7 november 2014 Sida 1 / 21

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "7 november 2014 Sida 1 / 21"

Transkript

1 TANA09 Föreläsning 2 Talrepresentation i datorer. Flyttalssystem. Datoraritmetik och Beräkningsfel. Beräkningsfelsanalys och Kancellation. Serier och Resttermsuppskattningar. Tillämpning - Beräkning av π. 7 november 2014 Sida 1 / 21

2 Talrepresentation i Datorer Tal kan skrivas på exponentform eller som flyttal. Exempelvis är = Ett flyttal är normaliserat om det endast finns en siffra framför decimalpunkten. Talet har heltalsdelen 7 och bråkdelen Detta betyder egentligen ( )10 2. Vi har alltså ett positionssystem med basen 10. Hur ser datorn flyttalssystem ut? 7 november 2014 Sida 2 / 21

3 Definition Ett flyttalssystem karakteriseras av parametrar (β, t, L, U), där β är talsystemets bas, t är antalet siffror i bråkdelen, och L och U är systemets minsta respektive största exponent. Exempel Talsystemet (10, 3, 9, 9) innehåller exempelvis talen 4.562, 123.7, och Talet 0 kan inte skrivas som ett normaliserat flyttal. 7 november 2014 Sida 3 / 21

4 IEEE 754 Enkel Precision(2, 23, 126, 127) I datorn lagras talet som ett ord (32 bitar). Bitarna fördelas som s (1 bit) e (8 bitar) f (23 bitar) I Normalfallet, 1 e 254, gäller att flyttalet skall tolkas som, x = ( 1) s (1.f) 2 2 e 127. Undntagsfallen e = 0 eller e = 255 ger möjlighet att definiera x = 0, x = ±, och x = NaN. Exempel Hur lagras talet i datorn? 7 november 2014 Sida 4 / 21

5 Observation Då vi lagrar x=0.1 i flyttalssystemet (2, 23, 126, 127) fås x = (0.1) 10 = ( ) 2 = ( ) 2 4 Med 23 bitar i bråkdelen blir inte x = 0.1 lagrat exakt på datorn. Ett avrundningsfel x xr 2 27 = görs. Är det viktigt? Ett tal som kan lagras exakt i det decimala talsystemet kan inte säkert lagras exakt i det binära. Felen är små men datorer kan göra många beräkningar snabbt. 7 november 2014 Sida 5 / 21

6 Exempel Patriot missiler hade en intern klocka som mätte tiden i antal tiondelssekunder lagrat som heltal. Innan tidsvariabeln användes i beräkningar gjordes den om till ett enkelprecisions flyttal. Ju längre systemet varit påslaget desto större fel får man i tidsvariabeln. Felaktig tid gör att man inte kan lösa ekvationerna för målträff med tillräckligt hög precision. Varje gång man slog på systemet och testade lyckades det skjuta ned inkommande missiler. I skarpt läge lät man systemet vara påslaget ett par dagar innan anfallet kom och då misslyckades det med 24 dödsfall som resultat. Exempel Kriminella tillämpningar finns också. Genom att göra en massa små uttag och insättningar precis under respektive över gränser för avrundningsfelet har det gått att öka tillgodohavande på ett konto. Dessa, och andra, exempel presenteras i boken Accuracy and Reliability in Scientific Computing, SIAM, Av Bo Einarsson. 7 november 2014 Sida 6 / 21

7 Datoraritmetik och Beräkningsfel Exempel Då vi lagrar tal i ett flyttalssystem gör vi ett avrundningsfel. Antag att talet x = skall lagras i talsystemet (10, 3, 9, 9). Hur stort fel kommer vi att göra? Exempel Antag att vi vill addera x = och y = Vad är den bästa tänkbara gränsen för beräkningsfelet om vi räknar i talsystemet (10, 3, 9, 9)? 7 november 2014 Sida 7 / 21

8 Avrundningsfel i Flyttalssystem Sats Då ett tal x lagras i flyttalssystemet (β, t, L, U) görs ett relativt fel högst x x r 1 x 2 β t, där x r är det tal i talsystemet som ligger närmast x. Definition Konstanten µ = 1 2 β t kallas talsystemets avrundningsenhet. 7 november 2014 Sida 8 / 21

