Lösningsförslag envariabelanalys

Storlek: px
Starta visningen från sidan:

Download "Lösningsförslag envariabelanalys"

Transkript

1 Lösningsförslag envariabelanalys Evationen är linjär och har det arateristisa polynomet p(r) r 3 r 2 + 4r 4 (r 2 + 4)(r ). Således ges lösningarna till den homogena evationen p(d)y h av y h C e x + C 2 cos 2x + C 3 sin 2x enligt änd sats. För att hitta partiulärlösningar utnyttjar vi superpositionsprincipen och hittar först en lösning till p(d)y p 5e x. Eftersom r är en (enel)rot till p(r) så försöer vi med ansatsen y p Axe x. Diret derivering visar att p(d)(axe x ) (3Ae x + Axe x ) (2Ae x + Axe x ) + (4Ae x + 4Axe x ) 4Axe x 5Ae x, så om vi låter A gör det att högerledet blir 5e x. Givetvis an vi ansätta y p z(x)e x istället och använda försjutningssatsen (eller derivera på lit ovan) istället. För att hitta en partiulärlösning till p(d)y p2 2x ansätter vi y p2 Ax + B. Insatt i evationen ger detta p(d)(ax + B) 4A 4(Ax + B) 4Ax + 4A 4B, så 4A 2 och 4A 4B. Alltså är A B 5. Svar: C e x + C 2 cos 2x + C 3 sin 2x + xe x + 5x (a) Integranden är positiv och integralen är generaliserad i oändligheten. Vi ser diret att + x 2 + x dx + x x dx dx 2, vilet visar den första oliheten. För att hitta en begränsning uppåt delar vi upp i två delar. Eftersom och så är + x 2 + x dx dx 2 + x 2 + x dx 2x 2 7 x dx 2 dx 7 x x 2 + x 7 dx

2 (b) Till exempel så ommer till exempel votriteriet: > lim Svar: (a) Se ovan 3. Eftersom (b) t ex x att ha onvergensradien R 2. Vi an se detta från 2 x / 2 x 2. t! et för alla t R så är e /5 N+! ( ) 5 x lim 2 x 2 N ( )! 5 }{{} approximation x < 2. ( ) +! 5 N+ }{{} fel för alla positiva heltal N. Vi söer N så att felet (svansen på serien) blir < 5. Vi ser att serien är positiv och ( ) <! 5 (N + )! ( ) 5 N+ 5 (N + )! 4 5. N Genom att testa oss fram observerar vi att med N 4 blir Således är med ett absolut fel på högst 5. (N + )! 4 5 N < 5 5. e /5 4 5! Alternativt. Låt f(x) e x. Då är f (n) (x) e x för alla positiva heltal n och f(x) + x + x2 2 + x3 3! + x4 4! + eξ 5! x5, där ξ ligger mellan och x. Varför ordning 4? Vi ommer strax till det. Vi vill approximera e /5, så e /5 f(/5) eξ, } {{ } approximation där ξ ligger mellan och /5. Eftersom e ξ e /5 < e < 3 så är e ξ < < 5, så är det absoluta felet < 5. Svar: }{{} fel

