LMA515 Matematik, del B Sammanställning av lärmål

Storlek: px
Starta visningen från sidan:

Download "LMA515 Matematik, del B Sammanställning av lärmål"

Transkript

1 LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga) definitionsmängd samt värdemängd för en funktion i enkla fall. Exempel på uppgift. * Definiera begreppen funktion, definitionsmängd och värdemängd. * Låt funktionen f vara given av { 2, 0 x 1, f(x) = 2x, 1 < x 2. Ange definitionsmängden D f och värdemängden V f. Rita grafen till f. * Bestäm (största möjliga) definitionsmängd D f samt värdemängden V f till funktionen f(x) = x + 1. Beräkna sammansättningen av två funktioner. Exempel på uppgift Uppgift 1 på Dugga 1. Tillämpa räknereglerna för gränsvärden. Exempel på uppgift. (Ingår som en självklar del i alla gränsvärdesuppgifter.) Avgöra om en rationell funktion (kvot av polynom) har ett gränsvärde i en punkt, och beräkna detta. Exempel på uppgift. K1, K2, K4 i vecko-pm 1. Avgöra om en rationell funktion har ett gränsvärde då x och beräkna detta. Exempel på uppgift. K3 i vecko-pm 1. Känna till sambandet mellan högergränsvärde, vänstergränsvärde och gränsvärde. Förklara (och ge exempel på) vad det innebär att en funktion är kontinuerlig i en punkt, kontinuerlig på ett intervall respektive kontinuerlig.

2 Exempel på uppgift. * Förklara vad som menas med att en funktion f är kontinuerlig i en punkt x. * Ge exempel på en funktion med definitionsmängd [0, 2], som inte är kontinuerlig i punkten 1. Rita funktionens graf. Förklara (och ge exempel på) vad det innebär att en funktion är deriverbar i en punkt, deriverbar på ett intervall respektive deriverbar. Exempel på uppgift. * Förklara vad som menas med att en funktion f är deriverbar i en punkt x. * Ge exempel på en funktion med definitionsmängd [0, 2], som inte är deriverbar i punkten 1. Rita funktionens graf. Avgöra kontinuerlighet/deriverbarhet för en styckvis linjär funktion eller utifrån en given graf. Exempel på uppgift. K5 i vecko-pm 1. Redogöra för sambandet mellan deriverbarhet och kontinuitet (Sats s. 135). Exempel på uppgift. Förklara sambandet mellan deriverbarhet och kontinuitet. Tillämpa deriveringsreglerna på s (Obs! Satsen på s. 137 gäller för alla reella tal n.) Exempel på uppgift. Derivera följande funktioner: x/ sin x, (2x + 1) arcsin x. Derivera sammansatta funktioner med hjälp av kedjeregeln. Exempel på uppgift. Derivera ln(cos(3x 2 )). Bestämma ekvationer för tangent- och normallinje till en kurva i en punkt. Exempel på uppgift. K3 i vecko-pm 3. Tillämpningar av derivata. Finna alla lokala extrempunkter samt största och minsta värdet för en funktion på ett intervall genom att använda checklistan på s Exempel på uppgift. K1 i vecko-pm 2. K1 och K6 i vecko- PM 3. (Se även grafritningsuppgifterna.)