9 Aritmetriska Operationer i Flyttalssystem Antag att vi räknar i talsystemet (β, t, L, U). Då gäller Sats Då en aritmetrisk operation x y utförs gäller att x y fl[x y] x y µ där fl[x y] resultatet beräknat inom talsystemet, och µ är avrundningsenheten. Operationen betyder +,,, eller /. Tolkning Räkna först exakt och avrunda svaret till flyttalssystemet. Det går att implementera standard funktioner exp(x), log(x), x,..., så att de beräknas med relativt fel högst µ. 7 november 2014 Sida 9 / 21

10 Exempel Vi vill beräkna a + b + c i talsystemet (10, 3, 9, 9) då a = , b = , och c = Vi kan välja mellan alternativen eller fl[fl[a+b]+c] = fl[fl[ ] ] = fl[ ] = fl[a+fl[b+c]] = fl[ ] = Gör en beräkningsfelsanalys och avgör vilket alternativ som är bäst. Förutsättning Alla beräkningar inom flyttalssystemet utförs med relativt fel högst avrundningsenheten µ = november 2014 Sida 10 / 21

11 Beräkningsfelsanalys Vi vill använda MATLAB för att beräkna f(x) = 1+x 1, för små x >>x=10.^-(0:0.01:16); >>f=sqrt(1+x)-1; >>loglog(x,abs(f-f_ex)./f_ex); Gör en beräkningsfelsanalys som förklarar resultatet. 7 november 2014 Sida 11 / 21

12 Relativa felet, fl[f(x)] f(x), f(x) = 1+x 1. f(x) och felgränsen f 3µ f x. Kancellation gör att relativa felet växer då x minskar! Hur kan vi åtgärda problemet? Lämplig omskrivning. 7 november 2014 Sida 12 / 21

13 Flyttalsaritmetik och Beräkningsfelsanalys Viktiga saker att komma ihåg är Kan oftast anta att alla beräkningar utförs med ett relativt fel högst µ. Beräkningsordningen är viktig. Alltså gäller fl[a+(b+c)] fl[(a+b)+c]. Matematiskt ekvivalenta uttryck kan ge väldigt olika resultat. Omskrivningen x 1+x 1 =, 1+x+1 undviker kancellationen. Gör man inga misstag brukar beräkningsfel orsakade av flyttalssystemet vara försumbara jämfört med andra fel. 7 november 2014 Sida 13 / 21

14 Serier och Resttermsuppskattningar Exempel Vi kan implementera flera standard funktioner genom att använda Taylor utveckling. Exempelvis är e x = 1+x+ x2 2 + x Vi behöver alltså kunna beräkna en summa S på dator. Vi approximerar med en partial summa S N och gör då ett trunkeringsfel R N. Det gäller att S = a k = N a k + a k = S N + R N. k=0 k=0 k=n+1 Hur skall trunkeringsfelet uppskattas? 7 november 2014 Sida 14 / 21

15 Alternerande serier Definition En serie är alternerande om a k a k+1 < 0, a k > a k+1, lim k a k = 0. S N S a n a n+1 N N+1 N+2 N Sats För en alternerande serie gäller att resttermen kan uppskattas R N a N+1. 7 november 2014 Sida 15 / 21

16 Exempel Låt S = k=1 ( 1) k 1+k 2. Beräkna summan med 5 korrekta decimaler. Observation Beräkning av alternerande serier kan ge ett stort beräkningsfel på grund av kancellation. Här krävs endast låg noggranhet jämfört med maskin precision µ och beräkningsfelet kan ignoreras. 7 november 2014 Sida 16 / 21

17 Positiva serier Definition En serier är positiv om a k > 0. Sats Antag att serien S kan skrivas S = f(k), k=0 där f(x) är positiv och monotont avtagande för x > N. Då gäller R N = f(k) f(x)dx. N+1 N 7 november 2014 Sida 17 / 21

