k 0 då k (b) a k a k+1 för alla k 17 / 19

87 Sats 10.10, sid 452 Leibniz kriterium Alternerande serie, varannan +, varannan. Om a k är alternerande och k=1 (a) a k 0 då k (b) a k a k+1 för alla k så är serien konvergent. 17 / 19

88 Sats 10.10, sid 452 Leibniz kriterium Bättre i ord! Om serien är alternerande 18 / 19

89 Sats 10.10, sid 452 Leibniz kriterium Bättre i ord! Om serien är alternerande och termernas belopp avtar mot noll 18 / 19

90 Sats 10.10, sid 452 Leibniz kriterium Bättre i ord! Om serien är alternerande och termernas belopp avtar mot noll så är serien konvergent. 18 / 19

91 Sats 10.10, sid 452 Leibniz kriterium Bättre i ord! Om serien är alternerande och termernas belopp avtar mot noll så är serien konvergent. Felet då serien approximeras med en delsumma är mindre än den första utelämnade termen. 18 / 19

92 Sammanfattning 19 / 19

93 Sammanfattning Termerna går inte mot noll = divergens. 19 / 19

94 Sammanfattning Termerna går inte mot noll = divergens. 1 Jämför med k α. k=1 19 / 19

95 Sammanfattning Termerna går inte mot noll = divergens. 1 Jämför med k α. k=1 Konvergent om α > 1, divergent annars. 19 / 19

96 Sammanfattning Termerna går inte mot noll = divergens. 1 Jämför med k α. k=1 Konvergent om α > 1, divergent annars. Integralkriteriet och jämförelsesatserna 19 / 19

97 Sammanfattning Termerna går inte mot noll = divergens. 1 Jämför med k α. k=1 Konvergent om α > 1, divergent annars. Integralkriteriet och jämförelsesatserna Rot- och kvotkriteriet 19 / 19

98 Sammanfattning Termerna går inte mot noll = divergens. 1 Jämför med k α. k=1 Konvergent om α > 1, divergent annars. Integralkriteriet och jämförelsesatserna Rot- och kvotkriteriet jämförelse med geometrisk serie Leibniz kriterium: 19 / 19

99 Sammanfattning Termerna går inte mot noll = divergens. 1 Jämför med k α. k=1 Konvergent om α > 1, divergent annars. Integralkriteriet och jämförelsesatserna Rot- och kvotkriteriet jämförelse med geometrisk serie Leibniz kriterium: Alternerande 19 / 19

100 Sammanfattning Termerna går inte mot noll = divergens. 1 Jämför med k α. k=1 Konvergent om α > 1, divergent annars. Integralkriteriet och jämförelsesatserna Rot- och kvotkriteriet jämförelse med geometrisk serie Leibniz kriterium: Alternerande, termernas belopp avtar mot noll 19 / 19

101 Sammanfattning Termerna går inte mot noll = divergens. 1 Jämför med k α. k=1 Konvergent om α > 1, divergent annars. Integralkriteriet och jämförelsesatserna Rot- och kvotkriteriet jämförelse med geometrisk serie Leibniz kriterium: Alternerande, termernas belopp avtar mot noll = konvergens 19 / 19

Generaliserade integraler. Definitionen. J amf orelsesatser. Vad skall vi j amf ora med? Absolutkonvergens Dagens amnen 1 / 10

Generaliserade integraler. Definitionen. J amf orelsesatser. Vad skall vi j amf ora med? Absolutkonvergens Dagens amnen 1 / 10 Dagens ämnen 1 / 10 Dagens ämnen Generaliserade integraler. 1 / 10 Dagens ämnen Generaliserade integraler. Definitionen. 1 / 10 Dagens ämnen Generaliserade integraler. Definitionen. Jämförelsesatser. 1

Läs mer

TATA42: Föreläsning 5 Serier ( generaliserade summor )

TATA42: Föreläsning 5 Serier ( generaliserade summor ) TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 0 januari 207 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje

Läs mer

TATA42: Föreläsning 6 Potensserier

TATA42: Föreläsning 6 Potensserier TATA4: Föreläsning 6 Potensserier Johan Thim januari 7 Vi ska nu betrakta serier där termerna inte längre är konstanter. Speciellt ska vi studera så kallade potensserier. Dessa definieras som a k x k a

Läs mer

TATA42: Föreläsning 10 Serier ( generaliserade summor )

TATA42: Föreläsning 10 Serier ( generaliserade summor ) TATA42: Föreläsning 0 Serier ( generaliserade summor ) Johan Thim 5 maj 205 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal

Läs mer

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29 Numeriska serier Andreas Rejbrand, april 2014 1/29 1 Inledning Författarens erfarenhet säger att momentet med numeriska serier är ganska svårt för många studenter i inledande matematikkurser på högskolenivå.