3 4. Evationen är inte linjär men av ordning ett. Vi sriver om evationen på en form där vi an försöa separera variablerna: y cos 3x y 2 dy cos 3x dx y3 y 2 3 C + sin 3x. 3 Vi söer lösningen där y(), så Således blir 3 C +. y ( + sin 3x) /3, x R. Emmelertid finns här ett problem, då y fatist inte är deriverbar där sin 3x, dvs när x π/6 + 2nπ/3 för n Z. Fatum är att evationen inte ens är definierad i dessa punter då y där. Största möjliga definitionsmängd ges därför av ] π/6, π/2[ eftersom vi har villoret att y(). y x För att hitta Maclaurinutveclingen har vi åtminstone två alternativ. Vi an endera direta ta fram den från ovanstående uttryc eller så deriverar vi differentialevationen implicit (under antagandet att lösningen fatist existerar, men det har vi precis visat). Ifrån begynnelsevilloret har vi att y(), så y () 2 med x och y ). Vidare gäller att y (x) 3 sin 3x y 2 så y () 2. Vi deriverar en gång till: y (3) (x) 9 cos 3x y sin 3x y 3 2 cos 3x y 3 y (x) y (x) + 6y (x) sin 3x 2y (x) cos 3x y 3 (diret ur evationen + 6 cos 3x y 4 y (x) 2, vilet ger att y (3) () Diret insättning i Maclaurins formel visar att y(x) y() + y ()x + y () 2 x2 + y(3) () x 3 + O(x 4 ) + x x 2 + 3! 6 x3 + O(x 4 ). Alternativt. Standardutveclingar ger att y ( + sin 3x) /3 + sin 3x sin2 3x sin3 3x + O(sin 4 3x) + ) (3x (3x)3 + O(x 5 ) + ( 3x + O(x 3 ) ) 2 5 ( + 3x + O(x 3 ) ) 3 + O(x 4 ) x 3x3 2 x2 + 5(3x)3 + O(x 4 ) 8 + x x 2 + x3 6 + O(x4 )

4 Svar: y ( + sin 3x) /3, π/6 < x < π/2; y(x) + x x x3 + O(x 4 ). 5. Vi delar upp serien i två delar. Under förutsättningen att vi visar att dessa är onvergenta så är det tillåtet. Alltså, + sin(π/2) 3 l l 3 + sin(π/2) 3. Vi ser att sin(π/2) om är jämn och sin((2l + )π/2) ( ) l för l Z. Detta gör att den andra serien an srivas sin(π/2) ( ) l 3 3 ( ) l 2l /9 3. För att hantera den första serien, låt oss introducera potensserien f(x) x. Konvergensradien är R (varför?) och för x < gäller att Med x 3 x d ( x ) x x d dx dx erhåller vi att x x d ( ) dx x 3 /3 ( /3) Eftersom båda serierna är onvergenta gäller att Svar: sin(π/2) x ( x) De olia områdena D n uppfyller att D n D n+ och då n så ommer D n att närma sig en vadrat. ( Rimligen ) borde vi förvänta oss att tyngdpunten för D n ommer att närma sig 2, då n. Sevensen D n av områden ser ut enligt nedan, där ljusare 2 suggning innebär att den delen av området läggs till vid större värden på n. För n är området triangeln ovanför linjen y x och för n är området vadraten [, ] [, ].

5 Enlaste sättet att identifiera tyngdpunterna är nog att använda Pappos-Guldins regler balänges. Vi låter A n vara arean (den plana arean) av området D n : A n ( x n ) dx n + n n +. Låt nu V n,x vara volymen som uppstår då D n roterar ett varv ring x-axeln och V n,y vara volymen som uppstår när D n roterar ett varv ring y-axeln. Om (x n, y n ) är tyngdpunten i D n så gäller då att V n,x 2πy n A n och V n,y 2πx n A n. Vi beränar rotationsvolymerna. Med sivformeln erhåller vi att ( V n,x π ( 2 (x n ) 2 ) dx π ) 2n + och med rörformeln blir V n,y 2π Vi finner därmed att och y n x n ( x( x n ) dx 2π 2 ) ( π 2 ). n + 2 n + 2 V n,x 2n+ 2n 2π A n n+ V n,y 2 n+2 2n 2π A n n+ Med dessa uttryc är det lart att 2n 2n + n + 2n n + 2n + n n + 2 n + 2n n + 2n + 4. x n + /n 2 + 4/n 2 och y n + /n 2 + /n 2,

