Informationsåtervinning på webben Sökmotorernas framtid
|
|
- Oliver Hugo Lindqvist
- för 8 år sedan
- Visningar:
Transkript
1 Iformatosåtervg på webbe Sökmotoreras framtd Semarum 4-9- Iformatosåtervg på webbe Sökmotoreras framtd Ge sprato tll forskg att skapa ya affärsmölgheter smart avädg av sökverktyg de ega orgasatoe Belysa sökmotorer ur ett tekskt, urdskt och affärsmässgt perspektv.
2 Iformatosåtervg på webbe Sökmotoreras framtd - Program Sökmotorer och tekke bakom, Bo Kågström Sökmotorer framtde, Juss Karlgre Itegrtet, säkerhet och mapulato, Ncklas Ludblad Affärsperspektv och applkatoer Web4Health, Jacob Palme SteSeeker och Eurolg, Hercules Dalas Askology och QuckAsk, Erk Seders Öppe dskusso, Sture Hägglud moderator 3 Sökmotorer och tekke bakom Rakg av webbsdor med läkaalys - Googles PageRak och lkade metoder Bo Kågström Dept. of Computg Scece ad HPCN Umeå Uversty bokg@cs.umu.se
3 Lte bakgrud Webb-sökg: Ageläge om breda förfråggar (broad-topc queres), t.e. web-browsers. Överflödsproblematk: # sdor som httas och bedöms som relevata ( träffar ) är alldeles för stort! Behövs e mekasm för att ragorda dessa sdor. Hypotes: Om sda har e läk tll sda, så ger de auktortet tll. Hur aväds läkformatoe för att ragorda träffar? Öskar relevata och auktortatva sdor. 5 Hur går e Googlesökg tll? Httar alla dokumet som matchar sökfråga. Relevasbedömg: sdas ehåll, läktete hos läkara. Tll detta läggs vare sdas PageRak (Larry Page, Sergey Br - Googles grudare). Relevata dokumet ragordas och lstas utfrå sa PageRak-värde. 6
4 Eempel på sökresultat 7 Iehåll Sökg på webbe lte bakgrud Googles PageRak-algortm Defto av PageRak PageRak är e domerade egevektor Rak-sks och -sources modferad defto Beräkg av PageRak världes största matrsberäkg? Varför fugerar det? Kovergesegeskaper HITS-algortme: Hypertet Iteret Topc Search Auktorteter och hubbar är domerade sgulära vektorer 8
5 Webb-grafe & Webb-matrse WWW ka represeteras som e graf med stes (t.e. hemsdor) som oder ad läkar som kater. Webbmatrse A (adacey or coectvty) represeterar läkstrukture mella sdor: A(,) om sda pekar på sda A(,) aars A är e gles (sparse ) av storlek, > 4 mlarder (4 9 )! 9 Webb-matrs: Harvard 55 G(,) om url{} läkar tll url{}. Skapad med [U,G] surfer(' U cell-array med besökta URL:er
6 Iläkar räkas! Sep s Home Page DB Pub Server CS36 Yahoo! CNN Läkad av två mdre vktga sdor Läkad av två vktga sdor Defto av PageRak E sdas betydelse (vkt) ges av vkte hos de sdor som pekar på de. mportace of page B N mportace of page pages that lk to page umber of out-lks from page
7 Defto av PageRak - eempel Taher.5 Sep.5 / / DB Pub Server CNN Yahoo!... 3 PageRak-dagram () Italsera alla oder tll samma rag (vkt) 4
8 PageRak-dagram Propagera ragera över läkara (multplcera med läkvkter) 5 PageRak-dagram ( ) B N () 6
9 PageRak-dagram PageRak-dagram ( ) B N () 8
10 PageRak-dagram.4.4. Efter ett tag N B 9 Föreklad beräkg av PageRak Italserg: Upprepa tlls koverges: mportace of page () ( k + ) ( k ) B N mportace of page pages that lk to page umber of outlks from page
11 Matrsotato rätt abstrakto B N T P Sökt: egevektor svarade mot största egevärdet Htta som uppfyller: P T
12 Tllämpa potesmetode (Power Method) Italserg: () Upprepa tlls koverges:... T (k+ ) T P Stoppkrterum: orm( (k+) (k) ) < tolerace (k) 3 Radom Walk på webbe Deftoe av PageRak ka ses som slumpvadrgar (radom walks) på grafer. Surfa frå sda tll sda geom att slumpmässgt väla e utläk frå e sda för att komma tll ästa. Ka leda tll dead eds hos sdor som sakar utläkar (daglg pages), eller cykler krg klckar av sammahägade sdor (loops). 4
13 5 Loop som e rag-asamlare 3 Rak Sk: Loope 4 -> 5 -> 6 ackumulerar rag me kommer aldrg att dstrbuera ågo rag (ga utgåede läkar) Rak Sk - problematk P Alla egevektorer tll webbmatrse P T ssta eemplet har ollor de tre första kompoetera. PageRak för sdora, ad 3 are! Botemedel: troducera artfcella läkar (rak sources).