18 Sats Antag att 0 a k b k för k > N. Då gäller R N = a k b k. k=n+1 k=n+1 Exempel Beräkna ett närmevärde till serien 1+k S = 1+k 3 med 5 korrekta decimaler. k=0 7 november 2014 Sida 18 / 21

19 Exempel - Beräkning avπ Vi vet att, och arctan(x) = x x3 3 + x5 5 x π 8 = arctan( 2 1). Nu vill vi utnyttja detta för att beräkna π med hög precision. Hur skall vi göra? 7 november 2014 Sida 19 / 21

20 Resttermsuppskattning för alternerande serie ger R N x2n+1 2N + 1 µ = = N 20. Vi kan alltså beräkna en approximation av π med följande MATLAB kod function [Pi]=SeriePi() x=sqrt(2)-1;x2=x^2;s=x;term=x; for k=1:20 Term=-Term*x2;S=S+Term/(2*k+1); end; Pi=8*S; Vi fårπ och felet är ungefär november 2014 Sida 20 / 21

21 Sammanfattning Vid flyttalsberäkningar görs ett relativt fel högst µ vid varje operation. Vid beräkning av serier på dator kan vi endast ta med ett begränsat antal termer. Restterms uppskattning viktigt! Vi måste veta att serien konvergerar. Detta kan inte testas på datorn. 7 november 2014 Sida 21 / 21

Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering

Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering Eddie Wadbro 5 november 2014 Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (1 : 21) Innehåll Datoraritmetik

Läs mer

Feluppskattning och räknenoggrannhet

Feluppskattning och räknenoggrannhet Vetenskapliga beräkningar III 10 Kapitel 2. Feluppskattning och räknenoggrannhet Sedan datorerna togs i bruk på 1950 talet, har det blivit möjligt att utföra beräkningar i långt större skala än tidigare.

Läs mer

Kapitel 2. Feluppskattning och räknenoggrannhet

Kapitel 2. Feluppskattning och räknenoggrannhet Kapitel 2. Feluppskattning och räknenoggrannhet Sedan datorerna togs i bruk på 1950 talet, har det blivit möjligt att utföra beräkningar i långt större skala än tidigare. Liksom vid beräkningar för hand

Läs mer

f (a) sin

f (a) sin Hur kan datorn eller räknedosan känna till värdet hos till exempel sin0.23 eller e 2.4? Denna fråga är berättigad samtidigt som ingen tror att apparaterna innehåller en gigantisk tabell. Svaret på frågan

Läs mer

Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation

Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation Linköpings Universitet Kompletterande material Matematiska institutionen/beräkningsmatematik 5 februari 203 Ingegerd Skoglund IT Termin 6 Komplettering till kursboken i Numeriska beräkningar Beräkningsfelsanalys

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

TATA42: Föreläsning 6 Potensserier

TATA42: Föreläsning 6 Potensserier TATA4: Föreläsning 6 Potensserier Johan Thim januari 7 Vi ska nu betrakta serier där termerna inte längre är konstanter. Speciellt ska vi studera så kallade potensserier. Dessa definieras som a k x k a

Läs mer

5B1147. Envariabelanalys. MATLAB Laboration. Laboration 1. Gränsvärden och Summor

5B1147. Envariabelanalys. MATLAB Laboration. Laboration 1. Gränsvärden och Summor 5B47 MATLAB Laboration Laboration Gränsvärden och Summor joycew@kth.se uvehag@kth.se Innehåll Uppgift a... Problem... Lösning... Grafisk bestämning av gränsvärden... Beräkning av gränsvärden...2 Uppgift

Läs mer

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon

Läs mer

a n β n + a n 1 β n a 0 + a 1 β 1 + a 2 β , x = r β e ; 0.1 r < 1; e = heltal.

a n β n + a n 1 β n a 0 + a 1 β 1 + a 2 β , x = r β e ; 0.1 r < 1; e = heltal. De iakttagna fenomenen beror på avrundningsfel, och vi skall därför studera talframställningen i datorer. Vid beräkningar för hand är det vanligt att man uttrycker tal i tiopotensframställningen, men i

Läs mer

Gruppuppgifter 1 MMA132, Numeriska metoder, distans

Gruppuppgifter 1 MMA132, Numeriska metoder, distans Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003

Läs mer

F2 Datarepresentation talbaser, dataformat och teckenkodning

F2 Datarepresentation talbaser, dataformat och teckenkodning F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Roger Henriksson Jonas Wisbrant Datarepresentation I en dator lagras och behandlas all information i form av binära tal ettor och nollor.

