Optimering av depåpositioner för den minimala bensinförbrukningen i öknen

Storlek: px
Starta visningen från sidan:

Download "Optimering av depåpositioner för den minimala bensinförbrukningen i öknen"

Transkript

1 Optimering av depåpositioner för den minimala bensinförbrukningen i öknen

2 Frågeställning: En jeep kan sammanlagt ha 200 liter bensin i tanken samt i lösa dunkar. Jeepen kommer 2,5 km på 1 liter bensin. Vi ska färdas 1000 km in i öknen och bränslet finns endast vid startpunkten och vid målet. För att klara färden måste vi först placera ut bensin i depåer längs vägen. Hur mycket bränsle går det åt och var ska dunkarna placeras ut? Vilken lösning ger den bästa resan? Svar: Den minsta möjliga bensinvolymen som går åt för att åka 1000 km är 1 534,6 liter. Depåstoppunkterna är då 22.4, 60.9, 106.3, 161.9, 233.3, och km från start. Bensinvolymerna är 200, 400, 600, 800, 1000, 1200, 1400 och 1534,6. Den optimala lösningen hittades när det var olika avstånd mellan depåerna (metod 2) istället för konstanta. Lösning: Vi använder oss av programmen Excel och GeoGebra, vi räknar också algebraiskt. I Excel gör vi en anpassad beräkningsmodell där vi bara behöver ange avståndet (km) mellan depåerna. Sedan räknar programmet ut hur många liter det ska vara vid varje depå. Vi kommer också räkna algebraiskt för att försöka hitta den mest optimala resan. Svaren på den mest effektiva resan presenteras i GeoGebra (bild 1) Metod 1 Först gör vi en beräkningsmodell i Excel där tanken är att lätt kunna undersöka den totala volymen (l) bensin vid första depån. Vi behöver bara justera avståndet (km) mellan depåerna (när depåerna är konstanta och har samma antal km mellan sig hela vägen). Den här metoden är väldigt bra eftersom vi inte behöver räkna ut alla olika steg för hand, dock är den begränsad eftersom vi bara kan se konstanta depåstop. Vi kan alltså inte se hur mycket bensin det går åt om depåerna ligger på olika avstånd från start. Utförande av metod 1 Vi skapar ett Excel dokument med fem kolumner med rubrikerna: sträcka, bensinvolym vid depån (L), antal resor, avstånd (km) och bensinförbrukning (avstånd/2,5) =E$2/2,5 Först bestämmer vi vilket avstånd vi vill ha mellan depåerna, exempelvis 50 km. Då kan vi räkna ut vart depåerna ligger. Eftersom bilen kan rymma max 200 liter kan vi åka 500 km utan depåer. Det är därför sista depån ligger vid 500 km och där ska det finnas 200 liter. För då kan vi efter att vi har tankat vid 500 km depån åka hela vägen till mål utan att stanna och tanka. Sedan räknar vi baklänges från den sista depån till den första, vi räknar ut var de 2

