Provlektion till Uppdrag: Matte 9

Storlek: px
Starta visningen från sidan:

Download "Provlektion till Uppdrag: Matte 9"

Transkript

1 Provlektion till Uppdrag: Matte 9

2 Linjära funktioner En resa i biljettdjungeln I läromedlet Uppdrag: Matte arbetar eleverna med två spår, Uppdrag eller Räkna på. Här kommer ett prov på en lektion där uppdraget går ut på att göra en smart biljettguide för dem som ska resa i London, Göteborg, Paris och New York. Lycka till! Målgrupp: ÅK 9 Centralt innehåll: SAMBAND OCH FÖRÄNDRING/ linjära funktioner Förberedelser: Skriv ut och kopiera s samt s s. 188 s. 189 Genomförande: Dela ut kopiorna med Uppdraget. Låt gärna eleverna arbeta i grupp, minst två i varje. Be dem välja en av de fyra städerna. Märker du att eleverna kör fast, dela gärna ut Teorisidorna som stöd. s. 194 s. 195 Eleverna kan redovisa sina resultat muntligt, låt gärna broschyrerna hänga kvar i klassrummet. Provlektion till Uppdrag: Matte 9 best.nr Författarna och Liber AB Får kopieras 2 2

3 uppdrag En resa i biljettdjungeln Det är inte lätt att alltid välja rätt. Gör en smart biljettguide för turister. Antal personer: 1 2 Material: information om biljetter för kollektivtrafiken i andra städer än de som nämns här, ev. aktuella växelkurser 16. Välj en stad. Hur bör turisten resonera när han eller hon ska välja bland utbudet av biljettalternativ? Svara t.ex. på frågor som: När lönar det sig att bara åka på enkelbiljetter, dvs. betala för en resa i taget? Hur mycket måste jag åka för att ett flerdagarskort ska löna sig? När bör jag investera i ett månadskort? Glöm inte att skriva ner hur ni tänker, räknar och resonerar a) Vilka metoder använde ni när ni kom fram till era svar? b) Vad är bra med dessa metoder? c) Finns det andra, bättre eller sämre, metoder? 18. Gör samma sak för minst en stad till. Byt metoder om ni vill. 19. Presentera era rekommendationer i en broschyr. Visa också hur ni kommit fram till era slutsatser.

4 Göteborg (ungdom) Månadskort (30 dagar): 335 kr Värdeladdning (kortet laddas i förväg med 100 kr, 200 kr etc.): Kortavgift: Enkelbiljett: 50 kr 12,40 kr London (ungdom år) Enkelbiljett 4.00 Kort (obegränsat resande): 7 dagar månad uppdrag Enkelbiljett (s.k. sms-biljett): 16 kr New York Paris Enkelbiljett 1,70 10 enkelbiljetter 12,50 Kort (obegränsat resande): 1 dag 9,30 2 dagar 15,20 3 dagar 20,70 5 dagar 29, Enkelbiljett $ 2,50 Pay-Per-Ride MetroCard (värdeladdning): Kortet laddas i förväg med mellan $ 4.80 och $ 80. Belopp över $ 10 ger 7 % extra att resa för (t.ex. en laddning på $ 20 ger $ på kortet). Enkelbiljett $ 2,25 Unlimited Ride MetroCard (obegränsat resande): 7 dagar $ dagar $ 104 Har du kört fast? Läs teorin på s

5 TEORI Linjära funktioner Ibland är grafen en rät linje. Då har vi en linjär funktion. Ökningen (eller minskningen) är konstant, vilket ger den räta linjen. Alla linjära funktioner kan skrivas med formeln y = k x + m där k visar lutningen m visar skärningspunkten med y-axeln. Genom att se hur mycket y ändras när vi ändrar x kan vi få fram ett mått på förändringen eller lutningen. I grafen här intill har vi markerat ökningen, dvs. när x-värdet ökar med 1, ökar y-värdet med 2. Vi får fram konstanten k för lutningen: skillnaden i y-led 2 k = = = 2 skillnaden i x-led 1 Här är x = 0. Då är y = 4. Skärningspunkten med y-axeln visar det värde som vi behöver lägga till eller dra ifrån för att få fram y om vi vet x. Om x är 0 (noll), vad är då y? I grafen här intill ser vi att y = 4 när x = 0. Det ger m = 4. Funktionen i grafen kan alltså beskrivas med formeln: y = 2 x y x 194 Ex 8 Rita grafen utifrån värdetabellen och teckna formeln. x y Titta på värdena i tabellen när du ska bestämma hur långa axlarna ska vara. Ta med några negativa tal också: x-axeln bör gå från 2 till minst 5 och y-axeln från 2 till 8. Sätt ut punkterna. Dra en linje mellan punkterna. Dra ut linjen på båda sidor om ytterpunkterna. Lutningen: 2 När x ökar med 1 (t.ex. från 3 till 4) så minskar y med 1. k = 1 = 1 Minskning ger negativt värde på k. 1 Skärningspunkten med y-axeln: Läser av grafen. m = 8 Funktionen kan beskrivas med formeln: y = 1 x + 8 = x y x

