Uppfattningar om tal i decimalform

Storlek: px
Starta visningen från sidan:

Download "Uppfattningar om tal i decimalform"

Transkript

1 Gard Brekke Uppfattningar om tal i decimalform Texten är en översättning av Oppfattninger av desimaltall, Nämnaren 1995:4, s Översättningen är gjord av Anders Wallby. Blå text är obligatorisk läsning. Missuppfattningar I denna artikel kommer jag att diskutera användningen av diagnostiska uppgifter i samband med begreppsutveckling. Hur kan man använda sådana uppgifter för att undersöka vilka begrepp den enskilde eleven har utvecklat? Vilka problem står denne inför i processen mot ett fast förankrat begrepp? Vi kommer att titta på vanliga missuppfattningar och partiella begrepp som elever har inom detta område. Det är välkänt att en kritisk fas inom matematiklärandet är när talområdet utökas från heltal till att omfatta bråk och tal i decimalform [i fortsättningen decimaltal. red.anm]. Innan vi ser närmare på detta, tar vi upp några frågor kring det som inom matematikdidaktiken kallas missuppfattningar. Barnen möter decimaltal i samband med pengar eller mätningar innan dessa dyker upp i undervisningen. Det centrala i dessa erfarenheter är att det finns ett helt antal kronor på ena sidan av decimaltecknet och ett helt antal ören på andra sidan. På motsvarande sätt är det med meter och centimeter när du gör en mätning. Det förefaller som om undervisning om att ett decimaltal är ett tal som kan innehålla tiondelar, hundradelar, tusendelar osv, inte kan rubba uppfattningen från erfarenheterna av arbetet med pengar och mätningar. Vi berör här ett centralt problem i matematikundervisningen: att få eleverna att inse att de idéer och uppfattningar som de har utvecklat, inte alltid kan tillämpas i alla nya situationer. En uppfattning utvecklas sällan fullt ut genom erfarenheter från ett enda område. Vi kallar ofullständiga tankar knutna till ett begrepp för missuppfattningar. Det är viktigt att förstå skillnaden mellan de fel eleverna gör och de missuppfattningar som de har. Ett fel kan vara mer eller mindre tillfälligt, beroende på att eleven inte är uppmärksam nog eller inte läser uppgiften tillräckligt noga. Missuppfattningar är inte tillfälliga. Bakom dem finns en bestämd tanke en idé som man använder nog så konsekvent. Ofta är detta ett resultat av en övergeneralisering av tidigare kunskaper till nya områden, där dessa kunskaper inte är fullt ut tillämpliga. Man kan gott se detta som ett försök att skapa mening och sammanhang i det man lär. Nämnaren

2 Barn bygger normalt sin första förståelse av de fyra räknesätten på erfarenheter av små hela tal. Dessa räkneoperationer införs vanligtvis med hjälp av enkla tankemodeller som inte direkt låter sig generaliseras till arbete med decimaltal, och som därför ofta leder till att missuppfattningar uppstår. Om man bara får uppleva multiplikation som upprepad addition, kommer man att utveckla en snävare syn på vad multiplikation är. Man kan säga att man har ett partiellt begrepp av multiplikation. Med bakgrund i en sådan tankemodell kommer det att vara svårt att göra en uppskattning av svaret på 0,62 0,37. Många elever är övertygade om att multiplikation alltid ger ett större svar än utgångstalet, eftersom alla deras erfarenheter av upprepad addition säger detta. På motsvarande sätt är de elever som endast mött delningsdivision oförmögna att ge uttrycket 12 : 0,4 en praktisk innebörd. Detta avspeglar tankemodellen innehållsdivision, som eleverna måste göras medvetna om i praktiska sammanhang. En annan viktig orsak till missuppfattningar är att många elever inte skiljer mellan begreppet multiplikation idéerna som är knutna till multiplikation och sättet att genomföra beräkningen multiplikationsalgoritmen. Elevernas erfarenheter av multiplikation har oftast förknippats med att utföra multiplikationen, dvs algoritmen. Att kunna multiplikation är att kunna algoritmen och att komma ihåg multiplikationstabellen. Det är nog oundvikligt att missuppfattningar och partiella begrepp uppstår. De är en del av barns normala utveckling. Nya idéer bildas ur existerande erfarenheter. Ogiltiga slutsatser dras ofta och generaliseringar görs på sviktande underlag. Uppfattningar av detta slag finner man inom alla områden av matematiken. Några vanliga, välbekanta missuppfattningar inom aritmetik är det längsta talet har alltid störst värde du kan inte dela ett litet tal med ett stort multiplikation gör alltid svaret större man kan bara dela med heltal 3 : 6 och 6 : 3 ger samma svar division gör alltid svaret mindre. Sådana missuppfattningar, som kan ge eleven rätta svar även i andra fall än för heltal, följer ofta eleven under hela skoltiden och senare i livet. De visar sig vara så grundläggande att de, snarare än det logiska i en situation, fungerar som ett rättesnöre till exempel när det gäller att välja rätt räknesätt i denna uppgift: Köttfärs kostar kr per kg, hur mycket kostar 0,86 kg? Många människor väljer division som räkneoperation eftersom de vet att svaret bör bli mindre än 69,50 kr. Man kan också se att eleverna ofta tror att om man förändrar talen i en uppgift är det inte säkert att räkneoperation förblir densamma. Vanliga undervisningsmetoder har visat sig vara ineffektiva när det gäller att övervinna sådana problem. Detta gäller både metoder där man ignorerar missuppfattningarna och metoder där man försöker undvika missuppfattningarna genom att definiera begreppen korrekt och fullständigt vid den första introduktionen. 2 Nämnaren 2013

3 Prov i matematik hålls vanligen efter en träningsperiod. Huvudsyftet med provet är oftast att avgöra hur väl eleverna har tagit till sig vissa fakta, färdigheter och/eller begrepp. Syftet med diagnostiska uppgifter är något annorlunda. Diagnostiska uppgifter kan mycket väl förekomma i en undervisningssekvens. Diagnostisk undervisning En arbetsmetod där vi medvetet fokuserar och arbetar med vanliga fel och missuppfatt-ningar eleverna har kallas diagnostisk-responsiv undervisning, eller bara diagnostisk undervisning. Denna handlar såväl om en diagnostisering av tankar vissa elever har utvecklat kring ett specifikt begrepp, som om det matematiska innehållet i undervisningsstoffet. Syftet med diagnostiseringen är att identifiera vilka erfarenheter eleverna behöver göra genom undervisningen för att bygga upp ett det aktuella begreppet. Diagnostisk undervisning baseras således på att det i princip är möjligt att identifiera vilka tankar eleverna har gjort sig om det kommande lärostoffet och vilka missuppfattningar och hinder eleverna vanligtvis möter när de utvecklar olika begrepp inom matematiken. Schematiskt kan man se följande faser i diagnostisk undervisning. 1. Identifiera missuppfattningar och partiella begrepp som utvecklats av eleverna. 2. Anpassa undervisningen så att eventuella missuppfattningar eller partiella begrepp framhävs. Man kallar detta att skapa en kognitiv konflikt. 3. Lös den kognitiva konflikten genom diskussioner och reflektioner i undervisningen. 4. Använd det utökade (eller nya) begreppet i andra sammanhang. Grunden för den första punkten är de diagnostiska uppgifterna. Testunderlag I en standardisering av diagnostiska uppgifter inom områden tal och räkning med tal deltog 104 fjärdeklasser, 107 sjätteklasser och 92 åttondeklasser med ca 1900 elever i varje årskurs. Skolorna var slumpmässigt utvalda bland alla norska grundskolor, men man såg till att få en balanserad fördelning på regioner och skolor av olika storlekar. Standardiseringen genomfördes i januari och februari Av de 1900 eleverna i varje årskurs valdes 500 ut, efter födelsedatum i månaden. Analys av elevsvar I presentationen har jag valt att ge några kommentarer baserade på de olika delområdena av begreppet tal i decimalform och på specifika typer av missuppfattningar, illustrerade med några av de uppgifter som presenteras i Uppslaget i Nämnaren nr 3, 1995 [Test på tal i decimalform]. De olika områdena och missuppfattningar finner man vanligen spår av i flera uppgifter i de diagnostiska testerna. Eleverna möter decimaltal tidigt i samband med mätningar av olika slag, men då oftast utan att det fokuseras på de centrala idéerna knutna Nämnaren