3 Lösa ett enklare optimeringsproblem givet i textform, genom att införa beteckningar och finna största eller minsta värdet för en lämplig funktion. Exempel på uppgift. K2 K5 i vecko-pm 2. Förklara begreppen konkav, konvex och inflexionspunkt och hur dessa hänger samman med andraderivatan. Exempel på uppgift. * Förklara vad som menas med att en funktion f är konvex resp. konkav på ett intervall. * Förklara vad som menas med att (x 0, f(x 0 )) är en inflexionspunkt till kurvan y = f(x). Förklara vad som menas med en asymptot (vertikal, horisontell eller sned) till en kurva. Exempel på uppgift. Förklara vad som menas med en asymptot till en kurva. Göra en skiss av grafen till en polynomfunktion eller rationell funktion. Följande ska framgå ur grafen: Kurvans skärningspunkter med x- resp. y-axeln Lokala maxima och minima Var funktionen är växande resp. avtagande Inflexionspunkter (om detta efterfrågas) Var funktionen är konvex resp. konkav (om detta efterfrågas) Eventuella horisontella och vertikala asymptoter till kurvan Exempel på uppgift. K8 och K9 i vecko-pm 2. Förklara vad som menas med att en funktion är inverterbar (omvändbar). Exempel på uppgift. Förklara vad som menas med att en funktion är inverterbar (omvändbar). Illustrera med en bild. De elementära funktionerna och deras derivator. Känna till gränsvärdet lim x 0 sin x/x = 1 och kunna använda detta för att bestämma enkla gränsvärden av liknande slag. Exempel på uppgift. Avgör om följande gränsvärden existerar och beräkna dem i så fall: sin x 2 lim x 1 x, lim x x 1 sin x.

4 Integral. 401ac. Redogöra för definitionen av funktionerna arcsin x, arccos x och arctan x (inklusive deras definitionsmängd och värdemängd) och skissa deras grafer. Exempel på uppgift. Ange definitionsmängd och värdemängd för funktionen arccos x. Skissa dess graf. Förenkla enklare uttryck i arcusfunktionerna genom att rita upp en lämplig triangel och använda trigonometriska samband. Exempel på uppgift. 404, 405. Redogöra för definitionen av talet e. Exempel på uppgift. Redogör för definitionen av talet e. Skissa kurvan y = e x. Redogöra för definitionen av funktionen ln x. Exempel på uppgift. Redogör för definitionen av funktionen ln x. Skissa kurvan y = ln x. Känna till storleksordningen av exponential- och logaritmfunktioner (Sats s. 207) och använda detta för att beräkna gränsvärden i enkla fall. Exempel på uppgift. Avgör om följande gränsvärden existerar och beräkna dem i så fall: e x lim x x, lim ln x x e, lim (ln x) 4. x x x 519. Bestäm eventuella horisontella och vertikala asymptoter till kurvan y = ln x. x Definiera begreppet primitiv funktion (obestämd integral). Exempel på uppgift. Förklara vad som menas med en primitiv funktion till en funktion f på ett intervall I. Beräkna en obestämd integral genom att använda standardintegralerna (1) (6) i avsnitt 6.5, i kombination med räknereglerna för integraler på sid Standardintegral (7) behöver inte läras utantill.

5 Exempel på uppgift. 612aceg. Beräkna en obestämd integral med hjälp av partiell integration. Exempel på uppgift Beräkna en obestämd integral, av den typ som återfinns i exempel och rek. uppgifter på avsnitt 6.6, genom att hitta och genomföra en lämplig variabelsubstitution. Exempel på uppgift. 619 abcf, 620, 621 abc Bestämma en primitiv funktion till en rationell funktion (dvs., där P och Q är polynom) genom partialbråksuppdelning. P (x) Q(x) Exempel på uppgift. 628 abc, 629 abd Skriva ut alla termer i en summa skriven med Σ-notation (t. ex. Σ 5 i=1i). Exempel på uppgift. K3 i vecko-pm 4 Definiera begreppet Riemannsumma, och beräkna en enkel Riemannsumma. Exempel på uppgift. Förklara, gärna med en bild, vad som menas med en Riemannsumma av en funktion f på ett intervall [a, b]. Beräkna Riemannsumman R 3 = 3 k=1 f(ξ k) x med följande data: f(x) = x 2, 0 x 3, x = 1, ξ 1 = 0.5, ξ 2 = 1.5 och ξ 3 = 2.5. Illustrera med en bild. Förklara vad som menas med att en funktion är integrerbar och definiera begreppet bestämd integral. Exempel på uppgift. Låt f vara en funktion definierad på intervallet [a, b]. Förklara, med hjälp av begreppet Riemannsumma, vad som menas med att f är integrerbar på [a, b] och hur b f(x) dx definieras. a Formulera integralkalkylens fundamentalsats (den version som gåtts igenom på föreläsingen). Exempel på uppgift. Formulera integralkalkylens fundamentalsats. Beräkna en bestämd integral genom att använda integralkalkylens fundamentalsats (del II) i kombination med de metoder vi lärt oss för att hitta primitiva funktioner