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor. Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt

Läs mer

Flyttal kan också hantera vanliga tal som både 16- och 32-bitars dataregister hanterar.

Flyttal kan också hantera vanliga tal som både 16- och 32-bitars dataregister hanterar. FLYTTAL REAL Flyttal används i datorsystem för s k flytande beräkning vilket innebär att decimalkommat inte har någon fix (fast) position. Flyttal består av 2 delar (mantissa och exponent). När ett datorsystem

Läs mer

Datorsystemteknik DVG A03 Föreläsning 3

Datorsystemteknik DVG A03 Föreläsning 3 Datorsystemteknik DVG A03 Föreläsning 3 Datoraritmetik Större delen av materialet framtaget av :Jan Eric Larsson, Mats Brorsson och Mirec Novak IT-inst LTH Hur stora tal kan vi få med N bitar? Största

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 9 januari 27 Entydighet Om vi har ett polynom som approximerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna

Läs mer

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi Beräkningsvetenskap stefan@it.uu.se Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska beräkningar Mer ingenjörsmässigt,

Läs mer

Dagens ämnen. Potensserier

Dagens ämnen. Potensserier Dagens ämnen 1 / 6 Dagens ämnen Potensserier 1 / 6 Dagens ämnen Potensserier Definition 1 / 6 Dagens ämnen Potensserier Definition Var konvergerar potensserien? 1 / 6 Dagens ämnen Potensserier Definition

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

Ickelinjära ekvationer

Ickelinjära ekvationer Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod

Läs mer

Numeriska serier Definition av konvergens J amf orelsesatser Vad skall vi j amf ora med? Absolutkonvergens Leibniz kriterium Dagens amnen 1 / 19

Numeriska serier Definition av konvergens J amf orelsesatser Vad skall vi j amf ora med? Absolutkonvergens Leibniz kriterium Dagens amnen 1 / 19 Dagens ämnen 1 / 19 Dagens ämnen Numeriska serier 1 / 19 Dagens ämnen Numeriska serier Definition av konvergens 1 / 19 Dagens ämnen Numeriska serier Definition av konvergens Jämförelsesatser 1 / 19 Dagens

Läs mer

Beräkningsmatematik. Niklas Ericsson och Stig Larsson

Beräkningsmatematik. Niklas Ericsson och Stig Larsson Beräkningsmatematik Niklas Ericsson och Stig Larsson 21 augusti 2013 Innehåll 1 Flyttal 5 1.1 Format........................................... 5 1.2 Standarden IEEE 754..................................

Läs mer

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.

Läs mer

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Del A Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på

Läs mer

TATA42: Föreläsning 10 Serier ( generaliserade summor )

TATA42: Föreläsning 10 Serier ( generaliserade summor ) TATA42: Föreläsning 0 Serier ( generaliserade summor ) Johan Thim 5 maj 205 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

Kapitel 3. Approximation av funktioner

Kapitel 3. Approximation av funktioner Kapitel 3. Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner. I allmänhet kan inte ens elementära funktioner såsom sinus- och cosinusfunktionerna

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Föreläsning 1. Numeriska metoder grundkurs II, DN1240. Carina Edlund Mottagningstid i rum 4516: onsdagar kl.

Föreläsning 1. Numeriska metoder grundkurs II, DN1240. Carina Edlund Mottagningstid i rum 4516: onsdagar kl. Föreläsning 1 Numeriska metoder grundkurs II, DN1240 Carina Edlund carina@nada.kth.se Mottagningstid i rum 4516: onsdagar kl. 13-15 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/dn1240/numi09/

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Lokalt trunkeringsfel och noggrannhetsordning Definition: Det lokala trunkeringsfelet är det fel man gör med en numerisk metod när man utgår från det exakta värdet vid