4 till de nya talen. De har därmed kunskap om skrivsättet för decimaltalen, men inte vad de innebär. Lärare undrar ofta över varför eleverna bemästrar uppgifter med decimaltal när uppgifterna handlar om pengar. Anledningen är förmodligen inte att eleverna förstår decimaltal i sådana situationer, utan snarare att de i sådana sammanhang inte behöver använda decimaltal. De kan fortsätta att arbeta som om det vore heltal och växla hundra öre till en krona. De kan därmed räkna korrekt med pengar utan att det är nödvändigt att använda innebörden i decimalformen. Decimalnotation En testuppgift var: Som ett svar på en matematisk uppgift fick Olav 4.9 och Lise 4,90. Är det någon skillnad mellan svaren? Här svarar 21% att det är skillnad, eftersom 90 är mer än 9. I det följande kommer vi att hänvisa till denna missuppfattning som decimaltal som par av heltal. Andra elever tänker på decimaltecknet på samma vis som när man använder kommatecken i en uppräkning vid skrivande. I den fortsatta analysen av elevernas svar, ser vi även att eleverna ofta använder kommatecken som skiljetecken i flera olika sammanhang. För många barn, är talens utseende det väsentliga, det är ett kommatal. De tror att talen är decimaltal eftersom de ser ut som decimal. Uppgift 6028 visar detta En klocka visar tiden 8.59 (eller en minut i nio). a) Är det ett decimaltal? b) Förklara hur du vet om det är ett decimaltal eller inte. Följande tabell ger en översikt av fördelningen av några typer av förklaringar åk 6 åk 8 Nej på fråga a Ja på fråga a Hänvisar till talsystemet 6 12 Förklaring från talet utseende Andra felaktiga svar Av de elever som svarat nej på uppgift a är det endast 20% i 6:e klass och 29% i 8:e klass som refererar till talsystemet, medan 34% och 25% har förklaringar som hänvisar till utseendet på talet. Följande elevsvar är ett exempel på detta: Det är inte ett decimaltal eftersom det står en punkt och inte ett kommatecken mellan talen. De elever som svarar ja på uppgift a, hänvisar vanligtvis till utseendet av talet (60% och 71% för de två årskurserna). Två typiska sådana svar var: Eftersom det är 5 tiondelar och 9 hundradelar i talet och Allt efter 4 Nämnaren 2013

5 kommatecknet är decimaltal. Som lärare bör vi tänka på de situationer i det dagliga livet där en symbol används för att separera en större enhet från en mindre, som exempel tidsangivelse (vid 10.15). Eleverna väljer ofta att se på decimaltal som ett par av hela tal Vad betyder 9,7? Ringa in ett svar: a. Nittiosju b. Nio sjundedelar c. Nio och en sjundedel d. Nio och sju tiondelar e. Ingen av dessa. Jag tror att 9,7 betyder... Vi ser att relativt många elever tolkar 9,7 som nio och en sjundedel, även i 8: e klass, något som tyder på en vag uppfattning om vad ett decimaltal står för åk 4 åk 6 åk 8 Nio och sju tiondelar Nio sjundedelar Nio och en sjundedel Övriga Jämföra decimaltal I många situationer där decimaltal skall jämföras, är talen givna med samma antal decimaler (till exempel, när man försöker avgöra vem som vunnit ett 100-meters lopp, med tiderna 10.00, 9.90 och 9.93 sekunder). Sådana uppgifter innebär inte några större problem för eleverna. När man däremot använder en miniräknare, försvinner nollorna i slutet. Detta leder till problem för många. Till exempel kan en uppgift vara att avgöra vilket inköp som lönar sig bäst: 1,5 kg för 14,10 kr eller 1,25 kg för 11,60 kr? Använder man en miniräknare för att räkna ut kostnad per kg, blir man tvungen att förstå den relativa storleken på talen 9.4 och 9.28 för att ge korrekta svar. Det finns flera uppgifter i testen som fokuserar på att jämföra tal med olika antal decimaler. Exempelvis uppgifterna 4019 och 4020 syftar till detta a. Ringa in det minsta av dessa tal: 0,625 0,25 0,3753 0,125 0,5 b. Varför är det minst? 4020 a. Ringa in det största av dessa tal: 0,649 0,87 0,7 b. Varför är det störst? 4019 a åk 4 åk 6 åk 8 0, , , , , Nämnaren

6 4020 a åk 4 åk 6 åk 8 0, , Tabellen visar att många yngre elever anser att det kortaste decimaltalet är minst (och det längsta störst). Detta kan förklaras av att man ser på talet efter decimaltecknet som ett helt tal. Missuppfattningen att ett decimaltal är ett par av två hela tal, är alltså grunden för missförståndet att det kortaste decimaltalet är minst. Tabellen visar att det är relativt få elever som har detta problem i 8:e klass. Å andra sidan finns det också elever som har missuppfattningen att det längsta decimaltalet är minst. De svarar att 0,3753 är det minsta antalet i uppgift 4019 och 0,7 är störst i uppgift 4020 a. Procentandelen elever som gör detta visar sig vara stabil i alla tre årskurserna. Det är uppenbart att den undervisning eleverna vanligtvis möter, hjälpte dem med den första svårigheten, medan den var mindre fokuserad på den andra missuppfattningen. Man kan se att den inte har ifrågasatts i samma grad. Uppgift 4019 ingick i den omfattande APU-undersökningen av matematiken i England omkring studenter svarade på varje uppgift. För 15-åringarna fick man följande svarsfördelning: 0,125 43%; 0,5 13%; 0, %; 0,25 2%; %. Resultatet i KIM-undersökningen var således mycket bättre. Elevernas förklaringar visar att många tror att 0,7 är större än 0,87 eftersom det i det första fallet är en fråga om tiondelar, medan det i andra handlar om hundradelar och tiondelar, och tiondelar är större än hundradelar. Eller när det är hundradelar så är talet mer uppsplittrat och därmed blir varje del mindre. Det är tydligt att eleverna är konsekventa i sitt tänkande när de svarar på dessa uppgifter. Av de elever som svarade att 0,5 är minst i uppgift 4019 a, är det 93% i åk 4, 89% i åk 6 och 78% i åk 8 som också svarar att 0,649 är störst i uppgift i 4020 a. Motsvarande tal för de som svarat att 0,3753 är minst i uppgiften 4019 a och 0,7 störst i 4020 a, är 69%, 69% och 71%. Liknande utmaningar möter eleverna i: 4015 Ringa in det största talet: 3,521 3,6 3, Ringa in det största talet: 4,09 4,7 4,008 Dessa uppgifter skiljer sig från 4019 och 4020 genom att talen inte har noll som heltalsdel. 6 Nämnaren 2013