6 Exempel på uppgift. 616, 617, 624abc, 631a. Bestämma arean mellan två funktionskurvor genom att beräkna en lämplig bestämd integral. Exempel på uppgift. 605, K3 i vecko-pm 5. Beräkna en (bestämd eller obestämd) integral genom att genomföra en angiven variabelsubstitution. Exempel på uppgift. K4 och K5 i vecko-pm 5. Använda variabelsubstitution och trigonometriska formler för att beräkna en integral av typen sin m x cos n x dx. Exempel på uppgift. 641 Känna igen att en integral är generaliserad och i enkla fall beräkna en generaliserad integral som är konvergent. Exempel på uppgift. K6 i vecko-pm 5. Differentialekvationer. Lösa en linjär differentialekvation av första ordningen, eventuellt med begynnelsevillkor. Exempel på uppgift Lösa en separabel differentialekvation, eventuellt med begynnelsevillkor. Exempel på uppgift Skriva om en differentialekvation på operatorform. Exempel på uppgift. Skriv differentialekvationen y + 3y 5y = xe x på operatorform. (Lösning: (D 2 +3 D 5)y = xe x.) Lösa en homogen linjär differentialekvation av andra ordningen med konstanta koefficienter, eventuellt med begynnelsevillkor. Exempel på uppgift. K1 i vecko-pm 6. Förklara hur man får fram den allmänna lösningen till en inhomogen linjär differentialekvation med konstanta koefficienter (Sats s. 312).

7 Exempel på uppgift. Förklara, med hjälp av begreppen homogenlösning och partikulärlösning, hur man erhåller den allmänna lösningen till differentialekvationen P (D)y = g(x), där P (D) är en linjär differentialoperator med konstanta koefficienter. Lösa en inhomogen linjär differentialekvation av andra ordningen med konstanta koefficienter, eventuellt med begynnelsevillkor, där högerledet är av den typ som förekommer i rek. övningar på avsnitt 8.6. Exempel på uppgift. 860, K2 i vecko-pm 6. Taylorutveckling. Bestämma ett Taylorpolynom av angiven grad, genom att använda Taylors formel eller utnyttja en känd Maclaurinutveckling. Exempel på uppgift. K1 och K2 i vecko-pm 7, 706. Lärmål för överbetyg (4 eller 5) (B) står för bevis. Utöver dessa lärmål krävs för betyget 4 eller 5 att man kan kombinera olika delar av teorin för att lösa problem. Funktion, gränsvärde, kontinuitet, derivata. För överbetyg ska du också kunna... Avgöra om en funktion har ett gränsvärde i en punkt eller i oändligheten och beräkna detta, i mer komplicerade fall. Redogöra för den formella definitionen av gränsvärde (med ɛ och δ) och använda den för att beräkna gränsvärden i enkla fall. Beräkna derivatan av en funktion med hjälp av definitionen, i enkla fall. (B) Bevisa att deriverbarhet medför kontinuitet. Bestämma dy/dx ur ett implicit samband mellan y och x. Tillämpningar av derivata. Lösa något mer invecklade optimeringsproblem. (B) Bevisa satsen om derivatans värde i lokala extrempunkter. Formulera medelvärdessatsen. (B) Bevisa följdsatsen till medelvärdessatsen (s. 154) som ger sambandet mellan derivatans tecken och funktionens monotonicitet.