Läs mer

Besökstider: ca och 17.00

Besökstider: ca och 17.00 MATEMATIK Chalmers tekniska högskola och Göteborgs universitet Tentamen i Matematisk analys, fortsättningskurs F/TM, TMA976, 2015-01-14, TID(14.00-18.00) Inga hjälpmedel, förutom penna och linjal, är tillåtna,

Läs mer

Meningslöst nonsens. November 19, 2014

Meningslöst nonsens. November 19, 2014 November 19, 2014 Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar? Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar?

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

Sammanfattning TATA42

Sammanfattning TATA42 Sammanfattning TATA4. TILLÄMPNINGAR INTEGRALER. Funktionskurva, y=f(). Polär form 5.3 Guldins regler och Tyngdpunkt 8. MACLAURIN- OCH TAYLORUTVECKLINGAR. Maclaurinutvecklingar. Tillämpning av Lagranges

Läs mer

Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt

Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt Föreläsning 8.15-10.00 Lektioner 10.15-12.00 Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt ons-3-dec Hörsal G C: 5.1-5.2 tor-4-dec Hörsal G N210 A302 A303 MC413 C: 5.3-5.4 fre-5-dec Hörsal G C: 2.10,

Läs mer

Dagens ämnen. Potensserier

Dagens ämnen. Potensserier Dagens ämnen 1 / 6 Dagens ämnen Potensserier 1 / 6 Dagens ämnen Potensserier Definition 1 / 6 Dagens ämnen Potensserier Definition Var konvergerar potensserien? 1 / 6 Dagens ämnen Potensserier Definition

Läs mer

1 Föreläsning 14, följder och serier

1 Föreläsning 14, följder och serier Föreläsning 4, följder och serier. Följd I en följd {a n } n= sriver vi istället elementen som f(n). Följden {sin(n)} n= är begränsad, ty sin n. Följden {/ n} n= är onvergent mot 0: { Följden 2n 2 3n }

Läs mer

a k . Serien, som formellt är följden av delsummor

a k . Serien, som formellt är följden av delsummor Kapitel S Mer om serier I dettapitel sall vi fortsätta att studera serier, ett begrepp som introducerades i Kapitel 9.5 i boen, framförallt sa vi bevisa ett antal onvergensriterier. Mycet ommer att vara

Läs mer

Matematisk kommunikation för Π Problemsamling

Matematisk kommunikation för Π Problemsamling Problemsamling Charlotte Soneson & Niels Chr. Overgaard september 200 Problem. Betrakta formeln n k = k= n(n + ). 2 Troliggör den först genom att exempelvis i summan +2+3+4+5+6 para ihop termer två och

Läs mer

5B1147. Envariabelanalys. MATLAB Laboration. Laboration 1. Gränsvärden och Summor

5B1147. Envariabelanalys. MATLAB Laboration. Laboration 1. Gränsvärden och Summor 5B47 MATLAB Laboration Laboration Gränsvärden och Summor joycew@kth.se uvehag@kth.se Innehåll Uppgift a... Problem... Lösning... Grafisk bestämning av gränsvärden... Beräkning av gränsvärden...2 Uppgift

Läs mer

M0038M Differentialkalkyl, Lekt 15, H15

M0038M Differentialkalkyl, Lekt 15, H15 M0038M Differentialkalkyl, Lekt 15, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 15 Repetition Lekt 14 Bestäm följande gränsvärden cos x tan x lim x 0 x x + ln ( e 2x

Läs mer

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet är följande: SATS. (Intervallinkapslingssatsen) Låt I k = [a k, b k ], k = 1, 2,... vara en avtagande följd av slutna