Läs mer

Lennart Carleson. KTH och Uppsala universitet

Lennart Carleson. KTH och Uppsala universitet 46 Om +x Lennart Carleson KTH och Uppsala universitet Vi börjar med att försöka uppskatta ovanstående integral, som vi kallar I, numeriskt. Vi delar in intervallet (, ) i n lika delar med delningspunkterna

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #7 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Aritmetik i digitala system Speciella egenskaper: Systemet

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #7 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Speciella egenskaper: Systemet arbetar med kodord (s k

Läs mer

DIGITALA TAL OCH BOOLESK ALGEBRA

DIGITALA TAL OCH BOOLESK ALGEBRA DIGITALA TAL OCH BOOLESK ALGEBRA Innehåll Talsystem och koder Aritmetik för inära tal Grundläggande logiska operationer Logiska grindar Definitioner i Boolesk algera Räknelagar BINÄRA TALSYSTEMET Binärt

Läs mer

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år.

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. STYRANDE SATSER 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. Vilket år är du född? 1971 Då har du bara 35 år kvar

Läs mer

SF Numeriska metoder, grundkurs Föreläsning 5: Felanalys, felkalkyl och kondition KTH - SCI

SF Numeriska metoder, grundkurs Föreläsning 5: Felanalys, felkalkyl och kondition KTH - SCI - Numeriska metoder, grundkurs Föreläsning 5: Felanalys, felkalkyl och kondition Oktober 13, 2014 KTH Royal Institute of Technology Dept. of Mathematics - NA division 1/5 1 Exempel: Newtons metod f=@(x)

Läs mer

TATA42: Föreläsning 5 Serier ( generaliserade summor )

TATA42: Föreläsning 5 Serier ( generaliserade summor ) TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 0 januari 207 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom

Läs mer

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29 Numeriska serier Andreas Rejbrand, april 2014 1/29 1 Inledning Författarens erfarenhet säger att momentet med numeriska serier är ganska svårt för många studenter i inledande matematikkurser på högskolenivå.

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS..07 BESKRIVNING AV GODA SVAR Examensämnets censorsmöte har godkänt följande beskrivningar av goda svar. Av en god prestation framgår det hur examinanden har kommit fram till

Läs mer

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #2 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Talomvandling Principer för omvandling mellan olika talsystem:

Läs mer

Något om Taylors formel och Mathematica

Något om Taylors formel och Mathematica HH/ITE/BN Taylors formel och Mathematica Något om Taylors formel och Mathematica Bertil Nilsson 207-0-0 I am the best Ett av Brooks många ödmjuka inlägg i den infekterade striden som under början av 700

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi

Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi Beräkningsvetenskap I Jarmo Rantakokko Josefin Ahlkrona Kristoffer Virta Katarina Gustavsson Vårterminen 2011 Beräkningsvetenskap: Hur man med datorer utför beräkningar och simuleringar baserade på matematiska

Läs mer

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Facit Tentamen i Beräkningsvetenskap I (1TD9) STS ES W K1 Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på ett kladdpapper,

Läs mer

Numeriska metoder. Kompendiet. Lektor: Yury Shestopalov. e-mail: youri.shestopalov@kau.se Tel. 054-7001856. Karlstads Universitet

Numeriska metoder. Kompendiet. Lektor: Yury Shestopalov. e-mail: youri.shestopalov@kau.se Tel. 054-7001856. Karlstads Universitet Numeriska metoder Kompendiet Lektor: Yury Shestopalov e-mail: youri.shestopalov@kau.se Tel. 054-7001856 Hemsidan: www.ingvet.kau.se\ youri Karlstads Universitet 2002 1 Innehåll 1 Grundbegrepp av numeriska

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1

Läs mer

Matematiska modeller

Matematiska modeller Matematiska modeller Kompendium Lektor: Yury V. Shestopalov e-post: youri.shestopalov@kau.se Tel. 054-700856 Hemsidan: www.ingvet.kau.se\ youri Karlstads Universitet 2002 Contents Inledning 5. Descartes

Läs mer

Datorsystem. Övningshäfte. Senast uppdaterad: 22 oktober 2012 Version 1.0d

Datorsystem. Övningshäfte. Senast uppdaterad: 22 oktober 2012 Version 1.0d Datorsystem Övningshäfte Senast uppdaterad: 22 oktober 2012 Version 1.0d Innehåll Innehåll i 1 Introduktion 1 1.1 Errata............................................... 1 2 Datorns grunder 2 2.1 Övningsuppgifter.........................................