8 Avgöra om en funktion har en sned asymptot och bestämma denna. Avgöra huruvida en funktion är inverterbar och bestämma den inversa funktionen. Bestämma värdet av den inversa funktionen φ = f 1 och dess derivator i en given punkt, även i de fall det inte finns något explicit uttryck för φ, genom implicit derivering. De elementära funktionerna och deras derivator. (B) Bevisa att lim x 0 sin x/x = 1. (B) Härleda derivatan av sin x, cos x och tan x utifrån derivatans definition. (B) Härleda derivatan av arcsin x, arccos x och arctan x. (B) Härleda derivatan av e x. (B) Härleda derivatan av ln x. Integral. Bestämma en primitiv funktion till en styckvis definierad funktion. (B) Bevisa att om F och G är två primitiva funktioner till f, så är G(x) = F (x) + C. Formulera integralkalkylens medelvärdessats (den version som gåtts igenom på föreläsningen). (B) Bevisa integralkalkylens fundamentalsats (den version som gåtts igenom på föreläsningen). Avgöra om en generaliserad integral är konvergent eller divergent, och beräkna dess värde om den är konvergent. Differentialekvationer. (B) Bevisa satsen om allmän lösning till inhomogen linjär differentialekvation (s. 312). Lösa en inhomogen linjär differentialekvation av högre ordning med konstanta koefficienter, eventuellt med begynnelsevillkor, där högerledet är av den typ som förekommer i rek. övningar på avsnitt 8.6. Taylorutveckling. Använda Taylorutveckling för att bestämma ett gränsvärde.

Teorifrå gor kåp

Teorifrå gor kåp Teorifrå gor kåp. 2.2 5.2 Funktioner och dess grafer 1) Vad är en funktion? 2) Vad är den naturliga definitionsmängden ge några eempel 3) Vad är en värdemängd? 4) Vad är en sammansatt funktion? 5) Varför

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015.

Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Begrepp och definitioner Egenskaper och satser Typiska problem Reella tal. Rationella tal. a(b + c) = ab + ac Bråkräkning. Irrationella

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

TNA003 Analys I för ED, MT, KTS

TNA003 Analys I för ED, MT, KTS TNA003 Analys I för ED, MT, KTS Litteraturkommentarer till föreläsningarna VT1 2017 Sixten Nilsson TNA003 FÖ 1: Kap 3.1 3.2 Litteraturkommentarer 3.1 Gränsvärdesidén Skilj på de två typerna av gränsvärden.

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel

Läs mer

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3, Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: tel ,

ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: tel , ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: Georgi.Tchilikov@ide.hh.se, tel.035-167124, http://www.hh.se/staff/getc Ett försök till "strukturering" av innehållet (skrivet i första hand med

Läs mer

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen Institutionen för matematik, KTH Mattias Dahl 5B, Dierential- och integralkalkyl I, del, för TIMEH2 Tentamen, tisdag 29 mars 25 kl.9.. Svara med motivering och mellanräkningar. Tillåtet hjälpmedel är formelsamlingen

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1 TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

Kap. P. Detta kapitel utgör Inledande kurs i matematik. I kapitlet beskrivs vilka bakgrundskunskaper som förutsätts.

Kap. P. Detta kapitel utgör Inledande kurs i matematik. I kapitlet beskrivs vilka bakgrundskunskaper som förutsätts. 5B1103, Differential och integralkalkyl II, del 1. LÄSANVISNINGAR TILL R.A. ADAMS, CALCULUS, A COMPLETE COURSE, 4TH ED. OMFATTNING: kapitel 1.1 1.5, Appendix III, 2, 3.1 3.4, 3.5 till def. 13, 17.7 t.o.m.