14 PageRak med Rak Sources PageRak() B N + s Alla PageRak är sklda frå oll frå böra! s s M E radom surfer ka föla vlke utläk som helst frå e sda med samma saolkhet (föreklade deftoe). Då och då, blr ho less ad hoppar tll e slumpvs sda på Webbe (y defto med rak sources ). s s 7 Googles PageRak-matrs Perodskt, väls e slumpvs sda på webbe för att överkomma daglg pages och loopar. A c P T + ( - c) E T c bråkdel av tde som e surfare (radom walk) föler e läk (t.e., c.85) - c bråkdel av tde som e godtycklg sda väls E är med E(,) / ( # läkar Webbmatrse) A är tät (dese), rag--modferg av e gles matrs - de flesta A(, ) ( - c) /. 8
15 Perro-Frobeus teorem A c P T + ( - c) E T är övergågsmatrs hos e Markovkeda (trasto probablty matr) < A(,) <, alla kolumsummor PF: A:s största egevärde svarade tll e etydg egevektor med > A är Markovkedas tllstådsvektor (state vector of the Markov cha) 9 Potesmetode tllämpad på A världes största matrsberäkg? Italserg: ()... T Upprepa tlls koverges: (k+ ) (k) A Beräkg av y A där A c P T + ( - c)/ e e T -Aberäkas e eplct - Utytta A:s struktur Elemete är Googles PageRak! 3
16 Varför fugerar det? Atag att matrse A har egevektorer u. Au λ u Då ka e godtycklg -dmesoell vektor skrvas som e lärkombato av egevektorera tll A. ( ) u + α u α u λ ; λ > λ... u u u 3 u 4 u 5 α α 3 α 4 α 5 3 Kovergesegeskaper ( k ) k k u + α λ u α λ u λ ; λ > λ... u u u 3 u 4 α λ k α 3 λ k 3 α 4 λ k 4 u 5 α 5 λ 5 k Kovergeshastghete bestäms av / λ dvs beloppet av kvote mella det största och äst största egevärdet. Ju mdre λ, desto sabbare kovergerar potesmetode (abs(λ ) < c, < c <) 3
17 Är potesmetode (PM) bästa valet? Tradtoellt: A, << 4 mlarder, ofta tät matrs. Rsk för att λ är ära λ potesmetode lågsam!. För detta problem: A, eormt stor, kolumstokastsk, ofta tät, rak- modferg av e gles matrs, där λ är lte Potesmetode fugerar mycket bra!! Se Havelwala T.H. ad Kamvar S.D., The Secod Egevalue of the Google Matr dbpubs.staford.edu/pub/3-. Det pågår forskg med att sabba upp PM. Adra metoder ka fugera lka bra eller bättre för beräkg av PageRak för mer begräsade domäer. 33 PageRak - sammafattg Sökg av webbsdor är huvudtllämpge aväds fulltet-sökmotor Google. PageRak är e global rakg av alla webbsdor, oberoede av dess ehåll, ebart baserad på dess plats Webbgraf-strukture (läk-baserad) - beräkas om ca gåg/måad, tar - veckor!?! Rakg aväds för att ragorda sdora så att mer cetrala webbsdor ges preferes. Bakåtläkar frå vktga sdor är mer sgfkata ä bakåtläkar frå ovktga sdor (rekursv defto av PageRak). 34
Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1
Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers
Läs merLINJÄR ALGEBRA II LEKTION 4
LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer
Läs merLinjär Algebra. Linjära ekvationssystem. Ax = b. Viktiga begrepp. Linjära ekvationssystem. Kolumnerna i A. Exempel. R (A) spänns upp av t.ex.