Läs mer

Föreläsning 8: Aritmetik I

Föreläsning 8: Aritmetik I DD2458, Problemlösning och programmering under press Föreläsning 8: Aritmetik I Datum: 2009-11-03 Skribent(er): Andreas Sehr, Carl Bring, Per Almquist Föreläsare: Fredrik Niemelä 1 Flyttal Att representera

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

SAMMANFATTNING TATA41 ENVARIABELANALYS 1

SAMMANFATTNING TATA41 ENVARIABELANALYS 1 SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3

Läs mer

Per Holm Lågnivåprogrammering 2014/15 24 / 177. int och double = = 2, 147, 483, 647

Per Holm Lågnivåprogrammering 2014/15 24 / 177. int och double = = 2, 147, 483, 647 Lågnivåprogrammering Föreläsning 2 Lågnivåprogrammering Förberedelse inför laboration 2. Maskinspråk, assemblerspråk Talrepresentation En enkel dator, komponenter Instruktionsformat, instruktionscykel

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi

Läs mer

SVANTE JANSON OCH SVANTE LINUSSON

SVANTE JANSON OCH SVANTE LINUSSON NORMLPPROXIMTION FÖR SNNOLIKHETEN FÖR TT FELKTIGT HNTERDE RÖSTER PÅVERKR MNDTFÖRDELNINGEN SVNTE JNSON OCH SVNTE LINUSSON. Inledning ntag att det är nästan jämnt mellan två partier och B vid fördelningen

Läs mer

log(6). 405 så mycket som möjligt. 675

log(6). 405 så mycket som möjligt. 675 MMA Matematisk grundkurs TEN Datum: 8 augusti Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2 Kapitel 4 Bisektionsalgoritmen Vi ska konstruera lösningar till algebraiska ekvationer av formen f(x) = 0 med hjälp av bisektionsalgoritmen (intervallhalveringsmetoden). På samma gång ska vi se hur man

Läs mer

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet är följande: SATS. (Intervallinkapslingssatsen) Låt I k = [a k, b k ], k = 1, 2,... vara en avtagande följd av slutna

Läs mer

Övning log, algebra, potenser med mera

Övning log, algebra, potenser med mera Övning log, algebra, potenser med mera Uppgift nr 1 Förenkla uttrycket x 3 + x 3 + x 3 + x 3 + x 3 Uppgift nr 2 Förenkla x x x+x x x Uppgift nr 3 Skriv på enklaste sätt x 2 x x x 8 x x x Uppgift nr 4 Förenkla

Läs mer

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1 TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

L HOSPITALS REGEL OCH MACLAURINSERIER.

L HOSPITALS REGEL OCH MACLAURINSERIER. L HOSPITALS REGEL OCH MACLAURINSERIER Läs avsnitten 73 och 8-82 Lös övningarna 78-75, 82, 84a,b, 85a,c, 89, 80 samt 8 Avsnitt 73 L Hospitals regel an ibland vara till en viss nytta, men de flesta gränsvärden

Läs mer

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen.

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. 2008 10 14 A. Talsystemen. (Adams P.1. Anteckningar från introkursen.) N de naturliga talen Z de hela talen Q de rationella

Läs mer

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Sara Zahedi Hanna Holmgren 29 oktober, 2012 Outline 1 2 Information om kursen 3 Introduktion

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 8 december 2015 Sida 1 / 22

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 8 december 2015 Sida 1 / 22 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 8 december 2015 Sida 1 / 22 Föreläsning 8 God programmeringsstil. Sammansatta datatyper: Poster. Cell-matriser.