3 andra stoppen ska ligga genom att använda formeln (=A2-E$2) Alltså subtraherar vi avståndet mellan depåerna, som alltid är E2. Därför skriver vi E$2 så programmet vet att i alltid menar E2. Talet vi subtraherar ifrån är alltid förgående depå. Nu när vi vet var depåerna ska ligga fortsätter vi att räkna ut vilken bensinvolym som ska finnas vid respektive stopp. Då måste vi samtidigt räkna ut antalet resor eftersom de är beroende av varandra. Det gör vi med följande formel =2*AVRUNDA.NEDÅT(B2/(B$2-2*F$2);0)+1 För att allt ska stämma måste vi avrunda nedåt för att få ett jämt antal resor och sedan delar vi förgående sträcka med bensinen vi dumpar. Vi adderar 1 för svaret ska alltid bli ett ojämnt tal eftersom när vi har dumpat bensin så måste vi åka en sista gång framåt för att komma till nästa depå med den sista bensinen. Allt multipliceras med 2 för det går två resor på en vända. Nu kan vi fortsätta med formeln för bensinvolymen =B2+(C2*F$2) där B2 är förgående volym, C2 är antalet resor och f$2 är hur mycket bensin det går åt/resa. Nu när alla formler är inskrivna är det bara att kopiera den till resten av kolumnen. Om vi nu ändrar avståndet anpassas allt annat också till det nya avståndet. På så sätt kan vi se den totala bensinförbrukningen för olika konstanta avstånd. Resultatet vi fick var att ju kortare avstånd mellan depåerna det var desto minde total bensin gick åt, men det är extremt opraktiskt att åka fram och tillbaka väldigt många gånger. Om vi tar 5 km som exempel så åker vi totalt 703 gånger mellan depåer och det är orimligt och tar väldigt lång tid eftersom det tar lång tid att lasta ur all bensin och så vidare. Metod 2: Nu ska vi lösa den här uppgiften algebrasikt och med hjälp av den här metoden kommer vi fram till det exakta svaret på uppgiften. För att lösningen ska bli så effektiv som möjligt behöver vi frakta mycket bensin en kortare sträcka. Den här metoden var svår att förstå till en början, men vi fick lite hjälp av internet och då blev det lättare. Grundtanken till den här metoden är att det är olika avstånd mellan alla depåer och att vi räknar ut var och en av depåerna för sig. Utförande av metod 2: Första depån kommer att placeras vid 500 meter och får kallas A. För att kunna fortsätta resten av resan behöver det vara 200 liter bensin vid depå A. Vi räknar baklänges och nästa depå döper vi till B. Hur mycket bensin ska då finnas vid B? Vi kallar sträckan för x. Det blir lättare om vi räknar med längdenheter som är 2,5 km eftersom vi kommer 2,5 kilometer på en liter bensin. Bensinen vi dumpar är i samtliga fall 200 2x eftersom vi inte vill köra tillbaka med bensin i dunkar. Vid A behöver det vara 200 2x = x och det är det mest effektiva sättet är att placera B så långt bort från A så att så lite bensin som möjligt går åt. Alltså 200/3 = x. Då kan vi fortsätta räkna ut placeringen av B med hjälp av formeln 500 (200/3) * 2,5 km räknat från A =

4 Vi åker från B till A tur och retur och dumpar bensin två gånger och varje vända är 200 km, alltså ska det finnas 400 liter vid B. B ligger på det mest effektiva avståndet från A och B är 2/3 av sträckan mellan startpunkten och A. Då är det rimligt att C ligger 2/3 från startsträckan till B. Dock är det inte alltid exakt 2/3 eftersom det krävs ett jämt antal liter vid varje depå och då måste vi kompensera. Vi ser också att samtidigt som mängden bensin som behövs fraktas ökar så minskar sträckan mellan depåerna. Beräkning av depå C: Vi ska frakta 400 liter bensin till B och vi börjar med att kolla hur många vändor vi ska åka. 333,333 km räknat i längdenheter = 333,333/2,5 = 133,333 och 2/3 av 133,333.. = 88,888 Då är avståndet mellan B och C 133,333 88,888 = 44,444 Hur mycket bensin dumpas då vid B varje vända? 200 2*44,444 = 111,111 Vi ska lämna av 400 liter bensin och då måste vi åka 400/111,111 = 3,6 gånger. Det är inte effektivt eftersom man inte kan åka 0,6 vända, alltså måste vi korrigera avståndet lite. Vi testar att avrunda till närliggande hela antal vändningar. Om vi åker 4 vändor blir det 4(200 2*44,444) + 44,444 = 488,9 liter och om vi åker 3 vändor blir det 3(200 2*44,444) + 44,444 = 377,777 liter. Vi ser då att vi kommer närmast 400 liter om vi åker 3 vändor. Då fortsätter vi att beräkna avståndet, vi vill veta x mellan B och C: 3(200 2x) + x = x = 400 5x = 200 x = 40 C befinner sig då vid positionen 133, = 93,33 längdenheter (233,333 km) från start. Resan krävde precis 3 vändor och varje vända är 200 liter, då måste det finnas 600 liter bensin i depå C. Nu när vi har en lösningsmetod så använder vi den på de kvarvarande depåerna. Uträkning av D: 2/3 av 93,333 = 62,222 Avståndet mellan C och D = 93,333 62,222 = 31,111 En dumpning blir då 200 2*31,111 = 137,777 och vi ska frakta 600 liter och då behöver vi åka (600 31,111)/137,777 = 4,13 gånger 4. Vi ska alltså frakta 600 liter bensin på 4 vändor. 4(200 2x) + x = x = 600 x = 200/7 Depå D ligger vid 93, /7 = 64,7619 längdenheter (161,9 km) från startpunkten. Vi åker 4 vändor med 200 liter bensin, alltså måste det finnas 800 liter vid D. Nu gör vi på samma sätt med E, F och G 4