Läs mer

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Areaberäkningar En av huvudtillämpningar av integraler är areaberäkning. Nedan följer ett

Läs mer

Repetitionsfrågor i Flervariabelanalys, Ht 2009

Repetitionsfrågor i Flervariabelanalys, Ht 2009 Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1 TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

BEGREPPSMÄSSIGA PROBLEM

BEGREPPSMÄSSIGA PROBLEM BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon

Läs mer

1 Tal, mängder och funktioner

1 Tal, mängder och funktioner 1 Tal, mängder och funktioner 1.1 Komplexa tal Här skall vi snabbt repetera de grundläggande egenskaperna hos komplexa tal. För en mera utförlig framställning hänvisar vi till litteraturen i Matematisk

Läs mer

RIEMANNSUMMOR. Den bestämda integralen definieras med hjälp av Riemannsummor. Låt vara en begränsad funktion,, reella tal och. lim.

RIEMANNSUMMOR. Den bestämda integralen definieras med hjälp av Riemannsummor. Låt vara en begränsad funktion,, reella tal och. lim. RIEMANNSUMMOR Låt vara en begränsad funktion,, reella tal och. Den bestämda integralen definieras med hjälp av ä ä, ; lim. Om funktionen har en elementär primitivfunktion då är insättningsformeln (Newton-

Läs mer

Satser om gränsvärden med bevis som saknas

Satser om gränsvärden med bevis som saknas Satser om gränsvärden med bevis som saknas i Adams. Struktur av alla bevis här är likadan. Varje bevis består av tre steg. Först formulerar vi om villkor i satsen i termer av olikheter som måste gälla.

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 49, 966 Årgång 49, 966 Första häftet 2555. Visa att 4 n + n + 8 ej kan vara primtal för något heltal n 0. 2556. Man vill göra en behållare utan lock, som rymmer m 3, i form av en rätvinklig

Läs mer

DERIVATA. = lim. x n 2 h h n. 2

DERIVATA. = lim. x n 2 h h n. 2 DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt

Läs mer

Institutionen för matematiska vetenskaper Chalmers tekniska högskola. Skissartade lösningsförslag till tentamen TMA976.

Institutionen för matematiska vetenskaper Chalmers tekniska högskola. Skissartade lösningsförslag till tentamen TMA976. Institutionen för matematisa vetensaper Chalmers tenisa högsola Sissartade lösningsförslag till tentamen TMA976 Datum: 2015 01 14 1. Lös differentialevationen y y = e x (x + e x ) y(0) = 1 y (0) = 0 Differentialevationen

Läs mer

Kap. P. Detta kapitel utgör Inledande kurs i matematik. I kapitlet beskrivs vilka bakgrundskunskaper som förutsätts.

Kap. P. Detta kapitel utgör Inledande kurs i matematik. I kapitlet beskrivs vilka bakgrundskunskaper som förutsätts. 5B1103, Differential och integralkalkyl II, del 1. LÄSANVISNINGAR TILL R.A. ADAMS, CALCULUS, A COMPLETE COURSE, 4TH ED. OMFATTNING: kapitel 1.1 1.5, Appendix III, 2, 3.1 3.4, 3.5 till def. 13, 17.7 t.o.m.

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

Fourieranalys. Lars-Åke Lindahl

Fourieranalys. Lars-Åke Lindahl Fourieranalys Lars-Åke Lindahl 21 Fourieranalys c 21 Lars-Åke Lindahl, Matematiska institutionen, Uppsala universitet Innehåll Förord................................. vii 1 Värmeledningsekvationen 1 2

Läs mer

Läsanvisningar till kapitel

Läsanvisningar till kapitel Läsanvisningar till kapitel 2.3 2.5 2.3 Analytiska funktioner Analytiska funktioner, eller holomorfa funktioner som vi kommer kalla dem, är de funktioner som vi komer studera så gott som resten av kursen.