6 då n (precis som vi misstänte!). Alternativt. Man an även använda definitionen av tyngdpunt diret. För den som läst flervariabelanalys anse denna variant är naturligare. Området ser ungefär ut enligt nedan (beroende på n). y x n y + dy y x x + dx Låt da n (x) ( x n ) dx vara ett areaelement med syfte på x, x. Då gäller att x n x da n (x) (x x n+ ) dx ( A n A n A n 2 ) n + n + 2 n n 2n + 4 n + 2n + 4. På linande sätt an vi (eftersom y x n x y /n då x ) erhålla ett areaelement med syfte på y, y, enligt da n (y) y /n dy. Använder vi detta an vi se att y n y da n (y) y +/n dy A n A n A n Svar: (x n, y n ) 2 + /n n + n ( ) ( n + 2n + 4, n + ; (x n, y n ) 2n + 2, ) då n. 2 n 2n + n + 2n Serien är alternerande (för varje x) och termernas belopp är monotont avtagande mot noll (för varje x): ( ) x ( ) + x för alla positiva heltal och ( ) + x då. + x

7 Enligt Leibniz riterium är serien således onvergent. Eftersom serien är onvergent så gäller att f(x) f(y) ( ( ) + x ( ) + y ( y x ) ) ( ) ( + x )( + y ). ( ) ( + y ( + x ) ( + x )( + y ) Om vi studerar termerna i denna serie lite närmare ser vi att även detta är en Leibniz-serie (serien alternerar och termernas belopp avtar mot noll), så serien är till beloppet begränsad av beloppet av första termen: ( ) ( + x )( + y ) ( + x )( + y ). Således ommer f(x) f(y) y x x y, där vi använde omvända triangeloliheten i den sista oliheten. Svar: se ovan. )

Lösningsförslag envariabelanalys

Lösningsförslag envariabelanalys Lösningsförslag envariabelanalys 09-06-05. Ekvationen är linjär och har det karakteristiska polynomet pr) = r 4 + r 3 + 5r = r r + r + 5) = r r + i)r + + i). Således ges lösningarna till den homogena ekvationen

Läs mer

Svar till tentan

Svar till tentan UPPSALA UNIVERSITET Matematisa institutionen Sigstam, Styf Prov i matemati Alla program o frist urs ENVARIABELANALYS 0-08- Svar till tentan 0-08-. Del A Bestäm alla punter P 0 på urvan y = x + sådana att

Läs mer

Prov i matematik Fristående kurs Analys MN1 distans UPPSALA UNIVERSITET Matematiska institutionen Anders Källström

Prov i matematik Fristående kurs Analys MN1 distans UPPSALA UNIVERSITET Matematiska institutionen Anders Källström UPPSALA UNIVERSITET Matematisa institutionen Anders Källström Prov i matemati Fristående urs Analys MN1 distans 6 11 Srivtid: 1-15. Hjälpmedel: Gymnasieformelsamling. Lösningarna sall åtföljas av förlarande

Läs mer

TNA004 Analys II Tentamen Lösningsskisser

TNA004 Analys II Tentamen Lösningsskisser TNA004 Analys II Tentamen 07-06-0 - Lösningssisser. y ( ) y( ) e är linjär av första ordningen. Välj integrerande fator Multipliation av (*) med IF ger oss IF ln( ) e d e (Obs! ty vi har y(0) 0 ). ( )

Läs mer

Tentamen i Envariabelanalys 2

Tentamen i Envariabelanalys 2 Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna

Läs mer

Institutionen för matematiska vetenskaper Chalmers tekniska högskola. Skissartade lösningsförslag till tentamen TMA976.

Institutionen för matematiska vetenskaper Chalmers tekniska högskola. Skissartade lösningsförslag till tentamen TMA976. Institutionen för matematisa vetensaper Chalmers tenisa högsola Sissartade lösningsförslag till tentamen TMA976 Datum: 2015 01 14 1. Lös differentialevationen y y = e x (x + e x ) y(0) = 1 y (0) = 0 Differentialevationen

Läs mer

12. Numeriska serier NUMERISKA SERIER

12. Numeriska serier NUMERISKA SERIER 122 12 NUMERISKA SERIER 12. Numerisa serier Vi har tidigare i avsnitt 10.9 sett ett samband mellan summor och integraler. Vi har ocså i avsnitt 11 definierat begreppet generaliserade integraler och för

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

a k . Serien, som formellt är följden av delsummor

a k . Serien, som formellt är följden av delsummor Kapitel S Mer om serier I dettapitel sall vi fortsätta att studera serier, ett begrepp som introducerades i Kapitel 9.5 i boen, framförallt sa vi bevisa ett antal onvergensriterier. Mycet ommer att vara