Ljära ekvatossystem Ljär Algebra obekata & ekvatoer a x + a x + a 3 x 3 + + a x = b a x + a x + a 3 x 3 + + a x = b a x + a x + a 3 x 3 + + a x = b Ljära ekvatossystem där A -matrs och b -vektor Vktga
Läs merKorrelationens betydelse vid GUM-analyser
Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska
Läs merOrderkvantiteter vid begränsningar av antal order per år
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet
Läs merLinjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
Läs merOrderkvantiteter i kanbansystem
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem E grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
Läs merRepetition DMI, m.m. Några begrepp. egenskap d. egenskap1
Repetto DMI, m.m. I. ermolog och Grudproblem II. Ljär algebra III. Optmerg IV. Saolkhetslära V. Parameterestmerg Några begrepp Möstervektor (egeskapsvektor/data) lsta med umerska värde som beskrver möstret.
Läs merSensorer, effektorer och fysik. Analys av mätdata
Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är
Läs mer2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
Läs merTentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Tetame i Lijär Algebra, SF164 14 december, 21. Kursexamiator: Sadra Di Rocco OBS! Svaret skall motiveras och lösige skrivas ordetligt och klart. Iga hjälpmedel är tillåta.
Läs merD 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
Läs merFöreläsningsanteckningar till Linjär Regression
Föreläsgsateckgar tll Ljär Regresso Kasper K S Aderse 3 oktober 08 Statstsk modell Ofta söks ett sambad y fx mella e förklarade eller oberoede varabel x och e resposvarabel eller beroede varabel y V betrakter
Läs merFördelningen för populationen som stickprovet togs ifrån är känd så nära som på ett antal parametrar, t.ex: N med okända
we Mezel, 7 we.mezel@sl.se; we.mezel@matstat.de www.matstat.de Parametrska metoder Fördelge för poplatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda Icke-parametrska
Läs merFyra typer av förstärkare
1 Föreläsg 1, Ht2 Hambley astt 11.6 11.8, 11.11, 12.1, 12.3 Fyra tyer a förstärkare s 0 s ut s A ut L s L 0 ägsförstärkare ägströmförstärkare (trasadmttasförst.) 0 ut s s ut L s s A 0 L trömsägsförstärkare
Läs merSensorer och elektronik. Analys av mätdata
Sesorer och elektrok Aalys av mätdata Iehåll Mätfel Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätresultat är behäftade med e vss osäkerhet
Läs merFöreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsg 6 73G04 urveymetodk 73G9 Utredgskuska I Dages föreläsg ortfall Totalbortfall Partellt bortfall Hur hatera bortfall? ortfallsstratumasatse (tvåfasurval) ubsttuto Imuterg Reettosquz ortfall och
Läs merNågot om beskrivande statistik
Något om beskrvade statstk. Iledg I de flesta sammahag krävs fakta som uderlag för att komma tll rmlga slutsatser eller fatta vettga beslut. Exempelvs ka det på ett företag ha uppstått dskussoer om att
Läs merEKVATIONER MED KOMPLEXA TAL A) Ekvationer som innehåller både ett obekant komplext tal z och dess konjugat z B) Binomiska ekvationer.
Arm Hallovc: EXTRA ÖVNINGAR Bomska ekvatoer EKVATIONER MED KOMPLEXA TAL A Ekvatoer som ehåller både ett obekat komplext tal och dess kojugat B Bomska ekvatoer. A Ekvatoer som ehåller både och För att lösa
Läs merF9 Hypotesprövning. Statistikens grunder 2 dagtid. p-värden. Övning 1 från F8
01-10-5 F9 Hypotesprövg Statstkes gruder dagtd HT 01 Behöver komma håg alla formler? Ne, kolla formelbladet Me vlka som behövs eller te beror på stuatoe Det som ska läras är är behöver Z eller T och hur
Läs merParametriska metoder. Icke-parametriska metoder. parametriska test. Icke-parametriska test. Location Shift. Vilket test ersätts med vilket?
Icke-parametrska test Icke-parametrska metoder Parametrska metoder Fördelge för populatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda och Icke-parametrska metoder
Läs merVäntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s.