Läs mer

7 november 2014 Sida 1 / 21

7 november 2014 Sida 1 / 21 TANA09 Föreläsning 2 Talrepresentation i datorer. Flyttalssystem. Datoraritmetik och Beräkningsfel. Beräkningsfelsanalys och Kancellation. Serier och Resttermsuppskattningar. Tillämpning - Beräkning av

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel

Läs mer

4. Bestäm arean av det begränsade område som precis innesluts av kurvorna. och y = x 2. h(x) = e 2x 3,

4. Bestäm arean av det begränsade område som precis innesluts av kurvorna. och y = x 2. h(x) = e 2x 3, MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA151 Envariabelkalkyl, TEN1 Datum: 014-1-04

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y

Läs mer

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största

Läs mer

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7 TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i.

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i. UPPSALA UNIVERSITET Matematiska institutionen Fredrik Strömberg och Leo Larsson Prov i matematik Fristående kurs Matematik MN 00-0-0 Skrivtid: 9.00 4.00 Lösningar ska åtföljas av förklarande text. Hjälpmedel:

Läs mer

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2 Kapitel 4 Bisektionsalgoritmen Vi ska konstruera lösningar till algebraiska ekvationer av formen f(x) = 0 med hjälp av bisektionsalgoritmen (intervallhalveringsmetoden). På samma gång ska vi se hur man

Läs mer

Ickelinjära ekvationer

Ickelinjära ekvationer Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod

Läs mer

Matematik för ingenjörer. Version fortsättningskurs, 3mi32a. Föreläsningar, VT Mikael Forsberg

Matematik för ingenjörer. Version fortsättningskurs, 3mi32a. Föreläsningar, VT Mikael Forsberg Matematik för ingenjörer fortsättningskurs, 3mi32a Föreläsningar, VT 26 Mikael Forsberg Version.4 VT 26 2 Stockholm 26 c Mikael Forsberg Innehåll Förord v Talföljder och serier. Talföljder................................2

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Lokalt trunkeringsfel och noggrannhetsordning Definition: Det lokala trunkeringsfelet är det fel man gör med en numerisk metod när man utgår från det exakta värdet vid

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 9 januari 27 Entydighet Om vi har ett polynom som approximerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna

Läs mer

Talföljder, summor och rekursioner

Talföljder, summor och rekursioner VK Talföljder, summor och rekursioner Matematiska institutionen, 000 . Introduktion Talföljder, summor och rekursioner är ett tämligen stort område som har tillämpningar inom samtliga delar av matematiken.

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 5 Institutionen för matematik KTH 5 september 2017 Hur mycket behöver man jobba? Vi har ett gemensamt ansvar: Jag visar vad som behöver göras Men det är ni som måste göra det Viktigt faktum:

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och

Läs mer

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen? Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor

Läs mer

Lennart Carleson. KTH och Uppsala universitet

Lennart Carleson. KTH och Uppsala universitet 46 Om +x Lennart Carleson KTH och Uppsala universitet Vi börjar med att försöka uppskatta ovanstående integral, som vi kallar I, numeriskt. Vi delar in intervallet (, ) i n lika delar med delningspunkterna

Läs mer

Lösningar av uppgifter hörande till övning nr 5.

Lösningar av uppgifter hörande till övning nr 5. Lösningar av uppgifter hörande till övning nr 5. H.7 a) Antag att p är ett polynom med grad p < n. Då kan p skrivas som en linjärkombination av ortogonalpolynomen p k, där k < n. Alltså är p c k p k, m

Läs mer

Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation

Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation Linköpings Universitet Kompletterande material Matematiska institutionen/beräkningsmatematik 5 februari 203 Ingegerd Skoglund IT Termin 6 Komplettering till kursboken i Numeriska beräkningar Beräkningsfelsanalys

Läs mer

f (a) sin

f (a) sin Hur kan datorn eller räknedosan känna till värdet hos till exempel sin0.23 eller e 2.4? Denna fråga är berättigad samtidigt som ingen tror att apparaterna innehåller en gigantisk tabell. Svaret på frågan

Läs mer

Övningshäfte 3: Polynom och polynomekvationer

Övningshäfte 3: Polynom och polynomekvationer LMA100 VT2005 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 3: Polynom och polynomekvationer Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med

Läs mer

avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion.

avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion. Ordlista 1 1 Analysens grunder avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion. Bolzano-Weierstrassegenskapen En delmängd M i ett metriskt rum har Bolzano- Weierstrass-egenskapen

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist Föreläsning XV Mikael P. Sundqvist Förändring och lutning Till snälla funktioner kan man prata om förändring. Med det menar vi lutningen på den linje som tangerar grafen (se den blå linjen). Den röda och

Läs mer

1 Analysens grunder. Ordlista för Funktionalanalys 1. avbildning (map) En avbildning är i matematiskt språk i regel detsamma som en funktion.