Läs mer

Exponentialmatrisen. Definition med potensserie. Egenskaper. Den sista likheten utgör definitionen av e At. Man kan nämligen visa att matrisföljden

Exponentialmatrisen. Definition med potensserie. Egenskaper. Den sista likheten utgör definitionen av e At. Man kan nämligen visa att matrisföljden Exponentialmatrisen Moment (kapitel i Spanne) Övningar Denna stencil i första hand! Def. med serie (5.2) 8,(2) diagonaliserbar A (5.) b,2 (utnyttja svartill 3.2&3.5) Lösn. av tillståndsekv. Cayley-Hamiltons

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

Övningar - Andragradsekvationer

Övningar - Andragradsekvationer Övningar - Andragradsekvationer Uppgift nr 1 x x = 36 Uppgift nr 2 x² = 64 Uppgift nr 3 0 = x² - 81 Uppgift nr 4 x² = -81 Uppgift nr 5 x² = 7 Ange också närmevärden med 3 decimaler med hjälp av miniräknare.

Läs mer

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter TM-Matematik Mikael Forsberg 074-42 Pär Hemström 026-648962 För ingenjörs och distansstudenter Envariabelanalys ma04a 202 06 04 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

Data, typ, selektion, iteration

Data, typ, selektion, iteration Data, typ, selektion, iteration En programmeringkurs på halvfart IDT, MDH ttp://www.negative-g.com/nolimits/no%20limits%20defunct%20coasters.htm 1 Dagens agenda Talrepresentation Typkonvertering Sekvens

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

Besökstider: ca och 17.00

Besökstider: ca och 17.00 MATEMATIK Chalmers tekniska högskola och Göteborgs universitet Tentamen i Matematisk analys, fortsättningskurs F/TM, TMA976, 2015-01-14, TID(14.00-18.00) Inga hjälpmedel, förutom penna och linjal, är tillåtna,

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering

Läs mer

Arbetsblad 1:10. Avrundning. 1 a) 17,8 b) 156,3 c) 19,09 2 a) 30,49 b) 6,85 c) 49,64

Arbetsblad 1:10. Avrundning. 1 a) 17,8 b) 156,3 c) 19,09 2 a) 30,49 b) 6,85 c) 49,64 Arbetsblad 1:10 Avrundning Avrunda till heltal 1 a) 17,8 b) 156,3 c) 19,09 2 a) 30,49 b) 6,85 c) 49,64 Avrunda till tiotal 3 a) 88 b) 19 c) 164 4 a) 144,8 b) 347,5 c) 29,39 5 a) 43,5 b) 163,99 c) 496,1

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Kapitel 4. Iterativ lösning av ekvationer

Kapitel 4. Iterativ lösning av ekvationer Kapitel 4. Iterativ lösning av ekvationer Vi skall nu undersöka, har man löser numeriskt ekvationer av formen f(x) = 0. Dylika ekvationer kallas också olinjära, eftersom funktionen oftast har ett olinjärt

Läs mer

1 Föreläsning 14, följder och serier

1 Föreläsning 14, följder och serier Föreläsning 4, följder och serier. Följd I en följd {a n } n= sriver vi istället elementen som f(n). Följden {sin(n)} n= är begränsad, ty sin n. Följden {/ n} n= är onvergent mot 0: { Följden 2n 2 3n }

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer

Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter

Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter Inledande matematik för I1 MVE011 läsperiod 1 010 Matlab vecka övningsuppgifter Linjära ekvationssystem Matlab har många kraftfulla redskap för att hantera matriser och därmed också linjära ekvationssystem.

Läs mer

Talsystem Teori. Vad är talsystem? Av Johan Johansson

Talsystem Teori. Vad är talsystem? Av Johan Johansson Talsystem Teori Av Johan Johansson Vad är talsystem? Talsystem är det sätt som vi använder oss av när vi läser, räknar och skriver ner tal. Exempelvis hade romarna ett talsystem som var baserat på de romerska

Läs mer

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7 TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

IE1205 Digital Design: F6 : Digital aritmetik 2

IE1205 Digital Design: F6 : Digital aritmetik 2 IE1205 Digital Design: F6 : Digital aritmetik 2 Talrepresentationer Ett tal kan representeras binärt på många sätt. De vanligaste taltyperna som skall representeras är: Heltal, positiva heltal (eng. integers)

Läs mer

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde: TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger

Läs mer

Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26

Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera

Läs mer