Vätevärde, stadardavvkelse och varas Ett statstskt materal ka sammafattas med medelvärde och stadardavvkelse (varas, och s. På lkade sätt ka e saolkhetsfördelg med käda förutsättgar sammafattas med vätevärde,,
Läs merKap. 1. Gaser Ideala gaser. Ideal gas: För en ideal gas gäller: Allmänna gaslagen. kraft yta
Termodyamk - ärmets rörelse - Jämvkt - Relatoer mella olka kemska tllståd - Hur mycket t.ex. eerg eller rodukter som bldas e kemsk reakto - arför kemska reaktoer sker Ka. 1. Gaser 1.1-2 Ideala gaser Ideal
Läs merKontrollskrivning 3 i SF1676, Differentialekvationer med tillämpningar. Tisdag kl 8:15-10
KH Matematik Kotrollskrivig 3 i SF676, Differetialekvatioer med tillämpigar isdag 7-5-6 kl 8:5 - illåtet hjälpmedel på lappskrivigara är formelsamlige BEA För godkäd på module räcker 5 poäg Bara väl motiverade
Läs merIntroduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
Läs merUppgifter 3: Talföljder och induktionsbevis
Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e
Läs merBegreppet rörelsemängd (eng. momentum) (YF kap. 8.1)
Begreppet rörelsemägd (eg. mometum) (YF kap. 8.1) Defto (Newto!): E partkel med massa m och hastghet ഥv har rörelsemägd ഥp = m ഥv. Vektor med samma rktg som hastghete! Newto II: ሜF = m dvlj = d dt dt d
Läs merSAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14)
AMMANFATTNING AV KUR 6 TATITIK (Newbold katel [7], 8, 9,, 3, 4) INLEDNING 3 Proortoer 3 Proortoer 4 Poulatosvaras 5 KONFIDENINTERVALL 6 Itutv förklarg 6 Arbetsgåg vd beräkg av kofdestervall 7 Tfall. ök
Läs mer. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje
Läs merArmin Halilovic: EXTRA ÖVNINGAR
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för
Läs merEn utvärdering av två olika sätt att skatta fördelningen till stickprovsmedelvärden från olikfördelade data - normalapproximation kontra resampling
utvärderg av två olka sätt att skatta fördelge tll stckprovsmedelvärde frå olkfördelade data - ormalapproxmato kotra resamplg av Adreas Holmström xamesarbete matematsk statstk Umeå uverstet, Hadledare:
Läs merMatematisk statistik TMS063 Tentamen
Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,
Läs merStatistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
Läs merF4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
0-0-5 F Matematrep Summateet Potesräg Logartmer Kombator Summatee Säg att v har ste tal,, Summa av dessa tal (alltså + + ) srvs ortfattat med hälp av summatee: summa då går fr.o.m. t.o.m. Summatee, forts.
Läs merF6 PP kap 4.1, linjära ekvationssystem
F3 E3 & 3 Pge of 5 F6 PP k 4. lär ekvtotem Om vektorer och mtrer ormer etc. e PP 5-8. V väder eteckge för Eukldk orme v e -vektor. Oft väd m-orme m ll e vektor-orm ocer e orm för lär vldgr Det gäller u
Läs merTentamen i Sannolikhetsteori III 13 januari 2000
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klitberg Lösigar Tetame i Saolikhetsteori III 13 jauari 2000 Uppgift 1 a) Det mest detaljerade utfallsrummet är med uppebara beteckigar Ω = {(B1, B2),
Läs merENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
Läs merSOS HT Punktskattningar. Skattning från stickprovet. 2. Intuitiva skattningar. 3. Skattning som slumpvariabel. slump.
Puktskattgar SOS HT10 Puktskattg uwe@math.uu.se http://www.math.uu.se/~uwe/sos_ht10 1. Vad är e puktskattg och varför behövs de? 1. Jämförelse: saolkhetstoer statstkteor 2. Itutva ( aturlga ) skattgar
Läs merEgna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions)
- 1 - Vad är si? si är amet på e av måga ibyggda fuktioer i Ada (och de återfis i paketet Ada.Numerics.Elemetary_Fuctios) si är deklarerad att ta emot e parameter (eller ett argumet) av typ Float (mätt
Läs merF7 PP kap 4.1, linjära överbestämda ekvationssystem
F7 BE3 & 3 Page of 5 F7 PP ka 4., ljära överbestäda ekvatossste Här behadlas dels ljära överbestäda sste oh dels tlläge å odellaassg ed stakvadrat-etode so kaske ufas av Gauss. V börjar ed ljära algebra.