7 4015 åk 4 åk 6 åk 8 3, , , , , , Vi ser att fördelningen av svaren i uppgift 4015 skiljer sig lite från uppgift 4020 (se tabell). När man jämför svaren finner vi att av dem som svarar 0,649 i uppgift 4020, är det 96% i 4:e, 86% i 6:e och 65% i 8:e klass som svarar 3,521 på uppgift Denna missuppfattning är således oberoende av om decimaltalet har nollor. [De har] inte svarat 4,008 (som är talet med längst decimaldel, och därmed störst enligt den missuppfattning vi sett ovan) som man skulle kunna förvänta sig, med tanke på från svaren på de övriga uppgifterna. En anledning till det kan vara att de elever som uppfattar ett decimaltal som ett par av heltal, i detta fall jämför storleken på de hela talen: 7, 09 och 008, och då är 09 det största av dem. I denna uppgift, är det också en fråga om förstå noll som en platshållare. Av de 8:e-klassare som svarade 0,649 på uppgift 4020, är det mer än hälften som ger rätt svar på uppgift Motsvarande siffra för 6:e och 4:e klass är en tredjedel och en sjättedel. Resultaten ovan visar att en förhållandevis stor del av eleverna är osäkra när det gäller relativ storlek på decimaltal. En omedelbar reaktion från en lärare när resultaten från APU-enkäten publicerades i The Times Educational Supplement var att eleverna skulle övervinna dessa svårigheter om alla decimaler försågs med samma längd på decimaldelen. Således måste eleverna lära sig att lägga till nollor tills alla talen hade lika många decimaler, och sedan jämföra dem som om de vore heltal. Denna regel, som många kommer att tycka verkar godtycklig och meningslös, kommer att ge rätta svar, men kommer inte att bidra till att skingra några av de missuppfattningar som redogjorts för ovan. Decimaler på tallinjen Mycket få människor har en föreställning om att det finns många, för att inte tala om oändligt många, decimaler mellan varje givet talpar, och att det därför kan existera ett annat deci maltal så nära ett givet tal som man önskar. Detta bekräftas i uppgiften 6029 d och följande uppgift för 6:e och 8:e klass Hur många tal finns det mellan 0,47 och 0,48? Nämnaren

8 6022 åk 6 åk 8 Oändligt många 5 18 Inget Ett tal Två till åtta tal 2 2 Nio tal , 100, ,01 eller 1/ Ungefär en fjärdedel av eleverna sa att det inte finns något tal mellan 0,47 och 0,48. En anledning till det kan vara att de tänker på hela tal, eller det kan vara så att missuppfattningen om decimaltal som par av hela tal spelar in även här. Många elever tror att det finns ett tal mellan 0,47 och 0,48. Intervjuer i andra studier har visat att eleverna då menar att detta tal då är mitt emellan 0,47 och 0,48. Andra elever har fått med sig något av systemet för notationen av decimaltal, att man kan dela upp varje mellanrum i tio lika stora delar, och får på det viset nio tal mellan två grann-decimaltal. Vi kan säga att dessa elever har tagit ett stort steg mot att förstå att decimaltalen ligger tätt på tallinjen På var och en av dessa uppgifter, skriv INGET om du tror att det inte finns något svar på uppgiften. Annars ska du skriva ett tal som är större än 0,63 men mindre än 0, d åk 6 åk 8 0,635 eller liknande ,63 eller 0, Inget tal Blandat med bråk (063 1/2 eller liknande) 3 1 Vi lägger märke till den relativt låga andelen korrekta svar i uppgift 6029 d, och att det vanligaste felsvaret är att det inte finns några tal mellan 0,63 och 0,64. En närmare titt på svaren, visar att av de som svarat att det inte finns något tal mellan 0,47 och 0,48, svarar 55 % av 6:e-klassarna Inget i uppgift 6029 d, och 63 % av 8:e klassarna. Hälften av de elever som misstolkar uppgift 6022 och svarar 0,01, svarar också Inget på uppgift 6029 d. Det kan finnas flera orsaker till dessa resultat. En orsak kan vara att eleverna är så vana vid att arbeta med just två decimaler, och relaterar till konkretiseringen med kronor och ören, att de inte har fått med sig den generella idén i talsystemet. Mer konkretisering genom mätningar och arbete på tallinjer hjälpa till att övervinna sådana svårigheter. Del av en hel Senare kommer vi att titta på uppgifter som kännetecknas av översättning från bråk till decimaltal, här kommer vi ta oss an uppgifterna 6009, 6016 och 6031, som nog kan uppfattas på samma sätt, men vilket också kan lösas genom 8 Nämnaren 2013

9 att ange decimaltalet direkt. Uppgifterna har det gemensamt att eleven ska välja mellan att ge absoluta tal eller relativa tal som svar. Vissa elever kommer att ha svårt med frasen hur stor del av.... Men vad är det absoluta talet i uppgift 6009? Om vi använder linjalen i figuren i testet, ser vi att längden av det skuggade området är 3,6 cm. En del av eleverna har visat att de har mätt och gett svaret i cm. Andra har i svaret på b-uppgiften sagt att de har mätt. Av dem har inte så få skrivit 3,5 cm. (Talet 3,5 kan man också få på ett annat sätt: Tre av fem delar är skuggade. Därmed skulle vi kunna bli förbryllade över vad eleven menade. Vid senare användning av denna uppgift kan man undvika detta problem genom att göra rektangeln något längre, t.ex. 8 cm, så att 4,8 cm är skuggad) a Ange med ett decimaltal ungefär hur stor del av rektangeln som är skuggad. b) Varför är detta det rätta svaret? 6009 a åk 6 åk 8 0,6 eller 0, Två decimaler i området 0,55 0, , ,75 eller liknande 3 4 3, Icke-skuggade delen 2 1 Bråk eller procent Andra svar Som redan nämnts avslöjas mätning av det skuggade området i svaret på fråga b. Vissa elever har motivera svaret på uppgift a, med att drygt hälften är skuggat. En del elever har försökt att ta reda på om hela rektangeln kan delas upp i lika stora delar, så att det skuggade området representerar ett helt antal av dessa. Därefter har de försökt att ange ett decimaltal som uttrycker detta förhållande. 30 respektive 42% i 6:e och 8:e klass ger en godtagbar förklaring och motsvarande 6 och 8% ger en felaktig. Uppgift 6016 har samma problemställning som 6009, men det har en form som inbjuder till att räkna och ta utgångspunkt i ett bråk eller ett förhållande genom att rektangeln är indelad i lika stora kvadrater. Uppgift a är en sluten uppgift. Distraktorerna, de felaktiga svarsalternativen, är felsvar som är vanliga i denna typ av problemställningar. Uppgift 6016 b ger eleverna möjlighet att med egna ord uttrycka de tankar som ligger bakom svaret i a. I stor utsträckning ges förklaringar som bekräftar det man kan förvänta om hur distraktorerna fungerade a) Ange med ett decimaltal hur stor del av hela rektangeln som är skuggad. b) Varför är detta det rätta svaret? 6016 a åk 6 åk 8 0, , , , NÄMNAREN