6 Ex 9 Tuva blir erbjuden ett sommarjobb. Hon ska boka kundmöten. Hon får välja om hon vill ha en fast månadslön på kr eller om hon vill ha kr i grundlön och sedan 25 kr för varje bokat möte. När lönar sig de olika alternativen bäst? Tabell: Antal bokade möten Fast lön Lön med rörlig del per månad Ur tabellen ser vi att fast lön är mer fördelaktigt upp till knappt 200 bokade möten per månad. För att få ett noggrannare svar måste vi pröva med fler värden, eller använda en annan metod. Grafer: Eftersom lönen beror av antalet möten, sätter vi kr lön Antal möten på x-axeln och Lön på y-axeln Där graferna skär varandra är båda alternativen lika. Skärningspunkten ligger över 150 men under 175. Formler: Om vi använder formler och ekvationer kan vi få ett exakt svar. antal möten MATTEbegrepp linjär funktion formel lutning skärningspunkt 195 Låt x vara antal bokade möten per månad. Låt y vara lönen. Fast lön: Samma lön oavsett hur många möten som bokas. y = Lön med rörlig del: Om Tuva bokar ett möte (x ökar med 1) ökar hennes lön med 25 (y ökar med 25): k = 25 Grundlönen som Tuva får även om hon inte bokar något möte (x = 0): m = y = 25 x Vid hur många möten ger lön med rörlig del lika mycket som den fasta lönen? 25 x = x = x = x 25 = x = 160 Svar: Om Tuva bokar 160 möten eller fler per månad tjänar hon mer genom att välja lön med rörlig del. Annars är det bättre med fast lön. TEORI

Lathund, samband & stora tal, åk 8

Lathund, samband & stora tal, åk 8 Lathund, samband & stora tal, åk 8 Den vågräta tallinjen kallas x-axeln och den lodräta tallinjen kallas y-axeln. Punkten där tallinjerna skär varandra kallas origo (0,0). När man beskriver en punkt i

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Hur länge ska fisken vara i dammen?

Hur länge ska fisken vara i dammen? Hur länge ska fisken vara i dammen? Frågeställning Uppgift 10 fiskodling Uppgiften går ut på att ta reda på hur länge ett stim fisk ska växa upp i en fiskodling för att få den maximala vikten tillsammans.

Läs mer

Introduktion till Word och Excel

Introduktion till Word och Excel Introduktion till Word och Excel HT 2006 Detta dokument baseras på Introduktion till datoranvändning för ingenjörsprogrammen skrivet av Stefan Pålsson 2005. Omarbetningen av detta dokument är gjord av

Läs mer

Repetitionsuppgifter D5

Repetitionsuppgifter D5 Repetitionsuppgifter D5 1. Skriv koordinaterna för punkterna A-D 2. Rita ett liknande koordinatsystem och markera punkterna E = (1,0), F = (6,1), G = (5,6) H = (0,5) 3. Diagrammet visar hur mycket bensin

Läs mer

Planering Funktioner och algebra år 9

Planering Funktioner och algebra år 9 Planering Funktioner och algebra år 9 Innehåll Övergripande planering... 2 Begrepp... 3 Metoder... 4 Bedömning... 4 Kommer du ihåg dessa begrepp från årskurs 8?... 5 Facit till Diagnos... 6 Arbetsblad...

Läs mer

1.1 Polynomfunktion s.7-15

1.1 Polynomfunktion s.7-15 1.1 Polynomfunktion Vad är då en funktion? En funktion är en regel i matematiken som beskriver sambandet mellan två storheter. T.ex. Hur många hjul har 3 bilar? 3 4 = 12 Hur många hjul har 4 bilar? 4 4

Läs mer

Fria matteboken: Matematik 2b och 2c

Fria matteboken: Matematik 2b och 2c Fria matteboken: Matematik 2b och 2c Det här dokumentet innehåller sammanfattning av teorin i matematik 2b och 2c, för gymnasiet. Dokumentet är fritt att använda, modifiera och sprida enligt Creative Commons

Läs mer

Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans.

Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans. Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Lathund algebra och funktioner åk 9

Lathund algebra och funktioner åk 9 Lathund algebra och funktioner åk 9 För att bli en rackare på att lösa ekvationer är det viktigt att man kan sina förutsättningar, dvs vilka matematiska regler som gäller. Prioriteringsreglerna (vilken

Läs mer

Träningsprov funktioner

Träningsprov funktioner Träningsprov funktioner 1. Använd koordinatsystemet nedan a) Vilka koordinater är markerade? b) Markera följande koordinater E: 0,6, F: 3, 2, G: 1, 2 och H: ( 3,2). 2. Skriv en berättelse som överensstämmer

Läs mer

MATEMATIK 5 veckotimmar

MATEMATIK 5 veckotimmar EUROPEISK STUDENTEXAMEN 2010 MATEMATIK 5 veckotimmar DATUM : 4 Juni 2010 SKRIVNINGSTID : 4 timmar (240 minuter) TILLÅTNA HJÄLPMEDEL : Skolans formelsamling Icke-programmerbar, icke-grafritande räknedosa

Läs mer

Godisförsäljning. 1. a) Vad blir den totala kostnaden om klassen köper in 10 kg godis? Gör beräkningen i rutan nedan.

Godisförsäljning. 1. a) Vad blir den totala kostnaden om klassen köper in 10 kg godis? Gör beräkningen i rutan nedan. Godisförsäljning För att samla in pengar till en klassresa har Klass 9b på Gotteskolan bestämt sig för att hyra ett bord och sälja godis på Torsbymarten. Det kostar 100 kr att hyra ett bord. De köper in

Läs mer

Räta linjens ekvation & Ekvationssystem

Räta linjens ekvation & Ekvationssystem Räta linjens ekvation & Ekvationssstem Uppgift nr 1 Lös ekvationssstemet eakt = 3 + = 28 Uppgift nr 2 Lös ekvationssstemet eakt = 5-15 + = 3 Uppgift nr 8 Lös ekvationssstemet eakt 9-6 = -69 5 + 11 = -35

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

NpMa2b Muntlig del vt 2012

NpMa2b Muntlig del vt 2012 Till eleven - Information inför den muntliga provdelen Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1: Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t 2 kan vi läsa av temperaturen, beloppet, hastigheten,

Läs mer

Vektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p)

Vektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p) 1. Linjerna y=2x+4, y=4 och x=3 innesluter tillsammans en triangel. Linjen y=5,5 skär triangeln i två punkter. Beräkna sträckan mellan dessa två punkter. 2. Vektorn w definieras som w = 2u v där u = (7,1)

Läs mer

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren Publicerad med tillstånd av Nämnaren Thomas Lingefjärd Geogebra i gymnasieskolan En tilltalande egenskap med Geogebra är att programmet kan användas tvärs över stora delar av utbildningssystemets matematikkurser.

Läs mer

9-2 Grafer och kurvor Namn:.

9-2 Grafer och kurvor Namn:. 9-2 Grafer och kurvor Namn:. Inledning I föregående kapitel lärde du dig vad som menas med koordinatsystem och hur man kan visa hur matematiska funktioner kan visas i ett koordinatsystem. Det är i och

Läs mer

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar Aktivitetsbeskrivning Denna aktivitet är utformat som ett spel som spelas av en grupp elever. En elev i taget agerar Gömmare och de andra är Gissare. Den som är gömmare lagrar (gömmer) tal i några av räknarens

Läs mer

9-1 Koordinatsystem och funktioner. Namn:

9-1 Koordinatsystem och funktioner. Namn: 9- Koordinatsystem och funktioner. Namn: Inledning I det här kapitlet skall du lära dig vad ett koordinatsystem är och vilka egenskaper det har. I ett koordinatsystem kan man representera matematiska funktioner

Läs mer

PROGRAMMERING A VC# 2012 EXPRESS UTVECKLINGSVERKTYGET VISUAL C#

PROGRAMMERING A VC# 2012 EXPRESS UTVECKLINGSVERKTYGET VISUAL C# PROGRAMMERING A VC# 2012 EXPRESS UTVECKLINGSVERKTYGET VISUAL C# Matte och programmering Allt det du gör idag ska ligga i samma projekt (och mapp). Varje uppgift läggs på en ny windowsform och länkas till