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi

Läs mer

Lösningsförslag till TATA42-tentan

Lösningsförslag till TATA42-tentan Lösningsförslag till TATA-tentan 8-6-.. Då ekvationen är linjär av första ordningen löses den enklast med hjälp av integrerande faktor (I.F.). Skriv först ekvationen på standardform. (+ )y y + y + + y

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A

SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen 015-01-1 DEL A 1. Låt f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive

Läs mer

Studietips inför kommande tentamen TEN1 inom kursen TNIU23

Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

dt = x 2 + 4y 1 typ(nod, sadelpunkt, spiral, centrum) och avgöra huruvida de är stabila eller instabila. Lösning.

dt = x 2 + 4y 1 typ(nod, sadelpunkt, spiral, centrum) och avgöra huruvida de är stabila eller instabila. Lösning. Lösningsförslag till tentamenssrivning i SF633 Differentialevationer I Måndagen den 5 otober 0, l 0800-300 Hjälpmedel: BETA, Mathematics Handboo Redovisa lösningarna på ett sådant sätt att beräningar och

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

Lösningsförslag till tentan i 5B1115 Matematik 1 för B, BIO, E, IT, K, M, ME, Media och T,

Lösningsförslag till tentan i 5B1115 Matematik 1 för B, BIO, E, IT, K, M, ME, Media och T, Institutionen för Matematik, KTH. Lösningsförslag till tentan i 5B5 Matematik för B, BIO, E, IT, K, M, ME, Media och T, 8.. Visa att påståendet P n : n + n < 4 n är sant för n =,, 4.... (a) P : + = 4 +

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e x2 /4 2) = 2) =

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e x2 /4 2) = 2) = SF625 Envariabelanalys Lösningsförslag till tentamen 22-2- DEL A. Bestäm värdemängden till funktionen f(x) = xe x2 /4. Lösningsförslag. Standardgränsvärdet xe x, då x ger att lim f(x) = lim x x ± x ± e

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid:

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid: HÖGSKOLAN I HALMSTAD Tentamensskrivning Akademin för informationsteknologi MA00 Envariabelanalys 6 p Mikael Hindgren Tisdagen den 9 januari 08 05-670 Skrivtid: 9.00-.00 Inga jälpmedel. Fyll i omslaget

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2 SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot

Läs mer

TNA004 Analys II Tentamen Lösningsskisser

TNA004 Analys II Tentamen Lösningsskisser TNA004 Analys II Tentamen 20-06-0 Lösningsskisser. a) De båda kurvorna skär varandra i x 0 och x. På intervallet 0 x är x x. Området D är då det skuggade i figuren nedan, där även en tunn rektangel är

Läs mer

L HOSPITALS REGEL OCH MACLAURINSERIER.

L HOSPITALS REGEL OCH MACLAURINSERIER. L HOSPITALS REGEL OCH MACLAURINSERIER Läs avsnitten 73 och 8-82 Lös övningarna 78-75, 82, 84a,b, 85a,c, 89, 80 samt 8 Avsnitt 73 L Hospitals regel an ibland vara till en viss nytta, men de flesta gränsvärden

Läs mer

Potensserier och potensserieutvecklingar av funktioner

Potensserier och potensserieutvecklingar av funktioner Analys 36 En webbaserad analysurs Analysens grunder Potensserier och potensserieutveclingar av funtioner Anders Källén MatematiCentrum LTH andersallen@gmail.com Potensserier och potensserieutveclingar

Läs mer

4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.

4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf. TM-Matematik Mikael Forsberg 73 1 3 31 Pär Hemström 7 3 57 För ingenjörs och distansstudenter Envariabelanalys ma3a 1 8 Skrivtid: 9:-1:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att

Läs mer

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7 TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är

Läs mer

Lösningar till MVE016 Matematisk analys i en variabel för I yy 1 + y 2 = x.