Läs merSystemdesign fortsättningskurs
Systemdesig fortsättigskurs Orgaisatio Föreläsare Potus Boström Assistet? Tider mådagar och tisdagar kl. 8-10 Börjar 3.9 och slutar 16.10 Rum B3040 Orgaisatio Iga föreläsigar 24.9, 25.9, 1.10 och 2.10
Läs merc n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.
P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt
Läs merTENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng
UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 04--6 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 9.00-15.00 Tllåta hjälpmedel: Utdelad
Läs merTommy Färnqvist, IDA, Linköpings universitet
Föreläsig 2 Algoritmaalys TDDC70/91: DALG Utskriftsversio av föreläsig i Datastrukturer och algoritmer 5 september 2013 Tommy Färqvist, IDA, Liköpigs uiversitet 2.1 Iehåll Iehåll 1 Aalys av värsta fallet
Läs mer1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x
BERÄKNING AV GRÄNSVÄRDEN ( då ) MED HJÄLP AV MACLAURINUTVECKLING a) Maclauris formel ( ) f () f () f () f ( ) f () + f () + + + +!!! ( ) f ( c) där R och c är tal som ligger mella och ( + )! Amärkig Eftersom
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
Läs mer= α. β = α = ( ) D (β )= = 0 + β. = α 0 + β. E (β )=β. V (β )= σ2. β N β, = σ2
Ljär regresso aolkhet och statstk Regressosaalys VT 2009 Uwe.Mezel@math.uu.se http://www.math.uu.se/ uwe/ Fgur: Mätpukter: x, y Ljär regresso - kalbrerg av e våg Modell för ljär regresso Modell: y α +
Läs mer================================================
rmi Halilovic: ETR ÖVNINGR TVÅ STICKPROV Vi betraktar två oberoede ormalfördelade sv och Låt x, x,, x vara ett observerat stickprov, av storleke, på N (, ) och låt y, y,, y vara ett observerat stickprov,
Läs merRäkning med potensserier
Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som
Läs merFöreläsning 10: Kombinatorik
DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd
Läs mervara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då
Läs merVäntevärde för stokastiska variabler (Blom Kapitel 6 och 7)
Matemats statst för STS vt 004 004-04 - 0 Begt Rosé Vätevärde för stoastsa varabler (Blom Kaptel 6 och 7 1 Vätevärde för e dsret stoasts varabel Låt vara e dsret s.v. med saolhetsfuto p ( elgt eda. Saolhetera
Läs merLösning till TENTAMEN
Isttutoe för Sjöfart oh Mar Tekk ös tll TENTAMEN 0706 KURSNAMN Termodyamk oh strömslära ROGRAM: am Sjöejörsrorammet åk / läserod KURSBETECKNING //auusterode SJO050 005 el A Strömslära EXAMINATOR Mats Jarlros
Läs mer101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Läs merKONFIDENSINTERVALL FÖR MEDIANEN (=TECKENINTERVALL )
Arm Hallovc: EXTRA ÖVNINGAR Tecetervall KONFIDENSINTERVALL FÖR MEDIANEN (TECKENINTERVALL ) För att bestämma ett ofdestervall för medae tll e otuerlg s.v. ξ aväder v ett stcprov ξ ξ ξ3 ξ av storlee som
Läs merTentamen i Matematisk statistik för V2 den 28 maj 2010
Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att
Läs merMätbar vetskap om nuläget och tydliga målbilder om framtiden. Genomför en INDICATOR självvärdering och nulägesanalys inom tre veckor
Mätbar vetskap om uläget och tydliga målbilder om framtide Geomför e INDICATOR självvärderig och ulägesaalys iom tre veckor Självvärderig e del av dokumetatioskravet i ya skollage Skollage ställer också
Läs merSANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.
Läs merBetong Cement Gruvor Papper & Cellulosa Asfalt Grus Kemi Plast Läkemedel Livsmedel Avlopp & Vatten Vätskor Pulver Slurry Flingor Granulater
Nvåmätg Betg Cemet Guv Pappe & Cellula Afalt Gu Kem Plat Läkemedel Lvmedel Avlpp & Vatte Vätk Pulve Sluy Flg Gaulate Nvåmätg fö pcedut Nvåktll fö: Övefylladkydd Batchktll Pduktmätg Lagektll Säkehetlam
Läs merKontrollskrivning (KS1) 16 sep 2019
Kotrollskrivig (KS) sep 9 Tid: 8:- Kurs: HF Lijär algebra och aals (algebradele) Lärare: Maria Shaou, Ari Halilovic För godkät krävs poäg (av a 9p) Godkäd KS ger bous eligt kurs-pm Fullstädiga lösigar
Läs merAnalys av algoritmer. Beräkningsbar/hanterbar. Stora Ordo. O(definition) Datastrukturer och algoritmer. Varför analysera algoritmer?