Läs mer

SKOLUTVECKLIGSPROJEKT MED GEOGEBRA. Jaana Zimmerl Suneson (Älvkullegymnasiet) jaana.zimmerl.suneson@alvkullegymnasiet.se

SKOLUTVECKLIGSPROJEKT MED GEOGEBRA. Jaana Zimmerl Suneson (Älvkullegymnasiet) jaana.zimmerl.suneson@alvkullegymnasiet.se ERFARENHETER FRÅN SKOLUTVECKLIGSPROJEKT MED GEOGEBRA Jaana Zimmerl Suneson (Älvkullegymnasiet Karlstad) jaana.zimmerl.suneson@alvkullegymnasiet.se mirela.vinerean@kau.se GeoGebra i matematikundervisningen

Läs mer

Bedömning av muntliga prestationer

Bedömning av muntliga prestationer Bedömningsstöd i matematik på gymnasial nivå Bedömning av muntliga prestationer Materialet har framställts under 2013 av PRIM-gruppen vid Stockholms universitet i samarbete med Institutionen för tillämpad

Läs mer

Boken om SO 1 3. Provlektion: Om demokrati och hur möten, till exempel klassråd, genomförs och organiseras.

Boken om SO 1 3. Provlektion: Om demokrati och hur möten, till exempel klassråd, genomförs och organiseras. Boken om SO 1 3 Boken om SO 1 3 är elevernas första grundbok i geografi, samhällskunskap, historia och religion. Provlektion: Om demokrati och hur möten, till exempel klassråd, genomförs och organiseras.

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1

Läs mer

Funktionsstudier med derivata

Funktionsstudier med derivata Funktionsstudier med derivata Derivatan ett kraftfullt verktyg för att studera och tolka funktioner Det här avsnittet handlar om att man kan använda derivatan till att bestämma en funktions egenskaper

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

Tummen upp! Matte ÅK 6

Tummen upp! Matte ÅK 6 Tummen upp! Matte ÅK 6 Tummen upp! är ett häfte som kartlägger elevernas kunskaper i förhållande till kunskapskraven i Lgr 11. PROVLEKTION: RESONERA OCH KOMMUNICERA Provlektion Följande provlektion är

Läs mer

Alternativdiagnos 1. 1 Vilka av talen är. 2 Vilka av talen är delbara med. 3 Dela upp talen i primfaktorer. 5 a) 4 ( 6) b) ( 12) c) ( 3) ( 7)

Alternativdiagnos 1. 1 Vilka av talen är. 2 Vilka av talen är delbara med. 3 Dela upp talen i primfaktorer. 5 a) 4 ( 6) b) ( 12) c) ( 3) ( 7) Alternativdiagnos 1 1 Vilka av talen är a) naturliga b) eltal c) rationella d) reella 2 Vilka av talen är delbara med a) 2 b) 3 c) 5 d) 6 3,4 2 7 5 8 6 243 450 394 3 Dela upp talen i primfaktorer a) 15

Läs mer

En okänd graf. Förkunskaper Elever behöver ha en grundläggande förståelse för att alla förändringar sker över tid.

En okänd graf. Förkunskaper Elever behöver ha en grundläggande förståelse för att alla förändringar sker över tid. strävorna 6D 9E En okänd graf kreativ verksamhet tolka en situation statistik förändring Avsikt och matematikinnehåll Förr förmedlades information muntligt. När tidningar och senare radio och tv blev allmän

Läs mer

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1)

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) NATUR OCH KULTURS PROV VÅRTERMINEN 1997 MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) Provets omfattning: t o m kapitel 5.6 i Matematik 2000 NV kurs AB. Provets omfattning: t o m kapitel 3.5

Läs mer

14 min 60 s min 42 s 49m 2 =18 s m 2, alltså samma tid. Vi kan säga att den tid som mamman behövde åt dammsugning var beroende av husets storlek.