Lösningar till MVE016 Matematisk analys i en variabel för I yy 1 + y 2 = x. Lösningar till MVE6 Matematisk analys i en variabel för I 7-4-. a Division ger yy + y x. Ekvationen är alltså separabel. Integration av vänstra ledet ger y + y dy ln + y Efter integration blir det alltså

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder Tentamen ENVARIABELANALYS M 204-2-08 SVAR OCH ANVISNINGAR UPPGIFTER. e 3x2 lim = e x2 ( 3x 2 +...) = lim ( x 2 +...) = lim

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

Tentamen i matematik. f(x) = ln(ln(x)),

Tentamen i matematik. f(x) = ln(ln(x)), Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning

TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning Johan Thim 23 april 2018 1 Differentialoperatorer För att underlätta notation och visa på underliggande struktur introducerar vi begreppet

Läs mer

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1 TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

motiveringar. Lämna tydliga svar. 1 (arcsin x) 2 dx: (0.6)

motiveringar. Lämna tydliga svar. 1 (arcsin x) 2 dx: (0.6) TENTAMENSSKRIVNING LUNDS TEKNISKA HÖGSKOLA MATEMATIK ENDIMENSIONELL ANALYS B (FMAA5)/A3 (FMAA) 74 kl. 83 Inga hjälmedel är tillåtna. För att du skall kunna erhålla full oäng skall dina lösningar vara läsvärda

Läs mer

TATA42: Föreläsning 3 Restterm på Lagranges form

TATA42: Föreläsning 3 Restterm på Lagranges form TATA4: Föreläsning 3 Restterm på Lagranges form Johan Thim 9 mars 9 Lagranges form för resttermen Vi har tidigare använt resttermen på ordo-form med goda resultat. Oftast i samband med gränsvärden, extrempunktsundersökningar

Läs mer

Tentamen i matematik. f(x) = 1 + e x.

Tentamen i matematik. f(x) = 1 + e x. Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 6 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys 1 / 14 SF1626 Flervariabelanalys Föreläsning 7 Henrik Shahgholian Vid Institutionen för matematik, KTH VT 2018, Period 3 2 / 14 SF1626 Flervariabelanalys Dagens Lektion Kap 12.8 1. Implicit definierade

Läs mer

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen Institutionen för matematik, KTH Mattias Dahl 5B, Dierential- och integralkalkyl I, del, för TIMEH2 Tentamen, tisdag 29 mars 25 kl.9.. Svara med motivering och mellanräkningar. Tillåtet hjälpmedel är formelsamlingen

Läs mer

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx TM-Matematik Mikael Forsberg XXX-XXX DistansAnalys Envariabelanalys Distans ma034a ot-nummer 3 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Meningslöst nonsens. December 14, 2014

Meningslöst nonsens. December 14, 2014 December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett

Läs mer

Repetition, Envariabelanalys del

Repetition, Envariabelanalys del Repetition, Envariabelanalys del 2 209 Lars Alexandersson Ulf Janfalk Tomas Sjödin Johan Thim Här har vi samlat vissa grundläggande delar av kursen. Notera att detta INTE är en fullständig genomgång av

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 17 Institutionen för matematik KTH 6 december 2017 Anmälan till tentamen För att skriva tentamen (2018-01-08) behöver ni anmäla er (Mina sidor, deadline 18:e december). Idag Kap 7. Tillämpningar

Läs mer

TATA42: Föreläsning 5 Serier ( generaliserade summor )

TATA42: Föreläsning 5 Serier ( generaliserade summor ) TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 0 januari 207 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje

Läs mer

Föreläsning 1. X kallas för funktionens definitionsmängd, mängden av funktionens alla värden kallas funktionens värdemängd.

Föreläsning 1. X kallas för funktionens definitionsmängd, mängden av funktionens alla värden kallas funktionens värdemängd. Föreläsning 1 Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida http://www.math.uu.se/ rikardo/ envariabelanalys/huvudsidor/index.html Funktioner En funktion f, från mängden

Läs mer

ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll. a n (x x 0 ) n.

ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll. a n (x x 0 ) n. ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Potensserielösningar Analytiska funktioner Konvergensradie Rot- och

Läs mer

v0.2, Högskolan i Skövde Tentamen i matematik

v0.2, Högskolan i Skövde Tentamen i matematik v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.

Läs mer

TATA42: Föreläsning 6 Potensserier

TATA42: Föreläsning 6 Potensserier TATA4: Föreläsning 6 Potensserier Johan Thim januari 7 Vi ska nu betrakta serier där termerna inte längre är konstanter. Speciellt ska vi studera så kallade potensserier. Dessa definieras som a k x k a

Läs mer

1 Föreläsning 14, följder och serier

1 Föreläsning 14, följder och serier Föreläsning 4, följder och serier. Följd I en följd {a n } n= sriver vi istället elementen som f(n). Följden {sin(n)} n= är begränsad, ty sin n. Följden {/ n} n= är onvergent mot 0: { Följden 2n 2 3n }

Läs mer

SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014

SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014 SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra

Läs mer

Om användning av potensserier på kombinatorik och rekursionsekvationer

Om användning av potensserier på kombinatorik och rekursionsekvationer Om användning av potensserier på ombinatori och reursionsevationer Anders Källén MatematiCentrum LTH andersallen@gmailcom Sammanfattning Vid analys av både ombinatorisa problem och för att lösa reursionsevationer

Läs mer

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk

Läs mer

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x = UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

Lösningsförslag till Tentamen i SF1602 för CFATE 1 den 20 december 2008 kl 8-13

Lösningsförslag till Tentamen i SF1602 för CFATE 1 den 20 december 2008 kl 8-13 KTH Matematik Examinator: Lars Filipsson Lösningsförslag till Tentamen i SF60 för CFATE den 0 december 008 kl 8-3 Preliminära betygsgränser: A - 8 poäng varav minst 8 VG-poäng, B - 5 poäng varav minst

Läs mer

SF1600, Differential- och integralkalkyl I, del 1. Tentamen, den 9 mars Lösningsförslag. f(x) = x x

SF1600, Differential- och integralkalkyl I, del 1. Tentamen, den 9 mars Lösningsförslag. f(x) = x x Institutionen för matematik, KTH Serguei Shimorin SF6, Differential- och integralkalkyl I, del Tentamen, den 9 mars 9 Lösningsförslag Funktionen y = fx definieras för x >, x som x + x fx = x a Definiera

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

TATA42: Föreläsning 10 Serier ( generaliserade summor )

TATA42: Föreläsning 10 Serier ( generaliserade summor ) TATA42: Föreläsning 0 Serier ( generaliserade summor ) Johan Thim 5 maj 205 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal

Läs mer

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.) Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna

Läs mer

Lösningsförslag, preliminär version 0.1, 23 januari 2018

Lösningsförslag, preliminär version 0.1, 23 januari 2018 Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel

Läs mer

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

Preliminärt lösningsförslag till del I, v1.0

Preliminärt lösningsförslag till del I, v1.0 Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/ Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att

Läs mer

MMA127 Differential och integralkalkyl II

MMA127 Differential och integralkalkyl II Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).

Läs mer

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter TM-Matematik Mikael Forsberg 074-42 Pär Hemström 026-648962 För ingenjörs och distansstudenter Envariabelanalys ma04a 202 06 04 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),

4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x), Lunds Tekniska Högskola Matematik Helsingborg Lösningar Analys, FMAA5 9-8-9. a) e sinx) cosx) dx e sinx) + C. b) 4x dx polynomdivision] x + x + x + dx x x + ] ln x + + ) ln) + ) ln) ln). c) Trigonometriska

Läs mer

Lösningsförslag obs. preliminärt, reservation för fel

Lösningsförslag obs. preliminärt, reservation för fel Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:

Läs mer

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm

Läs mer

gränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n

gränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 5 mars 208 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal

Läs mer

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

ENDIMENSIONELL ANALYS A3/B kl INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. lim

ENDIMENSIONELL ANALYS A3/B kl INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. lim LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS A3/B2 26 3 7 kl. 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar.. Beräkna a) x+4 x 3 +4x dx.5)