10 Uppgift 6031 har gemensamma drag med både uppgift 6009 och Här utförs räkningen eller mätningen med de mått som anges i figuren. En felkälla i denna uppgift är att vissa elever har svårt att tolka figuren. Bristande rumsuppfattning avslöjas av det faktum att eleverna ritar en linje från den bakre kanten av vattennivån till ca 2,5 (eller 2,3) på tallinjen och ger svaret 2,5 (eller 2,3) vid avläsningen. Svarsfördelningen visar i stort sett samma bild som i uppgift a. Ange med ett decimaltal hur stor del av hela glaset som är fyllt med vatten. A. 2,5 B. 0,4 C. 2,3 D. 0,2 b. Varför är detta det rätta svaret? 6031 a åk 6 åk 8 0, , , , Omedelbart kan kategorierna i uppgifterna 6016 och 6031 jämföras. Uppgift 6016 har varit lättare i båda årskurserna, trots att talen i 6031 är lättare. För båda uppgifterna är det dock förhållandevis få rätta svar, när vi jämför med antalet rätta svar i uppgift 6009 a, som hade en öppen form. Många har i uppgifterna 6016 och 6031 sett på decimaltecknet som en avgränsare mellan två hela tal. Detta gäller ca 50% av eleverna i 6:e klass och över 35% i 8:e klass. I uppgift 6016 har cirka två tredjedelar av dem som använder decimaltecknet som avgränsare, valt att jämföra den skuggade delen med helheten (8,20). Att betydligt färre har gjort detta i uppgift 6031, reser intressanta spörsmål. Intuitivt kan man i uppgift 6031 förvänta sig att när både talet för den fyllda delen (2) och hela glasets volym (5) var angivna, borde användning av 2 och 5 ligga nära till hands. Kan orsaken till att så få använder dessa tal, ligga i bristen på uppfattningen av volymen i ett öppet glas? Kanske är eleverna för obekanta med kontexten. I uppgift 6016, kan man tänka sig att eleverna först räknar de skuggade rutorna (8) och de vita (12). Detta sätt att konkretisera används ofta vid undervisning om bråk. Detta kan leda till att eleverna väljer att jämföra den skuggade delen med hela figuren. De jämför 8 och 20. Decimaltecknet blir ett skiljetecken mellan täljare och nämnare. Det är intressant att den öppna uppgiften, 6009 a, utan markeringar på figuren som kunde hjälpa till att finna det rätta förhållandet, visar sig vara betydligt lättare än uppgift 6016 a och 6031 a. Kan förklaringen vara att ju mer tillgängliga de absoluta storlekarna i figurerna är, desto mer störande verkar de vara, så att eleverna hemfaller till mer primitiva tankemodeller? Positionssystemet Tidigare har vi diskuterat olika problem eleverna har med symbolhantering av decimaltal. En viktig grund för att bygga upp en god förståelse av detta område är att man har förstått positionssystemet. När det gäller decimaldelen av ett tal, är det viktigt att veta att till exempel talet 0,437 har värdet fyra tiondelar plus tre hundradelar plus sju tusendelar; och att 10 NÄMNAREN 2013

11 detta är detsamma som 437 tusendelar. I det här avsnittet diskuterar vi några frågor som alla handlar om positionssystemet. Vi kommer också att se på de problem som eleverna möter när de ska skriva bråk som decimaltal. Uppgifterna 4005 och 4006 ingår för alla årskurser Vad betyder siffran 7 i 0,573? A 70 B 7 C 0,7 D 0, åk 4 åk 6 åk 8 0, , Vilken siffra står på hundradelsplatsen i 6,423? A 6 B 4 C 2 D åk 4 åk 6 åk Tabellerna visar att förvånansvärt många studenter väljer fel svarsalternativ. Vi tycker att det är rimligt att tro att något av detta kan förklaras av den det vanligaste sättet att läsa ut ett decimaltal. Antalet 0,573 läses som noll komma femhundrasjuttiotre. Detta sätt att läsa bidrar till att förstärka missuppfattningen att decimaltal är ett par hela tal. Talet 5 är inte här femhundra, utan fem tiondelar, och vi har inte sjuttio, sju hundradelar. För att verkligen förstå positionssystemet i decimaldelen i ett tal måste man gå grundligt in på strukturen i detta skrivsätt. Denna tankegång kommer inte fram om man använder decimaltal i samband med pengar. De som väljer 4 samt svar på uppgift 4006, gör det förmodligen för att de läser 423 (och 70 i uppgiften 4005 eftersom de läser 573 ). Genom att titta närmare på svaren finner man att 6%, 24% och 42% svarade rätt på bägge uppgifterna. De flesta som besvarat uppgift 4005 rätt, men fel på uppgift 4006, menar att talet 4 står på hundradelsplatsen. Följande uppgift handlar också om att förstå positionssystemet Fyra tiondelar är detsamma som hundradelar åk 4 åk 6 åk ,4 eller 0, , Nämnaren

12 Vi lägger märke till den låga frekvensen korrekta svar på denna uppgift (särskilt i 8:e klass) och att många av dessa elever svarar 0,4 eller 0,40. Detta svar kan förklaras av de vet att fyra tiondelar är samma som 40 hundradelar, och att detta kan skrivas som 0,40 eller 0,4. De svarar en annan fråga än den uppgiften ställer. Notera också att många elever tror att det är lika många hundradelar som tiondelar. I uppgift 6015 ska studenterna skriva bråk i decimalform. Svaren visar några problem som kan klassificeras som avsaknad av förståelse av positionssystemet. De flesta eleverna klarar uppgift 6015 a (72%, 89% och 94% för de tre årskurserna). Några få i de två lägsta årskurserna ger svar som visar att de tolkar bråkstrecket som decimaltecken (6% och 3%). De skriver t.ex. 5,10 eller 10,5. Uttryckt på ett annat sätt använder de decimaltecknet som avgränsare mellan täljare och nämnare. Decimaltecknet som avgränsare har tidigare diskuterats i några andra sammanhang. Denna missuppfattning kommer tydligare fram i de övriga deluppgifterna Sju tiondelar kan skrivas som 0,7. Skriv följande tal i decimalform: a) Fem tiondelar b) Tre hundradelar c) Elva tusendelar d) Elva tiondelar e) Två femtedelar f) En tredjedel Tabellen visar andelen elever som gör detta fel i de olika deluppgifterna ovanför åk 4 åk 6 åk 8 Uppgift a Uppgift b Uppgift c Uppgift d Uppgift e Uppgift f När man studerar felsvar i flera uppgifter, är det intressant att notera hur feltyper varierar från uppgift till uppgift. Vi ser hur nya feltyper, som att uppfatta decimaltecknet som en avgränsare mellan täljare och nämnare (eller tolka bråkstreck som decimaltecken) blir aktuella när uppgifterna är mindre bekanta för eleverna. Många elever med vaga begrepp faller i sådana sammanhang tillbaka till mer primitiva sätt att uppfatta begreppet. Frekvens för korrekta svar och de vanligaste misstagen i uppgift 6015 är: 12 Nämnaren 2013