Läs mer

Ledtrå dår till lektionsuppgifter

Ledtrå dår till lektionsuppgifter Ledtrå dår till lektionsuppgifter Allmänna råd vid lösning av lektionsuppgifter: Försök inledningsvis att lösa uppgiften på egen hand, genom att omsätta innehållet i den tillhörande föreläsningen samt

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1

Instuderingsfrågor för Endimensionell analys kurs B1 Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande

Läs mer

Checklista för funktionsundersökning

Checklista för funktionsundersökning Linköpings universitet Matematiska institutionen TATA41 Envariabelanalys 1 Hans Lundmark 2015-02-10 Checklista för funktionsundersökning 1. Vad är definitionsmängden D f? 2. Har funktionen några uppenbara

Läs mer

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7 TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1 2011

Instuderingsfrågor för Endimensionell analys kurs B1 2011 Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp

Läs mer

LMA222a. Fredrik Lindgren. 17 februari 2014

LMA222a. Fredrik Lindgren. 17 februari 2014 LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist Föreläsning XV Mikael P. Sundqvist Förändring och lutning Till snälla funktioner kan man prata om förändring. Med det menar vi lutningen på den linje som tangerar grafen (se den blå linjen). Den röda och

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

Läsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte.

Läsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte. Läsanvisningar till kapitel 6 i Naturlig matematik Avsnitt 6.6 ingår inte. Avsnitt 6.1 Detta avsnitt illustrerar hur sekanten övergår i en tangent genom att den ena skärningspunkten rör sig mot den andra.

Läs mer

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter TM-Matematik Mikael Forsberg 074-42 Pär Hemström 026-648962 För ingenjörs och distansstudenter Envariabelanalys ma04a 202 06 04 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Repetitionsfrågor i Flervariabelanalys, Ht 2009

Repetitionsfrågor i Flervariabelanalys, Ht 2009 Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.

Läs mer

LYCKA TILL! //Mattehjälpen. Hej! Här kommer ett dokument till dig som pluggar inför envarre1.

LYCKA TILL! //Mattehjälpen. Hej! Här kommer ett dokument till dig som pluggar inför envarre1. Hej! Här kommer ett dokument till dig som pluggar inför envarre1. Det är viktigt att du inför tentan kan alla standardgränsvärden/derivator/primitiver utan till så att dessa inte stoppar dig på vägen mot

Läs mer

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x = UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

6.2 Implicit derivering

6.2 Implicit derivering 6. Implicit derivering 6 ANALYS 6. Implicit derivering Gränsvärden, som vi just tittat på, är ju en fundamental del av begreppet derivata, och i mattekurserna i gymnasiet har vi roat oss med att hitta

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014 UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

Matematik 4 Kap 3 Derivator och integraler

Matematik 4 Kap 3 Derivator och integraler Matematik 4 Kap 3 Derivator och integraler Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande

Läs mer

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.08.09 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9: Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en

Läs mer

Modul 1 Mål och Sammanfattning

Modul 1 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon

Läs mer

Meningslöst nonsens. November 19, 2014

Meningslöst nonsens. November 19, 2014 November 19, 2014 Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar? Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar?

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013 SF625 Envariabelanalys Tentamen Onsdagen den 5 juni, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Upphämtningskurs i matematik

Upphämtningskurs i matematik Upphämtningskurs i matematik C.J. 2013 Föreläsningsunderlaget är uppbyggt utgående från kurserna i den långa gymnasiematematiken, ellips-kursböckerna (Schilds förlag) har använts som förebild. Böckerna

Läs mer

Planering Matematik II Period 3 VT Räkna själv! Gör detta före räkneövningen P1. 7, 17, 21, 37 P3. 29, 35, 39 P4. 1, 3, 7 P5.

Planering Matematik II Period 3 VT Räkna själv! Gör detta före räkneövningen P1. 7, 17, 21, 37 P3. 29, 35, 39 P4. 1, 3, 7 P5. Avsnitt 1, Inledning ( Adams P1,P3,P4, P5) Genomgång och repetition av grundläggande begrepp. Funktion, definitionsmängd, värdemängd. Intervall. Olikheter. Absolutbelopp. Styckvis definierade funktioner.