Datastrukturer och algoritmer Föreläsig 2 Aalys av Algoritmer Aalys av algoritmer Vad ka aalyseras? - Exekverigstid - Miesåtgåg - Implemetatioskomplexitet - Förstålighet - Korrekthet - - 29 30 Varför aalysera
Läs merF15 ENKEL LINJÄR REGRESSION (NCT )
Stat. teor gk, ht 006, JW F5 ENKEL LINJÄR REGRESSION (NCT.-.4) Ordlta tll NCT Scatter plot Depedet/depedet Leat quare Sum of quare Redual Ft Predct Radom error Aal of varace Sprdgdagram Beroede/oberoede
Läs mer5. Linjer och plan Linjer 48 5 LINJER OCH PLAN
48 5 LINJER OCH PLAN 5. Lijer och pla 5.. Lijer Eempel 5.. Låt L ara e lije i rummet. Atag att P är e pukt på L och att L är parallell med e ektor, lijes riktigsektor. Då gäller att e pukt P ligger på
Läs merFör att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ
1 February 1, 2018 1 Förel. VII Puktskattigar av parametrar i fördeligar 1.1 Puktskattig För att skatta vätevärdet för e fördelig är det lämpligt att aväda Medelvärdet ξ = 1 ξ j. Vi tar u vätevärdet av
Läs merREGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:
CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal
Läs merAnmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].
MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella
Läs merStrukturell utveckling av arbetskostnad och priser i den svenska ekonomin
Strukturell utvecklg av arbetskostad och prser de sveska ekoom Alek Markowsk Krsta Nlsso Marcus Wdé WORKING PAPER NR 06, MAJ 0 UTGIVEN AV KONJUNKTURINSTITUTET KONJUNKTURINSTITUTET gör aalyser och progoser
Läs merSpecialfall inom produktionsplanering: Avslutning Planerings- Le 8-9: Specialfall (produktval, kopplade lager, cyklisk planering, mm) system
Föreläsg Specalfall om produktosplaerg: Produktvalsplaerg, cyklsk plaerg, alteratva partformgsmetoder Avslutg Plaergssystem Fast posto Fö 6a: Projektplaerg (CPM, PERT, mm) Le 3: Projektplaerg (CPM/ PERT,
Läs merDatabaser - Design och programmering. Databasdesign. Funktioner. Relationsmodellen. Relationsmodellen. Funktion = avbildning (mappning) Y=X 2
Databaser Desig och programmerig Relatiosmodelle Databasdesig Förstudie, behovsaalys defiitioer ER-modell -> relatiosmodell ycklar Relatiosmodelle Itroducerades av Edward Codd 1970 Mycket valig Stödjer
Läs merH1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a
POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING Defiitio Polyom är ett uttryck av följade typ P( ) a a a, där är ett icke-egativt heltal (Kortare 0 P k ( ) a a 0 k ) k Defiitio
Läs merb 1 och har för olika värden på den reella konstanten a.
Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras
Läs merDatastrukturer och algoritmer
Iehåll Föreläsig 6 Asymtotisk aalys usammafattig experimetell aalys uasymtotisk aalys Lite matte Aalysera pseudokode O-otatio ostrikt o Okulärbesiktig 2 Mäta tidsåtgåge uhur ska vi mäta tidsåtgåge? Experimetell
Läs merTNA001 Matematisk grundkurs Övningsuppgifter
TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit 55 60 Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Uiversitet Matematisa Istitutioe Thomas Erladsso LÄSANVISNINGAR VECKA -5 BINOMIALSATSEN Ett uttryc av forme a + b allas ett biom eftersom det är summa av två moom. För uttrycet (a + b) gäller de
Läs merLösningar till tentamensskrivning i kompletteringskurs Linjär Algebra, SF1605, den 10 januari 2011,kl m(m + 1) =
Lösigar till tetamesskrivig i kompletterigskurs Lijär Algebra, SF605, de 0 jauari 20,kl 4.00-9.00. 3p Visa med hjälp av ett iduktiosbevis att m= mm + = +. Lösig: Formel är uppebarlige sa är = eftersom
Läs merTillämpning av Trafikverkets grafiska profil på Don t drink & drive
Tllämpg av Trafkverkets grafska profl på Do t drk & drve Utvalda delar och bestämmelser ur Trafkverkets grafska maual, som stöd vd framtagg av Do t drk & drve-materal. Följade pukter ska ses som rekommedatoer
Läs merVälkommen in i konfirmandens egen bibel!