13 6015 åk 4 åk 6 åk 8 b) 0, Vanligt fel: 0, c) 0, Vanligt fel: 0, d) 1, Vanligt fel: 0, e) 0, Vanligt fel: 0,2 e.d ,1 e.d ,5 e.d. 9 7 f) 0,333; 0, Vanligt fel: 0, ,1; 0,01 e.d. 6 3 Notera hur hög frekvensen är på de vanliga felsvaren i uppgifterna b, c och d, och hur stabilt den är för alla årskurser. Särskilt intressant är att se hur felsvaret 0,0011 blir vanligare ju äldre eleverna är. Dessa elever tycker nog att när det gäller tusendelar, så det är först två nollor bakom decimaltecknet, och sedan kommer värdet på täljaren, här 11, (eller att de börjar med att skriva talet på tusendelsplatsen). Liknande tänkande kan också vara anledningen till att de svarar 0,11 i uppgift d. Vi ser att eleverna blir bättre med åldern, men det verkar som om många av dem som gör misstag konvergerar till specifika feltyper. Detta kan ofta härledas till felaktig användning av faktakunskaper. Referenser Brekke, G. (1995). Introduksjon til diagnostisk undervisning i matematikk. Oslo: Nasjonalt lærermiddelsenter. Brekke, G. (1995). Veiledning til diagnostiske Prøver.Tall og tallregning. Oslo: Nasjonalt lærermiddelsenter. Brekke, G. & Støren, H. (1995). Kvalitet i matematikundervisningen. Nämnaren 22 (3), Department of Education and Science. (1982). Mathematical Development. London: HMSO. Diagnostiske prøver 4. klasse, 6. klasse og 8. klasse. Oslo: Nasjonalt lærermiddelsenter. Nämnaren

Räkning med decimaltal

Räkning med decimaltal Gard Brekke Räkning med decimaltal I denna artikel beskrivs och diskuteras sådana uppfattningar som kommit fram när man studerat hur elever räknar med tal i decimalform. De uppfattar ibland talen som par

Läs mer

Kvalitet i matematikundervisningen

Kvalitet i matematikundervisningen Kvalitet i matematikundervisningen Gard Brekke och Helge Støren I detta norska projekt är syftet att analysera elevers missuppfattningar i matematik och stödja lärares arbete med dessa. Man utvecklar skriftliga

Läs mer

1 Josefs bil har gått kilometer. Hur långt har den gått när han har kört (3) tio kilometer till? km

1 Josefs bil har gått kilometer. Hur långt har den gått när han har kört (3) tio kilometer till? km Test, version, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona

Läs mer

Tal i decimalform. Kapitlet behandlar. Att förstå tal

Tal i decimalform. Kapitlet behandlar. Att förstå tal Tal i decimalform Kapitlet behandlar Test Beteckningar, även pengar och mätetal 4, 5 Talens storlek 4, 5, 6, 7, 8 Talens relativa storlek 5, 6, 7, 8, 9 Decimalernas värde i positionssystemet 7, 8, 9 5

Läs mer

Facit följer uppgifternas placering i häftet.

Facit följer uppgifternas placering i häftet. Facit följer uppgifternas placering i häftet. Sidan 2: Ringa in talet som är närmast en hel. 0,9 Skriv talet i decimalform. tre tiondelar 0,3 en tiondel 0,1 två tiondelar 0,2 sex tiondelar 0,6 sju tiondelar

Läs mer

0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7

0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7 Facit följer uppgifternas placering i häftet. Sidan 2: Tal i decimalform Tiondelar 0,9 är närmast en hel Skriv talet i decimalform. sju tiondelar 0,7 en tiondel 0,1 fyra tiondelar 0,4 fem tiondelar 0,5

Läs mer

Tal i bråkform. Kapitlet behandlar. Att förstå tal

Tal i bråkform. Kapitlet behandlar. Att förstå tal Tal i bråkform Kapitlet behandlar Test Användning av hälften och fjärdedel 2 Representation i bråkform av del av antal och av del av helhet 3, Bråkform i vardagssituationer Stambråk, bråkuttryck med 1

Läs mer

1 Boris stegmätare visar att han har gått steg. Vad visar den när Boris har gått tio steg till? Fortsätt talmönstret.

1 Boris stegmätare visar att han har gått steg. Vad visar den när Boris har gått tio steg till? Fortsätt talmönstret. Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet ungefär i uppgift

Läs mer

1 Aylas bil har gått 14 999 kilometer. Hur långt har den (2) gått när hon har kört en kilometer till? 15 000

1 Aylas bil har gått 14 999 kilometer. Hur långt har den (2) gått när hon har kört en kilometer till? 15 000 Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet ungefär i uppgift

Läs mer

Rationella tal. R. Området består av följande tre delområden: Sambanden mellan delområden ser ut så här: RB Bråk. AG Grundläggande Aritmetik

Rationella tal. R. Området består av följande tre delområden: Sambanden mellan delområden ser ut så här: RB Bråk. AG Grundläggande Aritmetik . Diagnoserna i området avser att kartlägga elevernas förståelse och färdighet avseende tal i bråkform, tal i decimalform, proportionalitet och procent. Området består av följande tre delområden: B Bråk

Läs mer

1 Julias bil har har gått kilometer. Hur långt har den gått när den har (3) körts tio kilometer till? km

1 Julias bil har har gått kilometer. Hur långt har den gått när den har (3) körts tio kilometer till? km Test 8, version, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad.

Läs mer

KURSBESKRIVNING - MATEMATIK

KURSBESKRIVNING - MATEMATIK KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Jeff Linder, Daniel Spångberg, Emil Ohlander Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var

Läs mer

Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath

Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath maria hilling-drath Konkretion av decimaltal En nödvändig ingrediens för förståelse Här presenteras ett sätt att förstärka begrepp kring decimaltal. Med hjälp av tiobasmaterial får eleverna bygga tal för

Läs mer

Matematik klass 4. Höstterminen. Facit. Namn:

Matematik klass 4. Höstterminen. Facit. Namn: Matematik klass 4 Höstterminen Facit Namn: Använd ditt facit ofta för att se om du är på rätt väg och förstår. Om det är något som är konstigt, diskutera med din lärare eller en kompis. Du måste förstå

Läs mer

1 Julias bil har gått km. Hur långt har den gått när den har körts tio (3) kilometer till? Rita en ring runt det största bråket.

1 Julias bil har gått km. Hur långt har den gått när den har körts tio (3) kilometer till? Rita en ring runt det största bråket. Test 9, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet

Läs mer

KURSBESKRIVNING - MATEMATIK

KURSBESKRIVNING - MATEMATIK KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Daniel Spångberg Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var de olika siffrorna i ett tal

Läs mer

Matematik klass 4. Vårterminen FACIT. Namn:

Matematik klass 4. Vårterminen FACIT. Namn: Matematik klass 4 Vårterminen FACIT Namn: Använd ditt facit ofta för att se om du är på rätt väg och förstår. Om det är något som är konstigt, diskutera med din lärare eller en kompis. Du måste förstå

Läs mer

Matematik Formula, kap 3 Tal och enheter

Matematik Formula, kap 3 Tal och enheter Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå

Läs mer

5 Olga fyller hundra år idag. Vilket år föddes hon? (3) [Du kan muntligt tala om vilket år det är nu. Visa det inte skriftligt.