5 E: x = 200/9 64, /9 = 42,5397 längdenheter (106,3 km.) Vi åker 5 vändor och det krävs 1000 liter bensin F: x = 200/11 42, /11 = 24,3579 längdenheter (60,9 km) 6 vändor, 1200 liter bensin G: x = 200/13 24, /13 = 8,9733 längdenheter ( 22,4 km) 7 vändor, 1400 liter bensin Nu ska vi räkna ut H, som är startpositionen. 2/3 av 8,9733 = 5,9822 8,9733 5,9822 = 2,9911 längdenheter. Då blir varje bensinlämning 200 2*2,9911 = 194,04 = 7,2 vändor. Det bästa vore att avrunda till 7 men eftersom detta är den sista vändan måste vi åka 8 vändor mellan H och G. Eftersom H inte ligger ett jämt antal vändor från G måste vi räkna ut hur mycket bensin vi måste ha med oss sista vändan. Vi kollar först hur mycket bensin vi har dumpat efter 7 vändor: 7*(200 2*8,9733) = 1274,374 liter. På åttonde vändan måste vi alltså ha med , ,9733 = 134, ,6 liter Nu ser vi att den totala bensinförbrukningen blir ,6 = liter 5

6 Metod 3 Nu ska vi anpassa våra svar från metod 2 till en kurva i GeoGebra. Det gör vi genom att skriva in depåns position som X-värde och antal liter bensin som Y-värde: A = (1000,0.01) B = (500,200) C = (333.3,400) D = (233.3,600) E = (161.9,800) F = (106.3,1000) G = (60.9,1200) H = (22.4,1400) I = (0,1534.6) (bild 1) Sedan anpassar vi en linje till punkterna och det gör vi genom att skiva in RegressionExp[{B, C, D, E, F, G, H, I}] i inmatningsfältet. Vi vet att det blir en exponentiell kurva och väljer därför RegressionExp. Anledningen till varför vi inte har med punkt A i regressionen är att kurvan blir helt fel då eftersom en exponentiell kurva som skär Y-axeln går mot 0 på X-axeln men skär aldrig. Vi har endast med A som en markering så vi ser hur placeringen av depåer ser ut. I bild 2 ser vi hur allt är uppbyggt, B är halva sträckan och de resterande depåerna är alltid 2/3 av avståndet mellan förgående depå och start. (bild 2) 6

7 Diskussion: Hela uppgiften går ut på att hitta en så optimal lösning som möjligt och vi har valt att angripa uppgiften på olika sätt och kan därför se olika slags resultat. Vilket är då bäst? Jo resultatet från den algebraiska metoden (metod 2), men kan vi vara 100% säkra på att det är den absolut bästa metoden? Nej men dock är en mer effektiv lösning inte särskilt trolig. Vi ser också att vi når högst effektivitet med depåstopp som inte är konstanta. För om vi ska få ett hyfsat liknande svar med hjälp av Excel metoden skulle vi behöva ha extremt många depåer och behöva åka över 100 vändor och man förstår direkt att det är oerhört ineffektivt. Dock kan den här uppgiften tolkas på olika sätt när den säger att vi ska hitta den bästa resan. Vad menas egentligen med den bästa resan? Är det den som går snabbast eller den som drar minst bensin? De två faktorerna går oftast hand i hand, men tiden blir ju längre om man stannar många gånger. Den minst effektiva resan skulle vara att köra 0,000 1 km och lämna 199,999.liter. Också att köra slut på 199,999 liter och lämna 0,000.1 liter bensin. Båda dessa lösningar är nästan praktiskt omöjliga och är de mest ineffektiva resorna. Så nästan alla lösningar mellan dessa extremer är ett möjligt svar. Fast det måste också finnas en optimal lösning som vi med stor sannolikhet har hittat. Källförteckning: Kjell Elfström, med Jeep-problemet (metod 2) 7