14 min 60 s min 42 s 49m 2 =18 s m 2, alltså samma tid. Vi kan säga att den tid som mamman behövde åt dammsugning var beroende av husets storlek. PASS 10. FUNKTIONER 10.1 Grundbegrepp om funktioner Mamman i den finländska modellfamiljen från pass fyra brukade dammsuga det 100 m 2 stora huset varje lördag. Det tog 30 minuter. Efter att pappan hade

Läs mer

Nivå och struktur. Sida 1 av 6

Nivå och struktur. Sida 1 av 6 Sida 1 av 6 Nivå och struktur Diagrammet nedan visar en schematisk bild över hur lönestrukturen kan se ut för medlemmarna i förbundet. Formen på kurvan dvs. strukturen visar att lönerna i genomsnitt är

Läs mer

LEKTION PÅ GRÖNA LUND GRUPP A (GY)

LEKTION PÅ GRÖNA LUND GRUPP A (GY) LEKTION PÅ GRÖNA LUND GRUPP A (GY) t(s) FRITT FALL Hur långt är det till horisonten om man är 80 m.ö.h.? Titta på en karta i förväg och försök räkna ut hur långt man borde kunna se åt olika håll när man

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin På tidigare lektioner har vi studerat rotationer i två dimensioner samt hur vi kan beskriva föremål som roterar rent fysikaliskt. Att från detta gå över till den speciella

Läs mer

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid

Läs mer

Optimering av depåpositioner för den minimala bensinförbrukningen i öknen

Optimering av depåpositioner för den minimala bensinförbrukningen i öknen Optimering av depåpositioner för den minimala bensinförbrukningen i öknen Frågeställning: En jeep kan sammanlagt ha 200 liter bensin i tanken samt i lösa dunkar. Jeepen kommer 2,5 km på 1 liter bensin.

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5 freeleaks NpMaB ht2002 1(7) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 2002 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 5 Förord Skolverket har endast

Läs mer

Att resa med Värmlandstrafik

Att resa med Värmlandstrafik Att resa med Värmlandstrafik Lättläst version 2012 1 INNEHÅLLSFÖRTECKNING INNEHÅLL Tidtabeller... Att åka buss med Värmlandstrafik... Åka tåg med Värmlandstrafik... Värmlandstrafiks kort... Värmlandstrafik

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)? I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient

Läs mer

Funktioner, Algebra och Ekvationer År 9

Funktioner, Algebra och Ekvationer År 9 Undervisning Funktioner, Algebra och Ekvationer År 9 Mål att uppnå i år 9, ur Lpo 94 Utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

ROCKJET GRUPP A (GY) FRITT FALL

ROCKJET GRUPP A (GY) FRITT FALL GRUPP A (GY) FRITT FALL a) Hur långt är det till horisonten om man är 80 m.ö.h.? Titta på en karta i förväg och försök räkna ut hur långt man borde kunna se åt olika håll när man sitter högst upp. b) Titta

Läs mer

Fråga 1. KURSIV=EJ NÖDVÄNDIG. Använd nedanstående tabell för att besvara de frågor som följer. Antal anställda Lön Marginalintäktsprodukten,

Fråga 1. KURSIV=EJ NÖDVÄNDIG. Använd nedanstående tabell för att besvara de frågor som följer. Antal anställda Lön Marginalintäktsprodukten, Frågor på Arbetsmarknaden. Reviderad: 2012-12-05. Definition i FJ: Strukturell arbetslöshet = Naturlig arbetslöshet =klassisk arbetslöshet (=arbetslöshet till följd av att reallönen är för hög) + friktionsarbetslöshet.

Läs mer

Revisorn, Att lösa ett kalkylproblem. Uppg 1.8

Revisorn, Att lösa ett kalkylproblem. Uppg 1.8 Revisorn, Att lösa ett kalkylproblem. Uppg 1.8 Uppgiften Vi skall försöka skapa en kalkylmodell som skall ge möjlighet att lösa uppgifterna A-D, men även övriga frågeställningar. Detta är en lösningsmodell,

Läs mer

Tummen upp! Svenska Kartläggning åk 5

Tummen upp! Svenska Kartläggning åk 5 Tryck.nr 47-11030-8-01 9789147110308c1c.indd 1 2014-05-16 11.26 TUMMEN UPP! Ç C I TUMMEN UPP! SVENSKA KARTLÄGGNING ÅK 5 finns övningar som är direkt kopplade till kunskapskraven i åk 6. Kunskapskraven

Läs mer

Att resa med Västtrafik

Att resa med Västtrafik Att resa med Västtrafik Över tjugo? Då får du ta med tre kompisar under tjugo när du åker med periodkort. Utan att det kostar en spänn.* * Gäller på Västtrafiks fordon. Läs mer på vasttrafik.se Vad kul