5 Olga fyller hundra år idag. Vilket år föddes hon? (3) [Du kan muntligt tala om vilket år det är nu. Visa det inte skriftligt. Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet ungefär i uppgift

Läs mer

Matematik klass 4. Vårterminen. Namn: Anneli Weiland Matematik åk 4 VT 1

Matematik klass 4. Vårterminen. Namn: Anneli Weiland Matematik åk 4 VT 1 Matematik klass 4 Vårterminen Namn: Anneli Weiland Matematik åk 4 VT 1 Först 12 sidor repetition från höstterminen. Addition 7+5= 8+8= 7+8= 7+7= 8+3= 7+6= 6+6= 8+5= 6+5= 9+3= 9+5= 6+9= Subtraktion 11-2=

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

Matematik klass 4. Höstterminen. Namn: Anneli Weiland Matematik åk 4 HT 1

Matematik klass 4. Höstterminen. Namn: Anneli Weiland Matematik åk 4 HT 1 Matematik klass 4 Höstterminen Namn: Anneli Weiland Matematik åk 4 HT 1 Minns du addition? 7+5= 8+8= 7+8= 7+7= 8+3= 7+6= 6+6= 8+5= 6+5= 9+3= 9+5= 6+9= 9+2= 8+4= 7+4= 9+4= 6+7= 9+6= 9+7= 7+9= 8+7= 6+8=

Läs mer

Ansvarig lärare: Maria Lindström eller , Camilla Sjölander Nordin eller

Ansvarig lärare: Maria Lindström eller , Camilla Sjölander Nordin eller Skolmatematiktenta LPGG05 Kreativ Matematik 21 april 2016 8.15 13.15 Hjälpmedel: - Ansvarig lärare: Maria Lindström 054-7002146 eller 070-5699283, Camilla Sjölander Nordin 054-7002313 eller 070-2907171

Läs mer

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk.

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk. täljare bråkstreck ett bråk nämnare Vilket bråk är störst? Ett bråk kan betyda mer än en hel. Olika bråk kan betyda lika mycket. _ 0 två sjundedelar en hel och två femtedelar > 0 > 0 < > > < > Storlek

Läs mer

Aritme'k med fokus på nyanlända elever. Madeleine Löwing

Aritme'k med fokus på nyanlända elever. Madeleine Löwing Aritme'k med fokus på nyanlända elever Madeleine Löwing www.madeleinelowing.se madeleine@lowing.eu Kultur och matema'kundervisning Andelen elever med invandrarbakgrund ökar i våra klasser. Undervisningen

Läs mer

Boken Förstå och använda tal en handbok behandlar 22 områden av elevers

Boken Förstå och använda tal en handbok behandlar 22 områden av elevers Marie Mäkiranta Att diagnostisera elevers kunskaper och missuppfattningar Författaren har i ett fördjupningsarbete under en kurs i Lärarlyftet arbetat med boken Förstå och använda tal en handbok av Alistair

Läs mer

1Mål för kapitlet. Tal i decimalform. Förmågor. Ur det centrala innehållet 0? 1 15,9 19,58 158,9 15,89. Problemlösning. Metod

1Mål för kapitlet. Tal i decimalform. Förmågor. Ur det centrala innehållet 0? 1 15,9 19,58 158,9 15,89. Problemlösning. Metod Taluppfattning Kapitlets innehåll I kapitel möter eleverna decimaltal för första gången. Det första avsnittet handlar om vårt talsystem och att de hela tal eleverna tidigare jobbat med går att dela in

Läs mer

Lgr 11 matriser i Favorit matematik 4 6

Lgr 11 matriser i Favorit matematik 4 6 Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen

Läs mer

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter: Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många?

a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många? 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? Exempel a) 1 2 b) 4 5 a) b) c) c) 6 7 3. Hur många? 4. Beräkna. Exempel 1 + 2 = 3 a) 3 + 1 = 4 a) 4 b) 5 b) 4 + 2 = 6 c) 3 + 3 = 6 c) 3 d) 2 GILLA

Läs mer

Att förstå bråk och decimaltal

Att förstå bråk och decimaltal Att förstå bråk och decimaltal Flera undersökningar som är gjorda visar att elever har svårt att förstå bråk. I undervisningen är det också vanligt att eleverna lär sig olika regler för bråk, men få förstår

Läs mer

Bråk. Introduktion. Omvandlingar

Bråk. Introduktion. Omvandlingar Bråk Introduktion Figuren till höger föreställer en tårta som är delad i sex lika stora bitar Varje tårtbit utgör därmed en sjättedel av hela tårtan I nästa figur är två av sjättedelarna markerade Det

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Likhetstecknets innebörd

Likhetstecknets innebörd Likhetstecknets innebörd Följande av Görel Sterner översatta och bearbetade text bygger på boken: arithmetic & algebra in elementary school. Portsmouth: Heinemann Elever i åk 1 6 fick följande uppgift:

Läs mer

ARBETSPLAN MATEMATIK

ARBETSPLAN MATEMATIK ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera

Läs mer

Matematik Formula, kap 3 Tal och enheter

Matematik Formula, kap 3 Tal och enheter Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå

Läs mer

Wiggo Kilborn. Om tal i bråkoch decimalform en röd tråd

Wiggo Kilborn. Om tal i bråkoch decimalform en röd tråd Wiggo Kilborn Om tal i bråkoch decimalform en röd tråd Tal i bråkoch decimalform en röd tråd Wiggo Kilborn Nationellt centrum för matematikutbildning Göteborgs universitet 20 Detta verk är licensierad

Läs mer

Alistair McIntosh NSMO NCM

Alistair McIntosh NSMO NCM Alistair McIntosh NSMO NCM Syfte Hjälpa lärare att förebygga missuppfattningar och svårigheter genom god undervisning Utveckla elevers taluppfattning så långt deras förmåga räcker för fortsatta studier,

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Förstå tal i bråkform

Förstå tal i bråkform Förstå tal i bråkform Förstå tal i bråkform Erfarenheter i förskoleålder och sedan? Kursplan 2008 Skolan ska i sin undervisning sträva efter att eleven inser värdet av och använder matematikens uttrycksformer

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Extramaterial till Start Matematik

Extramaterial till Start Matematik EXTRAMATERIAL Extramaterial till Start Matematik Detta material innehåller diagnoser och facit till alla kapitel. Extramaterial till Start matematik 47-11601-0 Liber AB Får kopieras 1 70 Innehållsförteckning

Läs mer

Taluppfattning och allsidiga räknefärdigheter

Taluppfattning och allsidiga räknefärdigheter Taluppfattning och allsidiga räknefärdigheter Handbok med förslag och råd till lärare för att kartlägga, analysera och åtgärda elevers svårigheter och begreppsliga missuppfattningar inom området tal och

Läs mer

Lärarhandledning matematik

Lärarhandledning matematik Kartläggningsmaterial för nyanlända elever Lärarhandledning matematik 1 2 Steg 3 Det här materialet är det tredje steget i kartläggningen av nyanlända elevers kunskaper. Det syftar till att ge läraren

Läs mer

Storvretaskolans Kursplan för Matematik F-klass- år 5

Storvretaskolans Kursplan för Matematik F-klass- år 5 2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