Optimering av bränsledepåer för effektiv resa i öknen

Optimering av bränsledepåer för effektiv resa i öknen Optimering av bränsledepåer för effektiv resa i öknen Konsultarbete Matematik D Skriftlig rapport till kunden! Frågeställning: En jeep kan ta sammanlagt 200 liter bensin i tanken och i lösa dunkar. Jeepen

Läs mer

Jeep-problemet. Kjell Elfström

Jeep-problemet. Kjell Elfström F r å g a L u n d o m m a t e m a t i k Matematikcentrum Matematik NF Jeep-problemet Kjell Elfström Problemet En jeep kan sammanlagt ta 200 liter bensin i tanken och i lösa dunkar. Jeepen kan gå 2,5 km

Läs mer

Hur länge ska fisken vara i dammen?

Hur länge ska fisken vara i dammen? Hur länge ska fisken vara i dammen? Frågeställning Uppgift 10 fiskodling Uppgiften går ut på att ta reda på hur länge ett stim fisk ska växa upp i en fiskodling för att få den maximala vikten tillsammans.

Läs mer

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Frågeställning Av en cirkulär pappersskiva kan en cirkelsektor med en viss vinkel klippas bort. Med den resterande sektorn går

Läs mer

Inga vanliga medelvärden

Inga vanliga medelvärden Inga vanliga medelvärden Vanligtvis när vi pratar om medelvärden så menar vi det aritmetiska medelvärdet. I en del sammanhang så kan man dock inte räkna med det. Vi går här igenom olika sätt att tänka

Läs mer

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker

Läs mer

9-2 Grafer och kurvor Namn:.

9-2 Grafer och kurvor Namn:. 9-2 Grafer och kurvor Namn:. Inledning I föregående kapitel lärde du dig vad som menas med koordinatsystem och hur man kan visa hur matematiska funktioner kan visas i ett koordinatsystem. Det är i och

Läs mer

14 min 60 s min 42 s 49m 2 =18 s m 2, alltså samma tid. Vi kan säga att den tid som mamman behövde åt dammsugning var beroende av husets storlek.

14 min 60 s min 42 s 49m 2 =18 s m 2, alltså samma tid. Vi kan säga att den tid som mamman behövde åt dammsugning var beroende av husets storlek. PASS 10. FUNKTIONER 10.1 Grundbegrepp om funktioner Mamman i den finländska modellfamiljen från pass fyra brukade dammsuga det 100 m 2 stora huset varje lördag. Det tog 30 minuter. Efter att pappan hade

Läs mer

Optimering av synvinkeln i en biosalong

Optimering av synvinkeln i en biosalong Optimering av synvinkeln i en biosalong The Mad Mathematician s Mathematical Consultancy Bureau Johanna Kilander Optimering av synvinkeln i en biosalong Frågeställning Mitt uppdrag är att ta reda på vart

Läs mer

3-8 Proportionalitet Namn:

3-8 Proportionalitet Namn: 3-8 Proportionalitet Namn: Inledning Det här kapitlet handlar om samband mellan olika storheter och formler. När du är klar är du mästare på att arbeta med proportionalitet, det vill säga du klarar enkelt

Läs mer

Bästa skottläge på en fotbollsplan längs långsidan

Bästa skottläge på en fotbollsplan längs långsidan Bästa skottläge på en fotbollsplan längs långsidan Frågeställningen lyder: Vad är det bästa skottläget? för en spelare som befinner sig på en rak linje på en fotbollsplan. Det är alltså en vinkel som söks,

Läs mer

SKOGLIGA TILLÄMPNINGAR

SKOGLIGA TILLÄMPNINGAR STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig

Läs mer

Märk ut nedanstående delar i skärmbilden

Märk ut nedanstående delar i skärmbilden Starta Excel och besvara sedan nedanstående frågor. Testa dig gärna fram när du försöker besvara frågorna. Märk ut nedanstående delar i skärmbilden 1. Office-knappen 2. Snabbåtkomst 3. Menyfliksområde

Läs mer

Uppdrag för LEGO projektet Hitta en vattensamling på Mars

Uppdrag för LEGO projektet Hitta en vattensamling på Mars LEGO projekt Projektets mål är att ni gruppvis skall öva på att genomföra ett projekt. Vi använder programmet LabVIEW för att ni redan nu skall bli bekant med dess grunder till hjälp i kommande kurser.