Läs mer

tokiga transporter SPN-uppdrag

tokiga transporter SPN-uppdrag HUVUDUPPGIFT: Hur reser vuxna egentligen? 1. Hur reser vuxna egentligen? Välj ut en vuxen i din närhet som du litar på och träffar ofta. Välj ut tre dagar under arbetsveckan (måndag till fredag) då du

Läs mer

Teresia Månsson, VFU, Matematik 5, 2014-12-10

Teresia Månsson, VFU, Matematik 5, 2014-12-10 Temauppgifter Syfte Det är tänkt att det ska finnas möjlighet med uppgiften att öva på följande förmågor: begrepps-, procedur-, problemlösning, kommunikations-, resonemang, modelleringsförmåga och relevansförmåga

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext. PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät

Läs mer

LABORATION ENELEKTRONSPEKTRA

LABORATION ENELEKTRONSPEKTRA LABORATION ENELEKTRONSPEKTRA Syfte och mål Uppgiften i denna laboration är att studera atomspektra från väte och natrium i det synliga våglängdsområdet och att med hjälp av uppmätta våglängder från spektrallinjerna

Läs mer

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1. PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR MATEMATIKPROV, KORT LÄROKURS 8..05 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

Provlektion Klassiska sagor

Provlektion Klassiska sagor Provlektion Klassiska sagor Denna lektion är hämtad ur Klassiska sagor av Lena Johansson, lärare i svenska som andraspråk i Alby i Botkyrka. Klassiska sagor som världens barn har hört är ett kopieringsunderlag

Läs mer

Klassrumshantering Av: Jonas Hall. Högstadiet. Material: TI-82/83/84

Klassrumshantering Av: Jonas Hall. Högstadiet. Material: TI-82/83/84 Inledning Det som är viktigt att förstå när det gäller grafräknare, och TI s grafräknare i synnerhet, är att de inte bara är räknare, dvs beräkningsmaskiner som underlättar beräkningar, utan att de framför

Läs mer

Tangenter till tredjegradsfunktioner

Tangenter till tredjegradsfunktioner Tangenter till tredjegradsfunktioner I bilden intill ser du grafen av en tredjegradsfunktion som har tre nollställen nämligen x = 2, x = 1 och x = -1. Om man ritar en tangent till funktionsgrafen kommer

Läs mer

BASFYSIK BFN 120. Laborationsuppgifter med läge, hastighet och acceleration. Epost. Namn. Lärares kommentar

BASFYSIK BFN 120. Laborationsuppgifter med läge, hastighet och acceleration. Epost. Namn. Lärares kommentar BASFYSIK BFN 120 Galileo Galilei, italiensk naturforskare (1564 1642) Laborationsuppgifter med läge, hastighet och acceleration Namn Epost Lärares kommentar Institutionen för teknik och naturvetenskap

Läs mer

Just nu pågår flera satsningar för att förbättra svenska elevers måluppfyllelse

Just nu pågår flera satsningar för att förbättra svenska elevers måluppfyllelse Andersson, Losand & Bergman Ärlebäck Att uppleva räta linjer och grafer erfarenheter från ett forskningsprojekt Författarna beskriver en undervisningsform där diskussioner och undersökande arbetssätt utgör

Läs mer

Katedralskolan 2004-11-05 Lena Claesson MICROSOFT EXCEL

Katedralskolan 2004-11-05 Lena Claesson MICROSOFT EXCEL Katedralskolan 2004-11-05 MICROSOFT EXCEL Lös varje uppgift på ett separat blad inom samma excelarbetsbok. Bladen döper du till uppg1, uppg2 osv och hela arbetsboken döper du till ditt eget namn. Spara

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är

Läs mer

KRITISKA ASPEKTER

KRITISKA ASPEKTER KRITISKA ASPEKTER FERENCE MARTON GÖTEBORGS UNIVERSITET PERNILLA MÅRTENSSON HÖGSKOLAN FÖR LÄRANDE OCH KOMMUNIKATION JÖNKÖPING KRITISKA ASPEKTER FRÅN VAD VAD I RELATION TILL ELEVERNAS FÖRSTÅELSE OCH LÄRANDE

Läs mer

Vältalaren PROVLEKTION: BLI EN BÄTTRE LYSSNARE

Vältalaren PROVLEKTION: BLI EN BÄTTRE LYSSNARE Vältalaren Vältalaren är en handbok i den retoriska arbetsprocessen: hur man finner övertygande stoff och argument, hur man ger struktur och språklig dräkt åt sitt budskap och hur man memorerar och framför