1Mer om tal. Mål. Grunddel K 1

1Mer om tal. Mål. Grunddel K 1 Mer om tal Mål När eleverna har studerat det här kapitlet ska de: kunna multiplicera och dividera med positiva tal mi ndre än veta vad ett negativt tal är kunna addera och subtrahera negativa tal kunna

Läs mer

Mål Blå kursen Röd kurs

Mål Blå kursen Röd kurs Tal Mål När eleverna har arbetat med det här kapitlet ska de förstå varför vi använder decimaler kunna storleksordna decimaltal förstå betydelsen av orden deci, centi och milli kunna räkna med decimaltal

Läs mer

Att förstå algebra. Liv Sissel Grønmo & Bo Rosén

Att förstå algebra. Liv Sissel Grønmo & Bo Rosén Att förstå algebra Liv Sissel Grønmo & Bo Rosén I Nämnaren nr 1, 1998 presenterades diagnostiska uppgifter kring inledande algebra, generaliseringar oc elevers uppfattningar av symboler. Uppgifterna ar

Läs mer

Tal i bråkform. Kapitlet behandlar. Att förstå tal

Tal i bråkform. Kapitlet behandlar. Att förstå tal Att förstå tal Tal i bråkform Kapitlet behandlar Test Användning av hälften och fjärdedel 2 Representation i bråkform av del av antal och av del av helhet 3, 4 Bråkform i vardagssituationer 4 Stambråk,

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Olika proportionella samband, däribland dubbelt och hälften.

Olika proportionella samband, däribland dubbelt och hälften. Karin Landtblom & Anette De Ron Gruppera mera! Dubbelt och hälften är vanliga inslag i den tidiga matematikundervisningen. Elever ska ringa in hälften av något eller rita så att det blir dubbelt så många.

Läs mer

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte

Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande

Läs mer

Del B, C och D samt gruppuppgifter

Del B, C och D samt gruppuppgifter Del A: Du och matematiken Information om Del A Beskrivning: I Del A ska eleverna bedöma hur säkra de känner sig i vissa situationer då de ska använda matematik. Det är en fördel att börja med Del A innan

Läs mer

Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är.

Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är. Arbetsblad 1:1 Tal i bråkform och i decimalform Grundbok: grundkurs s. 8 blåkurs s. 0 1 Svara i bråkform hur stor andel av den stora rutan som är a) grå b) kryssad c) prickad d) vit 2 Svara i decimalform

Läs mer

Likhetstecknets innebörd

Likhetstecknets innebörd Modul: Algebra Del 5: Algebra som språk Likhetstecknets innebörd Följande av Görel Sterner (2012) översatta och bearbetade text bygger på boken: Carpenter, T. P., Franke, M. L. & Levi, L. (2003). Thinking

Läs mer

Pedagogisk planering i matematik

Pedagogisk planering i matematik Pedagogisk planering i matematik Myrstacken Äldre årskurs 6, Hällby skola L= mest för läraren E= viktigt för eleven Gäller för första delen av HT15 Förankring i kursplanen - L Syfte L Eleven ska genom

Läs mer

Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:

Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad: Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva

Läs mer

Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller =

Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller = n se ta l l ta al u at sen nt al rat l r l d d n iotu se hun tiot a ent a hu t tu + + 7 tiotusental tusental 7 tiotal 7 7 7 7 Ju längre till höger, desto större är talet. 7 > 7 Siffran betyder tiotusental

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

Arbetsblad 1:1. Tiondelar på tallinjen 0,1 0,5 0,9 0,2 0,8 0,3 0,8 1,1 1,5 1,6 2,1 2,4 1,1 1,4 2,6 3,2 3,8

Arbetsblad 1:1. Tiondelar på tallinjen 0,1 0,5 0,9 0,2 0,8 0,3 0,8 1,1 1,5 1,6 2,1 2,4 1,1 1,4 2,6 3,2 3,8 Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,1 0,5 0,9 1,2 0 1 2 0,3 0,8 1,1 1,5 0 1 3 1,1 1,6 2,1 2,4 1 2 4 5 0,2 0,8 1,4 2,6 0 1 2 3 1,4 2,6 3,2 3,8 1 2 3 4 6 Sätt ut pilar som

Läs mer

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar

Läs mer

Arbetsblad 1:1. Tiondelar på tallinjen. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4

Arbetsblad 1:1. Tiondelar på tallinjen. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0 1 2 0 1 3 1 2 4 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar på talen:

Läs mer

Kommentarmaterial, Skolverket 1997

Kommentarmaterial, Skolverket 1997 Att utveckla förstf rståelse för f r hela tal Kommentarmaterial, Skolverket 1997 Att lära sig matematik handlar om att se sammanhang och att kunna föra logiska resonemang genom att känna igen, granska

Läs mer

Lokal kursplan i matematik för Stehags rektorsområde

Lokal kursplan i matematik för Stehags rektorsområde Lokal kursplan i matematik för Stehags rektorsområde MÅL Att eleverna ska få möjligheter att tillgodogöra sig de matematiska kunskaper som krävs för att uppnå kursplanens mål. Att eleverna ges en varierande

Läs mer

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.

Läs mer

Denna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk)

Denna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk) UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-24 SÄL 1-10p Avsnitt 1.1 Grundläggande begrepp Detta avsnitt behandlar de symboler som används

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje.

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje. En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 7 = + + 7 Siffran 6 betyder 6 tusental = 6 tusental hundratal 4 8 7 6 9 tiotal ental Siffran 9 betyder 9 tiotal

Läs mer

IBSE Ett självreflekterande(självkritiskt) verktyg för lärare. Riktlinjer för lärare

IBSE Ett självreflekterande(självkritiskt) verktyg för lärare. Riktlinjer för lärare Fibonacci / översättning från engelska IBSE Ett självreflekterande(självkritiskt) verktyg för lärare Riktlinjer för lärare Vad är det? Detta verktyg för självutvärdering sätter upp kriterier som gör det

Läs mer

Sammanfattningar Matematikboken X

Sammanfattningar Matematikboken X Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för

Läs mer

MATEMATIK. Läroämnets uppdrag

MATEMATIK. Läroämnets uppdrag MATEMATIK Läroämnets uppdrag Syftet med undervisning i matematik är att utveckla ett logiskt, exakt och kreativt matematisk tänkande hos eleven. Undervisningen skapar en grund för förståelsen av matematiska

Läs mer

Veckomatte åk 5 med 10 moment

Veckomatte åk 5 med 10 moment Veckomatte åk 5 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 5 4 Strategier för Veckomatte - Åk 5 5 Veckomatte

Läs mer

Introduktion. Syfte med handboken Generella utgångspunkter Beskrivning av materialets delar Hur handboken kan användas

Introduktion. Syfte med handboken Generella utgångspunkter Beskrivning av materialets delar Hur handboken kan användas Syfte med handboken Generella utgångspunkter Beskrivning av materialets delar Hur handboken kan användas Förstå och använda tal Detta material har utvecklats av professor Alistair McIntosh, som är verksam

Läs mer

Att undervisa multiplikation och division med 10, 100 och 1000

Att undervisa multiplikation och division med 10, 100 och 1000 Att undervisa multiplikation och division med 10, 100 och 1000 Learning Study i praktiken Tina Edner & Tinna Lidgren Bakgrund Grundskolan Nya Elementar i Stockholm Analys av nationella prov och lärarnas

Läs mer

Blandade uppgifter om tal

Blandade uppgifter om tal Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.