Läs mer

Konsultarbete, Hitta maximal volym fo r en la da

Konsultarbete, Hitta maximal volym fo r en la da Konsultarbete, Hitta maximal volym fo r en la da Uppgift 2. Maximal låda. I de fyra hörnen på en rektangulär pappskiva klipper man bort lika stora kvadrater. Flikarna viks sedan upp så att vi får en öppen

Läs mer

Vektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p)

Vektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p) 1. Linjerna y=2x+4, y=4 och x=3 innesluter tillsammans en triangel. Linjen y=5,5 skär triangeln i två punkter. Beräkna sträckan mellan dessa två punkter. 2. Vektorn w definieras som w = 2u v där u = (7,1)

Läs mer

Optimering av resväg genom Sverige

Optimering av resväg genom Sverige Umeå Universitet 2007-05-28 Institutionen för tillämpad fysik och elektronik Optimering av resväg genom Sverige Magnus Melander Kristina Odeblad Sammanfattning Kostnaden för att besöka fjorton städer i

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1

Läs mer

Kortaste Ledningsdragningen mellan Tre Städer

Kortaste Ledningsdragningen mellan Tre Städer Kortaste Ledningsdragningen mellan Tre Städer Tre städer A, B och C, belägna som figuren till höger visar, ska förbindas med fiberoptiska kablar. En så kort ledningsdragning som möjligt vill uppnås för

Läs mer

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1. PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än

Läs mer

Uppgift 1. OPTIMERA RESURSUTNYTTJANDET.

Uppgift 1. OPTIMERA RESURSUTNYTTJANDET. Labb 3 Infomet I denna laboration kommer vi att lära oss en del finesser i kalkylprogrammet Excel. BAGERI Ett bageri bakar pepparkakor och kubbar. Under olika tider på året efterfrågas olika sorters kakor.

Läs mer

Kolumn A och rad 1 kallas A1 Kolumn B och rad 1 kallas B1. Klicka i cell A1 Skriv 100 i cell A1 och tryck Enter

Kolumn A och rad 1 kallas A1 Kolumn B och rad 1 kallas B1. Klicka i cell A1 Skriv 100 i cell A1 och tryck Enter RIGMOR SANDER EXCEL START 1 1 (5) Kolumn A och rad 1 kallas A1 Kolumn B och rad 1 kallas B1 Klicka i cell A1 Skriv 100 i cell A1 och tryck Enter Innehållet i den cell som är markerad syns i formelfältet

Läs mer

4-2 Linjära mått och måttsystem Namn:.

4-2 Linjära mått och måttsystem Namn:. 4-2 Linjära mått och måttsystem Namn:. Inledning I det här kapitlet skall lära dig vad en linje är och vilka egenskaper en linje har. Du kommer även att repetera vilka enheter avstånd mäts i. Varför skall

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2 Kapitel.1 101, 102 Exempel som löses i boken 10 a) x= 1 11+ x= 11+ 1 = 2 c) x= 11 7 x= 7 11 = 77 b) x= 5 x 29 = 5 29 = 6 d) x= 2 26 x= 26 2= 1 10 a) x= 6 5+ 9 x= 5+ 9 6= 5+ 5= 59 b) a = 8a 6= 8 6= 2 6=

Läs mer

Katedralskolan 2004-11-05 Lena Claesson MICROSOFT EXCEL

Katedralskolan 2004-11-05 Lena Claesson MICROSOFT EXCEL Katedralskolan 2004-11-05 MICROSOFT EXCEL Lös varje uppgift på ett separat blad inom samma excelarbetsbok. Bladen döper du till uppg1, uppg2 osv och hela arbetsboken döper du till ditt eget namn. Spara

Läs mer

a) Skapa en ny arbetsbok. b) Skriv in text och värden och ändra kolumnbredd enligt nedan.

a) Skapa en ny arbetsbok. b) Skriv in text och värden och ändra kolumnbredd enligt nedan. 102 Datorkunskap Kalkyl och diagram, övningar Kalkylbladet 1 Skriva in text och värden 170 172 a) Skapa en ny arbetsbok. b) Skriv in text och värden och ändra kolumnbredd enligt nedan. c) Ändra Torget

Läs mer

Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d)

Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d) 1. b) c) d) a) Multiplikation med 100 kan förenklas med att flytta decimalerna lika många stg som antlet nollor. 00> svar 306 b) Använd kort division. Resultatet ger igen rest. Svar 108 c) Att multiplicera

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

4-4 Parallellogrammer Namn:..