Läs mer

Modul 1: Funktioner, Gränsvärde, Kontinuitet

Modul 1: Funktioner, Gränsvärde, Kontinuitet Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 9 januari 27 Entydighet Om vi har ett polynom som approximerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna

Läs mer

Läsanvisningar till kapitel 4 i Naturlig matematik

Läsanvisningar till kapitel 4 i Naturlig matematik Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här

Läs mer

Välkommen till MVE340 Matematik B för Sjöingenjörer. Kursinnehåll i stora drag. Kurslitteratur MVE Carl-Henrik Fant MV, Chalmers 1

Välkommen till MVE340 Matematik B för Sjöingenjörer. Kursinnehåll i stora drag. Kurslitteratur MVE Carl-Henrik Fant MV, Chalmers 1 Välkommen till MVE340 Matematik B för Sjöingenjörer Carl-Henrik Fant E-post: carl-henrik.fant@chalmers.se Tel: 772 35 57 Kontor: L3037 i matematikhuset, Johanneberg Kursinnehåll i stora drag Funktioner

Läs mer

4. Bestäm arean av det begränsade område som precis innesluts av kurvorna. och y = x 2. h(x) = e 2x 3,

4. Bestäm arean av det begränsade område som precis innesluts av kurvorna. och y = x 2. h(x) = e 2x 3, MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA151 Envariabelkalkyl, TEN1 Datum: 014-1-04

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer

601. (A) Bestäm MacLaurinutvecklingarna av ordning 2 till följande uttryck. Resttermen ges på ordoform.

601. (A) Bestäm MacLaurinutvecklingarna av ordning 2 till följande uttryck. Resttermen ges på ordoform. Kap 4.8 4.9. Taylors formel, Lagranges restterm, stort ordo, entydigheten, approimationer, uppskattning av felet, Maclaurins formel, l'hospitals regel. 60. (A) Bestäm MacLaurinutvecklingarna av ordning

Läs mer

FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06 FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för istanskursen Matematik A - analyselen vi Uppsala universitet höstterminen 2006. 1. Derivata I grunläggane analys

Läs mer

En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte.

En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte. En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte. Att läsa matte är en väldigt aktiv process. Det handlar inte om att bara skumma texten. Att läsa matte är att aktivt återskapa och internalisera

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag 0.0.05 08.0 0.0 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

Förord till läraren. 1. Mer praktisk information

Förord till läraren. 1. Mer praktisk information 10 Förord till läraren Förord till studenten innehåller praktisk information om bokens uppbyggnad. Det gäller exempel, teknikproblem, bevis, dialoger, rekommenderade övningar, matematiska fortsättningar,

Läs mer

Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22

Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22 Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24, 24-25 och 25-26 26-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C =

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd

Läs mer

SF1600, Differential- och integralkalkyl I, del 1. Tentamen, den 9 mars Lösningsförslag. f(x) = x x

SF1600, Differential- och integralkalkyl I, del 1. Tentamen, den 9 mars Lösningsförslag. f(x) = x x Institutionen för matematik, KTH Serguei Shimorin SF6, Differential- och integralkalkyl I, del Tentamen, den 9 mars 9 Lösningsförslag Funktionen y = fx definieras för x >, x som x + x fx = x a Definiera

Läs mer

Repetitionsuppgifter. Geometri

Repetitionsuppgifter. Geometri Endimensionell anals, Geometri delkurs B1 1. Fra punkter A, B, C och D ligger pa en cirkel med radien 1 dm. Se guren! Strackorna AD och BD ar lika langa. Vidare ar vinkeln BAC och vinkeln ABC 100. D Berakna

Läs mer

Kapitel 5: Primitiva funktioner

Kapitel 5: Primitiva funktioner Kapitel 5: Primitiva funktioner c 005 Eric Järpe Högskolan i Halmstad Primitiva funktioner är motsatsen till derivata. Att integrera är motsatsen till att derivera. Definition F är primitiva funktion till

Läs mer

MMA127 Differential och integralkalkyl II

MMA127 Differential och integralkalkyl II Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA127 Differential och integralkalkyl II Tentamen Lösningsförslag 211.8.11 14.3 17.3 Hjälpmedel: Endast skrivmaterial (gradskiva

Läs mer

Tisdag v. 2. Speglingar, translationer och skalningar

Tisdag v. 2. Speglingar, translationer och skalningar 1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger

Läs mer

KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001

KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001 INSTITUTIONEN FÖR MATEMATIK Per Sjölin KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001 Kursledare: Per Sjölin, rum 3632, Lindstedtsvägen 25, tel 790 7204, pers@math.kth.se.