Läs mer

Logaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos

Logaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos Logaritmer Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos 24 september 2003 Innehåll 1 Introduktion 2 2 Naturliga logaritmer 3 2.1 Talet e................................. 3 2.2 Den naturliga

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel. MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra

Läs mer

Focus on English 9. Teacher s Guide with Projects

Focus on English 9. Teacher s Guide with Projects Focus on English 9 Teacher s Guide with Projects Focus on English är ett nyskrivet läromedel för åk 7 9. Goda engelskkunskaper är ett av elevernas viktigaste redskap för det livslånga lärandet. I boken

Läs mer

Tummen upp! Matte Kartläggning åk 5

Tummen upp! Matte Kartläggning åk 5 Tryck.nr 47-11064-3 4711064_t_upp_ma_5_omsl.indd Alla sidor 2014-01-27 12.29 TUMMEN UPP! Ç I TUMMEN UPP! MATTE KARTLÄGGNING ÅK 5 finns övningar som är direkt kopplade till kunskapskraven i åk 6. Kunskapskraven

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Reseguide till London

Reseguide till London Reseguide till London Alla nödvändigheter för din London resa Nicholas Harrison Vill du åka till London utan att spendera allt för mycket pengar? Denna guide hjälper dig boka alla nödvändigheter för en

Läs mer

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare.

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Dina lösningar på denna del görs på separat papper som ska lämnas in innan du får tillgång till din miniräknare. Observera

Läs mer

FÖRDELAKTIGHETSJÄMFÖRELSER MELLAN INVESTERINGAR. Tero Tyni Sakkunnig (kommunalekonomi) 25.5.2007

FÖRDELAKTIGHETSJÄMFÖRELSER MELLAN INVESTERINGAR. Tero Tyni Sakkunnig (kommunalekonomi) 25.5.2007 FÖRDELAKTIGHETSJÄMFÖRELSER MELLAN INVESTERINGAR Tero Tyni Sakkunnig (kommunalekonomi) 25.5.2007 Vilka uppgifter behövs om investeringen? Investeringskostnaderna Den ekonomiska livslängden Underhållskostnaderna

Läs mer

Tummen upp! Matte Kartläggning åk 4

Tummen upp! Matte Kartläggning åk 4 Tryck.nr 47-11063-6 4711063_Omsl_T_Upp_Matte_4.indd Alla sidor 2014-01-27 07.32 TUMMEN UPP! Ç I TUMMEN UPP! MATTE KARTLÄGGNING ÅK 4 finns övningar som är direkt kopplade till kunskapskraven i åk 6. Kunskapskraven

Läs mer

Boken om SO 1-3. Boken om SO 1-3 är elevernas första grundbok i geografi, historia, religionskunskap och samhällskunskap. Syfte

Boken om SO 1-3. Boken om SO 1-3 är elevernas första grundbok i geografi, historia, religionskunskap och samhällskunskap. Syfte Boken om SO 1-3 Boken om SO 1-3 är elevernas första grundbok i geografi, historia, religionskunskap och samhällskunskap. Provlektion: Om grundläggande mänskliga rättigheter, alla människors lika värde

Läs mer

Lärarservice: Studs, rörelse och energi

Lärarservice: Studs, rörelse och energi Lärarservice: Studs, rörelse och energi Inledande anmärkning angående sätt för datainsamling: Om du inte har tillgång till labsläde kan du ändå genomföra detta försök genom att ansluta detektorn till en

Läs mer

Tal Räknelagar. Sammanfattning Ma1

Tal Räknelagar. Sammanfattning Ma1 Tal Räknelagar Prioriteringsregler I uttryck med flera räknesätt beräknas uttrycket i följande ordning: 1. Parenteser 2. Potenser. Multiplikation och division. Addition och subtraktion Exempel: 5 22 1.

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Utforskande aktivitet med GeoGebra

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Utforskande aktivitet med GeoGebra GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare 19-20 april Utforskande aktivitet med GeoGebra GeoGebra 0 Utforskande aktivitet med GeoGebra 1 Börja med att ta bort koordinataxlarna

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

GeoGebra. Sonja Kovalevsky- dagarna Utforskande aktivitet med GeoGebra. Karlstads universitet 11 november. Karlstads universitet

GeoGebra. Sonja Kovalevsky- dagarna Utforskande aktivitet med GeoGebra. Karlstads universitet 11 november. Karlstads universitet Sonja Kovalevsky- dagarna 2016 11 november Utforskande aktivitet med GeoGebra GeoGebra 0 Utforskande aktivitet med GeoGebra 1 Gå in på www.geogebra.org och välj Starta GeoGebra. Börja med att ta bort koordinataxlarna