4-4 Parallellogrammer Namn:.. 4-4 Parallellogrammer Namn:.. Inledning Hittills har du arbetat bl.a. med linjer och vinklar. En linje är ju någonting som bara har en dimension, längd. Men när två linjer skär varandra och det bildas

Läs mer

NMCC Sigma 8. Täby Friskola 8 Spets

NMCC Sigma 8. Täby Friskola 8 Spets NMCC Sigma 8 Täby Friskola 8 Spets Sverige 2016 1 Innehållsförteckning Innehållsförteckning... 1 Inledning... 2 Sambandet mellan figurens nummer och antalet små kuber... 3 Metod 1... 3 Metod 2... 4 Metod

Läs mer

Excel Övning 1 ELEV: Datorkunskap Sida 1 Niklas Schilke

Excel Övning 1 ELEV: Datorkunskap Sida 1 Niklas Schilke Datorkunskap Sida 1 Niklas Schilke Excel Inledning Microsoft Excel är ett kalkylprogram som ingår i Microsoft Office. Kalkyl betyder här beräkning så vi kan säga att Excel är ett program som används för

Läs mer

Provlektion till Uppdrag: Matte 9

Provlektion till Uppdrag: Matte 9 Provlektion till Uppdrag: Matte 9 Linjära funktioner En resa i biljettdjungeln I läromedlet Uppdrag: Matte arbetar eleverna med två spår, Uppdrag eller Räkna på. Här kommer ett prov på en lektion där uppdraget

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

Ett enkelt Kalkylexempel - Fruktaffären

Ett enkelt Kalkylexempel - Fruktaffären Ett enkelt Kalkylexempel - Fruktaffären Öppna en ny arbetsbok genom att gå upp i Arkivmenyn och där välja Nytt ange Arbetsbok. Eller klicka på knappen för ny arbetsbok. Du skall nu göra en kalkyl för ett

Läs mer

SKOLUTVECKLIGSPROJEKT MED GEOGEBRA. Jaana Zimmerl Suneson (Älvkullegymnasiet) jaana.zimmerl.suneson@alvkullegymnasiet.se

SKOLUTVECKLIGSPROJEKT MED GEOGEBRA. Jaana Zimmerl Suneson (Älvkullegymnasiet) jaana.zimmerl.suneson@alvkullegymnasiet.se ERFARENHETER FRÅN SKOLUTVECKLIGSPROJEKT MED GEOGEBRA Jaana Zimmerl Suneson (Älvkullegymnasiet Karlstad) jaana.zimmerl.suneson@alvkullegymnasiet.se mirela.vinerean@kau.se GeoGebra i matematikundervisningen

Läs mer

SÄKERHETSAVSTÅND I BILKÖER

SÄKERHETSAVSTÅND I BILKÖER ÄKERHETAVTÅND I BILKÖER En studie i bilars stoppavstånd Foad aliba Bassam Ruwaida Hassan hafai Hajer Mohsen Ali Mekanik G118 den 7 februari 8 AMMANFATTNING Projektet utgångspunkt har varit att svara på

Läs mer

Arbetsblad 5:2. Förkorta och förlänga bråk. 1 Förkorta med 2. 2 Förkorta med 5. 3 Förkorta med 3. 4 a) 4 = b) a) 6 = b) 16.

Arbetsblad 5:2. Förkorta och förlänga bråk. 1 Förkorta med 2. 2 Förkorta med 5. 3 Förkorta med 3. 4 a) 4 = b) a) 6 = b) 16. Arbetsblad 5:1 sid 142, 156 Repetition av bråk 1 Hur stor del av figuren är färgad? Skriv som ett bråk. a) b) c) d) 2 a) Skriv de bråk som är lika med en halv. b) Skriv de bråk som är mindre än en halv.