L Välkoe kofrades ege bbel! Upptäck Bbel tllsaas ed kofrade! Lbrs ya kofradutgåva av Bbel har två huvudpersoer: Jesus so är Bbels kära och stjära och de uga äska so ärar sg Bbel och tro. Ordet kofrad äs
Läs merFöreläsning G70 Statistik A
Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive
Läs merCentrala gränsvärdessatsen
Arm Hallovc: EXTRA ÖVNINGAR Cetrala gräsvärdessatse Cetrala gräsvärdessatse Vätevärdet och varase för e ljär kombato av stokastska varabler beräkas elgt följade: S Låt c, c,, c vara kostater,,,, stokastska
Läs merNormalfördelningar (Blom Kapitel 8)
Matematsk statstk STS vt 004 004-04 - Begt Rosé Normalördelgar (Blom Kaptel 8 Deto och allmäa egeskaper DEFINITION : E stokastsk varael sägs vara ormalördelad om de har ördelg med täthetsukto med utseede
Läs merS0005M V18, Föreläsning 10
S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är
Läs mera) Beräkna E (W ). (2 p)
Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig
Läs merGenomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
Läs merInduktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.
Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).
Läs merSkattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?
Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har
Läs merNEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Läs mer4.2.3 Normalfördelningen
4..3 Normalfördelge Bomal- och Possofördelge är två exempel på fördelgar för slumpvarabler som ka ata ädlgt eller uppräkelgt måga olka värde. Sådaa fördelgar sägs vara dskreta. Ofta är ett resultat X frå
Läs merStat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
Läs merTENTAMEN I MATEMATISK STATISTIK
TETAME I MATEMATISK STATISTIK Te i kurse 6H, KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse 6H, 6L MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: :-7: Lärare: Armi Halilovic Kurskod 6H, 6H, 6L, 6A Hjälpmedel:
Läs merFöreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
Läs merTENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08
TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:
Läs merTrigonometriska polynom
Trigoometriska polyom Itroduktio Iga strägistrumet eller blåsistrumet ka producera estaka siustoer, blott lieära kombiatioer av dem, där de med lägsta frekvese kallas för grudtoe, och de övriga för övertoer.
Läs merTentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén
FACIT Tetame i matematisk statistik, Statistisk Kvalitetsstyrig, MSN3/TMS7 Lördag 6-1-16, klocka 14.-18. Lärare: Ja Rohlé Ugift 1 (3.5 ) Se boke! Ugift (3.5) Se boke! Ugift 3 (3) a-ugifte Partistorlek:
Läs mer1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k
LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig
Läs merFöreläsning G70 Statistik A
Föreläsig 7 73G70 Statistik A Hypotesprövig för jämförelse av populatiosadelar Krav: vi har dragit två OSU p( p) > 5 för båda stickprove Steg : Välj sigifikasivå och formulera hypoteser H 0 : π - π = d
Läs merθx θ 1 om 0 x 1 f(x) = 0 annars
Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.
Läs mer1. Test av anpassning.
χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler
Läs merTentamen i matematisk statistik
MSTA3, Saolikhetsteori A, 5 p 5--7 Tetame i matematisk statistik Saolikhetsteori A, 5 poäg Skrivtid: 9.-5.. Tillåta hjälpmedel: Tabellsamlig, ege miiräkare. Studetera får behålla tetamesuppgiftera. På
Läs merA. Grundläggande matristeori
A.. Matriser och vektorer A. Grudläggade matristeori A. Defiitioer A.. Matriser och vektorer E matris är e rektagulär tabell av elemet ordade i rader och koloer (kolumer). Elemete i e matris ka vara godtyckliga
Läs merInduktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1
duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a
Läs mer