Läs mer

1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p)

1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p) Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA2 Envariabelanalys 6 hp Mikael Hindgren Fredagen den 3 januari 27 35-6722 Skrivtid: 5.-2. Inga hjälpmedel. Fyll i omslaget fullständigt och skriv namn

Läs mer

IV. Ekvationslösning och inversa funktioner

IV. Ekvationslösning och inversa funktioner Analys 360 En webbaserad analysurs Grundbo IV. Evationslösning och inversa funtioner Anders Källén MatematiCentrum LTH andersallen@gmail.com IV. Evationslösning och inversa funtioner 1 (11) Introdution

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

Lösningar till Matematisk analys

Lösningar till Matematisk analys Lösningar till Matematis analys 0820. Stationära punter. f (x, y) = 8x(x 2 y), f 2(x, y) = 4(y x 2 )). Vi ar alltså att f (x, y) = f 2(x, y) = 0 { x(x 2 y) = 0 y x 2 = 0. Första evationen ovan är uppfylld

Läs mer

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon

Läs mer

Lösningsförslag, v0.4

Lösningsförslag, v0.4 , v.4 Preliinär version, 6 februari 28, reservation för fel! Högsolan i Sövde Tentaen i ateati Kurs: MA52G Mateatis analys MA23G Mateatis analys för ingenjörer Tentaensdag: 27-5-2 l 8:3-3:3 Hjälpedel :

Läs mer

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9: Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en

Läs mer

Dagens ämnen. Potensserier

Dagens ämnen. Potensserier Dagens ämnen 1 / 6 Dagens ämnen Potensserier 1 / 6 Dagens ämnen Potensserier Definition 1 / 6 Dagens ämnen Potensserier Definition Var konvergerar potensserien? 1 / 6 Dagens ämnen Potensserier Definition

Läs mer

Typexempel med utförliga lösningar TMV130. Matem. Analys i En Var.. V, AT.

Typexempel med utförliga lösningar TMV130. Matem. Analys i En Var.. V, AT. Typexempel med utförliga lösningar TMV3. Matem. Analys i En Var.. V, AT. Försök alltid att lösa exemplen själv först. Integration. ([AE, Adams&Essex] Ex. 5.6. ) Beräkna integralen x + 6x + 3 dx LSN (Lösning).

Läs mer

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3, Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5

Läs mer

Tentamen SF e Januari 2016

Tentamen SF e Januari 2016 Tentamen SF6 8e Januari 6 Hjälpmedel: Papper, penna. poäng per uppgift totalt poäng. Betg E är garanterat vid 6 poäng, betg D vid poäng, betg vid C poäng, betg B vid 8 poäng och betg A vid poäng. För de

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.

Läs mer

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013 SF625 Envariabelanalys Tentamen Onsdagen den 5 juni, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel

Läs mer

Meningslöst nonsens. November 19, 2014

Meningslöst nonsens. November 19, 2014 November 19, 2014 Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar? Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar?

Läs mer

Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik

Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan

Läs mer

Matematik 4 Kap 3 Derivator och integraler

Matematik 4 Kap 3 Derivator och integraler Matematik 4 Kap 3 Derivator och integraler Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande

Läs mer

Mer om generaliserad integral

Mer om generaliserad integral Föreläsning XI Mer om generaliserad integral Ex 64: Givet h(x) = ( x 2 5x + 2 ) e x/2. (a) Bestäm en p.f. till h(x). (b) Beräkna h(x)dx. (a) Vi har här en integrand som är en produkt av ett polynom av

Läs mer

Tentamen SF1661 Perspektiv på matematik Lördagen 18 februari 2012, klockan Svar och lösningsförslag

Tentamen SF1661 Perspektiv på matematik Lördagen 18 februari 2012, klockan Svar och lösningsförslag Tentamen SF1661 Perspetiv på matemati Lördagen 18 februari 01, locan 09.00 1.00 Svar och lösningsförslag (1) Sissera den mängd i xy-planet som består av alla punter som uppfyller oliheten (x + ) + (y )

Läs mer