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf

Uppsala Universitet Matematiska Institutionen Bo Styf Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 0 p STS, X 00-0-7 Föreläsning, 7/0 00: Genomgånget på föreläsningarna - 5. Om kursen. Vi gick först igenom lite om kursen: Två redovisningsuppgifter

Läs mer

Ekvationer & Funktioner Ekvationer

Ekvationer & Funktioner Ekvationer Ekvationer & Funktioner Ekvationer Ekvationstyp : Ekvationer av första graden När vi löser ekvationer av första graden använder vi oss av de fyra grundläggande räknesätten för att beräkna x. Vid minus

Läs mer

Matematik och statistik NV1, 10 poäng

Matematik och statistik NV1, 10 poäng UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 2006 Matematik och statistik NV1, 10 poäng Välkommen till Matematiska institutionen och kursen Matematik och statistik NV1, 10p. Kursen består

Läs mer

KOKBOKEN 3. Håkan Strömberg KTH STH

KOKBOKEN 3. Håkan Strömberg KTH STH KOKBOKEN 3 Håkan Strömberg KTH STH Hösten 006 Håkan Strömberg KTH Syd Innehåll Derivatans definition.............................. 5 Uppgift................................. 5 Uppgift.................................

Läs mer

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 =

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 = MATEMATIK Chalmers tekniska högskola Tentamen 9--7, kl. 8.3 -.3 TMV36 Analys och linjär algebra K Kf Bt, del B Telefonvakt: Richard Lärkäng, telefon: 73-8834 Inga hjälpmedel. Kalkylator ej tillåten. Uppgifterna

Läs mer

Mälardalens högskola Akademin för undervisning, kultur och kommunikation

Mälardalens högskola Akademin för undervisning, kultur och kommunikation Mälardalens ögskola Akademin för undervisning, kultur oc kommunikation MAA4 Grundläggande kalkyl ÖVN Lösningsförslag 0..08 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

Tentamensuppgifter, Matematik 1 α

Tentamensuppgifter, Matematik 1 α Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

MATEMATIK Datum: 2014-01-14 Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel.

MATEMATIK Datum: 2014-01-14 Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel. MATEMATIK Datum: -- Tid: förmiddag Chalmers Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel.: 7-88 Lösningar till tenta i TMV Analys och linjär algebra K/Bt/Kf,

Läs mer

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson Matematikcentrum Matematik BASPROBLEM I ENDIMENSIONELL ANALYS Jan Gustavsson. Algebraiska förenklingar.. Reella andragradsekvationer.. Enkla rotekvationer - eventuellt med falsk rot.. Enkla absolutbeloppsproblem.

Läs mer

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Areaberäkningar En av huvudtillämpningar av integraler är areaberäkning. Nedan följer ett

Läs mer

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 2: Derivata Institutionen för matematik KTH 8 september 2015 Derivata Innehåll om derivata (bokens kapitel 2). Definition vad begreppet derivata betyder Tolkning hur man kan tolka derivata Deriveringsregler

Läs mer

Tentamen SF Jan Tentamen DEL 1.

Tentamen SF Jan Tentamen DEL 1. Tentamen SF6 Jan 5 Hjälpmedel: Papper, penna. Totalt 6 poäng per uppgift. För godkänt på modulen krävs 4 poäng. För E krävs 4 godkända moduler. För ett D krävs 5 godkända moduler. Med 5 godkända moduler

Läs mer

Matematik 5 Kap 3 Derivator och Integraler

Matematik 5 Kap 3 Derivator och Integraler Matematik 5 Kap 3 Derivator och Integraler Inledning I kap 4 Differentialekvationer behövs derivator (och integraler) och i kap 5 Omfångsrika problemsituationer finns intressanta problem med användning