1 Analysens grunder. Ordlista för Funktionalanalys 1. avbildning (map) En avbildning är i matematiskt språk i regel detsamma som en funktion. Ordlista för Funktionalanalys 1 (28 augusti 2002) 1 Analysens grunder avbildning (map) En avbildning är i matematiskt språk i regel detsamma som en funktion. Bolzano-Weierstrassegenskapen En delmängd M

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Vilka metoder har vi tagit upp? Euler framåt Euler bakåt Trapetsmetoden y k+ = y k + hf(t k, y k ), explicit y k+ = y k + hf(t k+, y k+ ), implicit y k+ = y k + h (f(t

Läs mer

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter TM-Matematik Mikael Forsberg 074-42 Pär Hemström 026-648962 För ingenjörs och distansstudenter Envariabelanalys ma04a 202 06 04 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1

Instuderingsfrågor för Endimensionell analys kurs B1 Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande

Läs mer

Upphämtningskurs i matematik

Upphämtningskurs i matematik Upphämtningskurs i matematik C.J. 2013 Föreläsningsunderlaget är uppbyggt utgående från kurserna i den långa gymnasiematematiken, ellips-kursböckerna (Schilds förlag) har använts som förebild. Böckerna

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x) Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås

Läs mer

SF1600, Differential- och integralkalkyl I, del 1. Tentamen, den 9 mars Lösningsförslag. f(x) = x x

SF1600, Differential- och integralkalkyl I, del 1. Tentamen, den 9 mars Lösningsförslag. f(x) = x x Institutionen för matematik, KTH Serguei Shimorin SF6, Differential- och integralkalkyl I, del Tentamen, den 9 mars 9 Lösningsförslag Funktionen y = fx definieras för x >, x som x + x fx = x a Definiera

Läs mer

n 3 (2x 4) n 6 n? 3. Bestäm volymen av den kropp som ligger innanför ellipsoiden 5x 2 + 5y 2 + z 2 = 16 och ovanför konen z = 3x 2 + 3y 2.

n 3 (2x 4) n 6 n? 3. Bestäm volymen av den kropp som ligger innanför ellipsoiden 5x 2 + 5y 2 + z 2 = 16 och ovanför konen z = 3x 2 + 3y 2. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA128 Differential- och integralkalkyl III

Läs mer

1 Att läsa matematik.

1 Att läsa matematik. 1 Att läsa matematik. Precis som vid all annan läsning som betyder något skall matematik läsas aktivt. Detta innebär olika saker för olika personer. För en del kanske det betyder att visualisera de idéer

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XII. Föreläsning XII. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XII. Föreläsning XII. Mikael P. Sundqvist Föreläsning XII Mikael P. Sundqvist Vad handlar gränsvärden om? Det är en kamp mellan epsilon (ε) och delta (δ) analystens främsta verktyg! Klicka här för bild på Barry Simon Gränsvärde av f (x) då x +

Läs mer

Lipschitz-kontinuitet

Lipschitz-kontinuitet Kapitel 2 Lipschitz-kontinuitet Vi börjar med att presentera den formella definitionen av gränsvärde och kontinuitet. Vi presenterar sedan en variant av kontinuitet som är lättare att använda och som ger

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

Mer om reella tal och kontinuitet

Mer om reella tal och kontinuitet Kapitel R Mer om reella tal och kontinuitet I detta kapitel formulerar vi ett av de reella talens grundläggande axiom, axiomet om övre gräns, och studerar några konsekvenser av detta. Med dess hjälp kommer

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

LÄSANVISNINGAR. Adams Essex: Calculus, sjunde upplagan

LÄSANVISNINGAR. Adams Essex: Calculus, sjunde upplagan UPPSALA UNIVERSITET Matematiska institutionen Anders Vreblad/Bo Styf Endimensionell analys för civilingenjörsprogrammen LÄSANVISNINGAR till Adams Esse: Calculus, sjunde upplagan Version 2009 Anvisningarna