Läs mer

0,15 är inte större än 0,8 En litteraturstudie kring vanliga missuppfattningar kring decimaltal

0,15 är inte större än 0,8 En litteraturstudie kring vanliga missuppfattningar kring decimaltal Dokumenttyp 0,15 är inte större än 0,8 En litteraturstudie kring vanliga missuppfattningar kring decimaltal Författare: Elin Pettersson Handledare: Annica Andersson Examinator: Jeppe Skott Termin: HT14

Läs mer

PRIM-gruppen vid Lärarhögskolan

PRIM-gruppen vid Lärarhögskolan LENA ALM 2002 års nationella prov för skolår 5 Här redovisas sammanställningen av lärarenkäter och elevarbeten till femmans ämnesprov i matematik som genomfördes våren 2002. PRIM-gruppen vid Lärarhögskolan

Läs mer

Copyright Per-Olof o Christine Bentley MATTEMISSAR, ORSAKER OCH ÅTGÄRDER. Matematiksvårigheter

Copyright Per-Olof o Christine Bentley MATTEMISSAR, ORSAKER OCH ÅTGÄRDER. Matematiksvårigheter 1 MATTEMISSAR, ORSAKER OCH ÅTGÄRDER Matematiksvårigheter 2017-09-18 BLOCKERANDE MISSTAG Fördröjd aritmetisk utveckling B Interferensfel subtraktion B Interferensfel notationssystem B Automatisering addition

Läs mer

Namn: Hundradelar. 4 tiondelar 0, 4 17 tiondelar 1, tiondelar 298 hundradelar. Hundradelar. 98 hundradelar 875 hundradelar

Namn: Hundradelar. 4 tiondelar 0, 4 17 tiondelar 1, tiondelar 298 hundradelar. Hundradelar. 98 hundradelar 875 hundradelar arbetsblad 1:1 Positionssystemet > > Skriv talen med siffror. Glöm inte decimaltecknet. Ental Tiondelar Hundradelar 1 tiondel 0, 1 52 hundradelar 0, 5 2 tiondelar 0, 17 tiondelar 1, 7 9 tiondelar 0, 9

Läs mer

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Tentamen består av 26 uppgifter fördelade på fem olika ämnesområden. Del 2 5 ger maximalt 11 poäng/del.

Tentamen består av 26 uppgifter fördelade på fem olika ämnesområden. Del 2 5 ger maximalt 11 poäng/del. Skolmatematiktenta LPGG05 Kreativ Matematik 23 augusti 2016 8.15 13.15 Hjälpmedel: - Ansvarig lärare: Maria Lindström 054-7002146 eller 070-5699283 På omslagsbladet står att ni måste använda ett blad per

Läs mer

Föreläsning 4: Aritmetik, forts. Tal i bråkform Tal i decimalform Sambandet mellan tal i bråkform och decimalform Procentbegreppet och Procenträkning

Föreläsning 4: Aritmetik, forts. Tal i bråkform Tal i decimalform Sambandet mellan tal i bråkform och decimalform Procentbegreppet och Procenträkning Föreläsning 4: Aritmetik, forts. Tal i bråkform Tal i decimalform Sambandet mellan tal i bråkform och decimalform Procentbegreppet och Procenträkning Algebra Läroplanen om algebra och algebraiskt tänkande

Läs mer

MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med

MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med MATEMATIK Åk 1 Åk 2 Naturliga tal 0-100 Naturliga tal 0-100 Talföljd Talföljd Tiokamrater Större än, mindre än, lika med Större än, mindre än, lika med Positionssystemet Sifferskrivning Talskrivning Add.

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

PRIM-gruppen vid Lärarhögskolan i

PRIM-gruppen vid Lärarhögskolan i LENA ALM & LISA BJÖRKLUND Femmans prov år 2000 Här redovisas sammanställningen av lärarenkäter och elevarbeten i femmans ämnesprov i matematik, våren 2000. En jämförelse görs också av hur säkra eleverna

Läs mer

Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är.

Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är. Arbetsblad 1:1 Tal i bråkform och i decimalform Grundbok: grundkurs s. 8 blåkurs s. 0 1 Svara i bråkform hur stor andel av den stora rutan som är a) grå b) kryssad c) prickad d) vit 2 Svara i decimalform

Läs mer

Utvidgad aritmetik. AU

Utvidgad aritmetik. AU Utvidgad aritmetik. AU Delområdet omfattar följande tio diagnoser som är grupperade i tre delar, negativa tal, potenser och närmevärden: AUn1 Negativa tal, taluppfattning AUn Negativa tal, addition och

Läs mer

Lathund, bråk och procent åk 7

Lathund, bråk och procent åk 7 Lathund, bråk och procent åk 7 Är samma som / som är samma som en tredjedel och samma som en av tre. är täljaren (den säger hur många delar vi har), tänk täljare = taket = uppåt är nämnaren (den säger

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Facit till Mattespanarna 6B Lärarboken. Facit till Mattespanarna 6B Lärarboken best.nr Får kopieras Författarna och Liber AB 1/9

Facit till Mattespanarna 6B Lärarboken. Facit till Mattespanarna 6B Lärarboken best.nr Får kopieras Författarna och Liber AB 1/9 Facit till Mattespanarna 6B Lärarboken 1/9 KOPIERINGSBLAD 1.1 Övningar med stora tal Skriv följande tal med siffror. 2 000 000 2 400 000 2 490 000 490 000 5 050 000 50 000 1 a) 2 miljoner b) 2,4 miljoner

Läs mer

Potenser och logaritmer på en tallinje

Potenser och logaritmer på en tallinje strävorna 2A 7B Potenser och logaritmer på en tallinje begrepp matematikens utveckling taluppfattning algebra Avsikt och matematikinnehåll I läroböcker är det standard att presentera potenslagarna som

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

identifiera geometriska figurerna cirkel och triangel

identifiera geometriska figurerna cirkel och triangel MATEMATIK F-klass Genom att använda matematik i meningsfulla sammanhang visar vi barnen vilka möjligheter den ger. Ex datum, siffror och antal, ålder, telefonnummer mm. Eleven bör kunna: benämna siffrorna

Läs mer

Ämnesprovet i årskurs 3 ska fylla flera syften. Det ska dels vara ett stöd

Ämnesprovet i årskurs 3 ska fylla flera syften. Det ska dels vara ett stöd Astrid Pettersson & Anette Skytt Hur gick det? Ämnesprov i matematik för årskurs 3, 2009 Under våren 2009 genomfördes för första gången nationella ämnesprov i matematik och svenska för årskurs 3. Eftersom

Läs mer

Arbetsblad 1:1. 1 a) b) c) d) 2 a) b) c) d) 3 a) 8 b) 42 c) 189 d) a) b) c) d)

Arbetsblad 1:1. 1 a) b) c) d) 2 a) b) c) d) 3 a) 8 b) 42 c) 189 d) a) b) c) d) Arbetsblad 1:1 Egyptiska och romerska talsystemet Skriv med vanliga siffror 1 a) b) c) d) 2 a) b) c) d) Skriv med egyptiska talsymboler 3 a) 8 b) 42 c) 189 d) 2 431 4 a) 111 111 b) 43 245 c) 402 000 d)

Läs mer

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik

Läs mer