Läs mer

DUBBELINTEGRALER. Rektangulära (xy) koordinater

DUBBELINTEGRALER. Rektangulära (xy) koordinater ubbelintegraler. -koordinater UBBELINTEGRALER. Rektangulära ( koordinater efinition. Låt zf(, vara en reell funktion av två variabler och. Vi delar integrationsområde (definitionsområde) i ändligt antal

Läs mer

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1) Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning

Läs mer

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår

Läs mer

Planering Analys 1, höstterminen 2011

Planering Analys 1, höstterminen 2011 Nr 1 Matematikcentrum Matematik NF Planering Analys 1, höstterminen 2011 Program Anders Olofsson Kurslitteratur: Adams RA, Essex C, Calculus a complete course, sjunde upplagan, 2010 (A). Gamla tentor delas

Läs mer

Studietips info r kommande tentamen TEN1 inom kursen TNIU22

Studietips info r kommande tentamen TEN1 inom kursen TNIU22 Studietips info r kommande tentamen TEN1 inom kursen TNIU22 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f.

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 2. Beräkna gränsvärdet (eller visa att det inte finns):

Läs mer

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVÄXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVÄXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER Stationära och infleionspunkter VÄXANDE OCH AVTAGANDE FUNKTIONER STATIONÄRA(KRITISKA) PUNKTER KONVÄXA OCH KONKAVA FUNKTIONER INFLEXIONSPUNKTER 3 VÄXANDE och AVTAGANDE FUNKTIONER i) Om funktionen y f ()

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

Sekant och tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren).

Sekant och tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren). Derivata Sekant oc tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren). I figuren ovan finns även en tangent inritad. Som nästa ska vi titta på

Läs mer

TATM79: Föreläsning 7 Arcusfunktioner och hjälpvinkelmetoden

TATM79: Föreläsning 7 Arcusfunktioner och hjälpvinkelmetoden TATM79: Föreläsning 7 Arcusfunktioner och hjälpvinkelmetoden Johan Thim augusti 0 Inverser till trigonometriska funktioner Om vi ritar upp funktionen y = sin ser vi följande: y y = sin Självklart går det

Läs mer

Matematik 3c Kap 2 Förändringshastighet och derivator

Matematik 3c Kap 2 Förändringshastighet och derivator Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

BEGREPPSMÄSSIGA PROBLEM

BEGREPPSMÄSSIGA PROBLEM BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H5 MATEMATIK Chalmers Repetitionsuppgifter Integraler och tillämpningar av integraler. (a) Beräkna (b) Avgör om den generaliserade integralen arctan(x) ( + x) dx. dx x x är konvergent eller divergent.

Läs mer

Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt

Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt Föreläsning 8.15-10.00 Lektioner 10.15-12.00 Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt ons-3-dec Hörsal G C: 5.1-5.2 tor-4-dec Hörsal G N210 A302 A303 MC413 C: 5.3-5.4 fre-5-dec Hörsal G C: 2.10,

Läs mer

Kapitel 8. Derivata. 8.1 Inledning till derivata

Kapitel 8. Derivata. 8.1 Inledning till derivata Kapitel 8 Derivata 8.1 Inledning till derivata Vi vill nu bestämma riktningskoefficienten för tangenten 1 till en given kurva i punkten x. För att få en approximation av tangenten ritas en linje genom

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

Experimentversion av Endimensionell analys 1

Experimentversion av Endimensionell analys 1 Matematikcentrum Matematik Eperimentversion av Endimensionell anals Alternativ eamination Under lp 999 kommer för Bi 99, L 99 och V 99 att ges en något modifierad kurs i Endimensionell anals. Kursen avviker

Läs mer

1 Primitiva funktioner

1 Primitiva funktioner Primitiva funktioner Definition. F ( är en primitiv funktion till f( om F ( f(. Antag att vi har hittat en primitiv funktion F ( till f(. Finnsdetflerprimitivafunktionerochvilken form har de i så fall?

Läs mer