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 3. Funktioner Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna laboration skall vi träna på att

Läs mer

Optimering av NCCs klippstation för armeringsjärn

Optimering av NCCs klippstation för armeringsjärn Optimering av NCCs klippstation för armeringsjärn Sammanfattning I det här arbetet har vi försökt ta reda på optimal placering av en klippningsstation av armeringsjärn för NCCs räkning. Vi har optimerat

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

Microsoft Office Excel, Grundkurs 1. Introduktion

Microsoft Office Excel, Grundkurs 1. Introduktion Dokumentation - Kursmaterial Innehåll 1. Introduktion 1.1. Programfönster 1.2. Inskrift och redigering 1.3. Cellformat 1.4. Arbeta med formler Kursövning E1.xlsx Egna Övningar E1E.xlsx - OnePRO IT, Bengt

Läs mer

fredag den 11 april 2014 POOL BYGGE

fredag den 11 april 2014 POOL BYGGE POOL BYGGE KLADD Såhär ser min kladd ut: På min kladd så bestämde jag mig för vilken form poolen skulle ha och ritade ut den. På min kladd har jag även skrivit ut måtten som min pool skulle vara i. Proportionerna

Läs mer

Med ett samband menar vi hur något beror av någonting annat. Det skulle t.ex. kunna vara (sant eller inte):

Med ett samband menar vi hur något beror av någonting annat. Det skulle t.ex. kunna vara (sant eller inte): Linjära samband Räta linjens ekvation Förmågan att se, analsera och förstå olika samband är egenskaper som är viktiga att ha i vardagslivet men oundvikliga för kommande studier och arbetsliv. Med ett samband

Läs mer

DOP-matematik Copyright Tord Persson. Logövningar. Slumpad ordning. Uppgift nr 10 Lös ekvationen 10 y = 0,001. Uppgift nr 13 Lös ekvationen lg x = 4

DOP-matematik Copyright Tord Persson. Logövningar. Slumpad ordning. Uppgift nr 10 Lös ekvationen 10 y = 0,001. Uppgift nr 13 Lös ekvationen lg x = 4 Logövningar Uppgift nr 1 lg y -2 Uppgift nr 2 Huvudräkna lg200 + lg5 Uppgift nr 3 71 z 70 Uppgift nr 4 Ange derivatan till y e x Uppgift nr 5 Skriv 3 lg5 som en logaritm utan faktor framför. Uppgift nr

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

Excel XP. Programfönster

Excel XP. Programfönster Excel XP Programfönster I den här övningen tränar du på olika programfönster. Alla övningar har facit och går att göra på egen hand. Om du ska göra datakörkortet är det här extra bra övningar att träna

Läs mer

7E Ma Planering v45-51: Algebra

7E Ma Planering v45-51: Algebra 7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar

Läs mer

Hur långt har Umeåborna till jobbet? Utredningar och rapporter från Övergripande planering nr 11 2015

Hur långt har Umeåborna till jobbet? Utredningar och rapporter från Övergripande planering nr 11 2015 Hur långt har Umeåborna till jobbet? Utredningar och rapporter från Övergripande planering nr 11 215 www.umea.se/kommun Innehållsförteckning Sammanfattning 3 Inledning 3 Syfte 3 Metod 4 Val av färdmedel

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

3-6 Procent: rabatt och pålägg

3-6 Procent: rabatt och pålägg Namn: 3-6 Procent: rabatt och pålägg Inledning Nu börjar du bli en hejare på procenträkning. Du vet vad som menas med procent, och du kan räkna ut hur mycket en viss procent är av t.ex. ett belopp. I detta

Läs mer

Hämtning av sekundärdata och introduktion till Excel

Hämtning av sekundärdata och introduktion till Excel Metod och analys, 7.5hp 1 Hämtning av sekundärdata och introduktion till Excel Hämta sekundärdata från SCB Excels utformning Summera rader och kolumner Beräkna kohorter Låsning av celler Kopiera rader

Läs mer

1.1 Polynomfunktion s.7-15

1.1 Polynomfunktion s.7-15 1.1 Polynomfunktion Vad är då en funktion? En funktion är en regel i matematiken som beskriver sambandet mellan två storheter. T.ex. Hur många hjul har 3 bilar? 3 4 = 12 Hur många hjul har 4 bilar? 4 4