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1 2011

Instuderingsfrågor för Endimensionell analys kurs B1 2011 Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x = UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

TNA003 Analys I för ED, MT, KTS

TNA003 Analys I för ED, MT, KTS TNA003 Analys I för ED, MT, KTS Litteraturkommentarer till föreläsningarna VT1 2017 Sixten Nilsson TNA003 FÖ 1: Kap 3.1 3.2 Litteraturkommentarer 3.1 Gränsvärdesidén Skilj på de två typerna av gränsvärden.

Läs mer

Matematik 5 Kap 3 Derivator och Integraler

Matematik 5 Kap 3 Derivator och Integraler Matematik 5 Kap 3 Derivator och Integraler Inledning I kap 4 Differentialekvationer behövs derivator (och integraler) och i kap 5 Omfångsrika problemsituationer finns intressanta problem med användning

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

Om kontinuerliga funktioner

Om kontinuerliga funktioner Analys 360 En webbaserad analyskurs Analysens Grunder Om kontinuerliga funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om kontinuerliga funktioner 1 (12) 1 Introduktion Vi ska nu diskutera

Läs mer

En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte.

En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte. En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte. Att läsa matte är en väldigt aktiv process. Det handlar inte om att bara skumma texten. Att läsa matte är att aktivt återskapa och internalisera

Läs mer

SAMMANFATTNING TATA41 ENVARIABELANALYS 1

SAMMANFATTNING TATA41 ENVARIABELANALYS 1 SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3

Läs mer

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1) Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning

Läs mer

M0038M Differentialkalkyl, Lekt 16, H15

M0038M Differentialkalkyl, Lekt 16, H15 M0038M Differentialkalkyl, Lekt 16, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 25 Repetition Lekt 15 Femte och trettioförsta elementet i en aritmetisk talföljd är 7

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

Funktionsteori sammanfattning

Funktionsteori sammanfattning Funktionsteori sammanfattning Martin Sundeqvist October 2014 1 Komplexa funktioner Definition 1.1 Gränsvärde, komplexvärd funktion Anta att f är en komplexvärd funktion som är definierad på någon omgivning

Läs mer

Mer om kontinuitet. Kapitel K. K.1 Övre och undre gräns

Mer om kontinuitet. Kapitel K. K.1 Övre och undre gräns Kapitel K Mer om kontinuitet I detta kapitel bevisar vi Sats 3.1, som säger att en kontinuerlig funktion av typen R 2 R på ett kompakt område antar ett största och ett minsta värde. Vi studerar dessutom

Läs mer

Beräkningsmatematik. Niklas Ericsson och Stig Larsson

Beräkningsmatematik. Niklas Ericsson och Stig Larsson Beräkningsmatematik Niklas Ericsson och Stig Larsson 21 augusti 2013 Innehåll 1 Flyttal 5 1.1 Format........................................... 5 1.2 Standarden IEEE 754..................................

Läs mer

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013 SF625 Envariabelanalys Tentamen Onsdagen den 5 juni, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare)

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare) Umeå universitet Dugga i matematik Institutionen för matematik Envariabelanalys 1 och matematisk statistik IE, ÖI, Stat. och Frist. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 2: Derivata Institutionen för matematik KTH 8 september 2015 Derivata Innehåll om derivata (bokens kapitel 2). Definition vad begreppet derivata betyder Tolkning hur man kan tolka derivata Deriveringsregler

Läs mer

Föreläsning 1. Numeriska metoder grundkurs II, DN1240. Carina Edlund Mottagningstid i rum 4516: onsdagar kl.

Föreläsning 1. Numeriska metoder grundkurs II, DN1240. Carina Edlund Mottagningstid i rum 4516: onsdagar kl. Föreläsning 1 Numeriska metoder grundkurs II, DN1240 Carina Edlund carina@nada.kth.se Mottagningstid i rum 4516: onsdagar kl. 13-15 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/dn1240/numi09/

Läs mer

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller Repetitionsuppgifter Endimensionell analys, Komplexa tal delkurs B2. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som

Läs mer