Läs mer

Dagens föreläsning (F15)

Dagens föreläsning (F15) Dagens föreläsning (F15) Problemlösning med datorer Carl-Mikael Zetterling bellman@kth.se KP2+EKM http://www.ict.kth.se/courses/2b1116/ 1 Innehåll Programmering i Matlab kap 5 EKM Mer om labben bla Deluppgift

Läs mer

Ekvationer & Funktioner Ekvationer

Ekvationer & Funktioner Ekvationer Ekvationer & Funktioner Ekvationer Ekvationstyp : Ekvationer av första graden När vi löser ekvationer av första graden använder vi oss av de fyra grundläggande räknesätten för att beräkna x. Vid minus

Läs mer

Boken om SO 1 3. PROVLEKTION: En köpfri dag! Boken om SO 1 3, sidorna Boken om SO 1 3 Lärarboken s. 165

Boken om SO 1 3. PROVLEKTION: En köpfri dag! Boken om SO 1 3, sidorna Boken om SO 1 3 Lärarboken s. 165 Boken om SO 3 Elevens första grundbok i historia, samhällskunskap, geografi och religion PROVLEKTION: En köpfri dag! Följande provlektion är ett utdrag ur Boken om SO 3 och tillhörande Boken om SO 3 Lärarbok.

Läs mer

Prislista. För resor över länsgräns. Gäller från och med 1 januari 2015. Information för resor mellan Kalmar län och angränsande län.

Prislista. För resor över länsgräns. Gäller från och med 1 januari 2015. Information för resor mellan Kalmar län och angränsande län. För resor över länsgräns Prislista Gäller från och med 1 januari 2015 Information för resor mellan Kalmar län och angränsande län. En del av Landstinget i Kalmar län Gränslöst resande! Nå hela södra Sverige

Läs mer

4 Halveringstiden för 214 Pb

4 Halveringstiden för 214 Pb 4 Halveringstiden för Pb 4.1 Laborationens syfte Att bestämma halveringstiden för det radioaktiva sönderfallet av Pb. 4.2 Materiel NaI-detektor med tillbehör, dator, högspänningsaggregat (cirka 5 kv),

Läs mer

Funktioner Exempel på uppgifter från nationella prov, Kurs A E

Funktioner Exempel på uppgifter från nationella prov, Kurs A E Funktioner Exempel på uppgifter från nationella prov, Kurs A E Uppgifter ur Nationella prov Kurs A Ur del II utan räknare: När en frysbox stängs av stiger temperaturen. Följande formel kan användas för

Läs mer

Diagramritning med Excel och figurritning med Word

Diagramritning med Excel och figurritning med Word 1(11) Inför fysiklaborationerna Diagramritning med Excel och figurritning med Word Del 1. Uppgift: Excel Målet med denna del är att du skall lära dig grunderna i Excel. Du bör kunna så mycket att du kan

Läs mer

Presentationsteknik. EG2205 Föreläsning 4, vårterminen 2015 Mikael Amelin

Presentationsteknik. EG2205 Föreläsning 4, vårterminen 2015 Mikael Amelin Presentationsteknik EG25 Föreläsning 4, vårterminen 15 Mikael Amelin 1 Kursmål Ge en kort muntlig presentation av lösningen till ett problem inom drift och planering av elproduktion. 2 Bakgrund Enligt

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

Högskoleverket. Delprov NOG 2003-04-05

Högskoleverket. Delprov NOG 2003-04-05 Högskoleverket Delprov NOG 2003-04-05 2 1. Sven använder 40 procent av sin nettolön, d.v.s. lön efter skatt, till att betala hyran. Hur stor är Svens nettolön? (1) Efter att Sven betalat hyran har han

Läs mer

Avsnitt 5, introduktion.

Avsnitt 5, introduktion. KTHs Sommarmatematik Introduktion 5:1 5:1 Avsnitt 5, introduktion. Radianer Vinkelmåttet radianer är i matematiska sammanhang bättre än grader, särskilt när man sysslar med de trigonometriska funktionerna

Läs mer

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning Karlstads GeoGebrainstitut Institutionen för matematik och datavetenskap Karlstads universitet Mats Brunström Maria Fahlgren GeoGebra ett digitalt verktyg för framtidens matematikundervisning Invigning

Läs mer

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår

Läs mer