Läs mer

The Mad Mathematician s Mathematic Consultancy Bureau. Sebastian Genas

The Mad Mathematician s Mathematic Consultancy Bureau. Sebastian Genas 2012 The Mad Mathematician s Mathematic Consultancy Bureau Sebastian Genas Optimering av utklippt vinkel för maximal volym på glasstrut Vilken vinkel ska klippas ut ur en cirkulär skiva papper för att

Läs mer

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor. Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att

Läs mer

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG)

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) 0 ÖVNINGSTENTAMEN DEL C p Beräkna sidan AC p Bestäm f ( 0 ) då f ( ) ( ) p Ange samtliga etrempunkter till funktionen f ( ) 6. Ange även om det är

Läs mer

Matematik 5 Kap 3 Derivator och Integraler

Matematik 5 Kap 3 Derivator och Integraler Matematik 5 Kap 3 Derivator och Integraler Inledning I kap 4 Differentialekvationer behövs derivator (och integraler) och i kap 5 Omfångsrika problemsituationer finns intressanta problem med användning

Läs mer

Stockholms Tekniska Gymnasium Prov Fysik 2 Mekanik

Stockholms Tekniska Gymnasium Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1: Keplers tredje lag

Läs mer

När du har arbetat med det här ska du kunna: förklara vad som menas med en rörelse genom att ge exempel på hastighet, acceleration och fritt fall.

När du har arbetat med det här ska du kunna: förklara vad som menas med en rörelse genom att ge exempel på hastighet, acceleration och fritt fall. MÅL med arbetsområdet När du har arbetat med det här ska du kunna: förklara vad som menas med en rörelse genom att ge exempel på hastighet, acceleration och fritt fall. ge exempel på krafter som påverkar

Läs mer

Lösningar och kommentarer till uppgifter i 2.3

Lösningar och kommentarer till uppgifter i 2.3 Lösningar och kommentarer till uppgifter i 2.3 2303 d) TB: Jaha, nu gäller det att kunna sina deriveringsregler. Polynom kommer man alltid ihåg hur de ska deriveras. f(x) = 4x 2 + 5x 3 ger derivatan f

Läs mer

KLIMAT INGEN KAN GÖRA ALLT MEN ALLA KAN GÖRA NÅGOT! Transporterna släpper ut allt mer!

KLIMAT INGEN KAN GÖRA ALLT MEN ALLA KAN GÖRA NÅGOT! Transporterna släpper ut allt mer! vardag KLIMAT INGEN KAN GÖRA ALLT MEN ALLA KAN GÖRA NÅGOT! Transporterna släpper ut allt mer! Vi reser idag mer och mer och ofta längre och längre. Redan för 40 år sedan var vägtrafiken det dominerande

Läs mer

MÖNSTER OCH TALFÖLJDER

MÖNSTER OCH TALFÖLJDER MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll

Läs mer

PISA och problemlösning

PISA och problemlösning PISA och problemlösning I PISA-undersökningen om problemlösning visade det sig att våra svenska elever presterade under genomsnittet av elever inom OECD. Det är alltså samma negativa bild som den undersökning

Läs mer

En okänd graf. Förkunskaper Elever behöver ha en grundläggande förståelse för att alla förändringar sker över tid.

En okänd graf. Förkunskaper Elever behöver ha en grundläggande förståelse för att alla förändringar sker över tid. strävorna 6D 9E En okänd graf kreativ verksamhet tolka en situation statistik förändring Avsikt och matematikinnehåll Förr förmedlades information muntligt. När tidningar och senare radio och tv blev allmän

Läs mer

Excel och Word LABORATION. Innehåll Uppgift A Diagramhantering Uppgift B Kalkylering Dokumentation Presentation i WORD

Excel och Word LABORATION. Innehåll Uppgift A Diagramhantering Uppgift B Kalkylering Dokumentation Presentation i WORD UMEÅ UNIVERSITET Tillämpad fysik och elektronik Stig Esko 2004-08-22 LABORATION Excel och Word Innehåll Uppgift A Diagramhantering Uppgift B Kalkylering Dokumentation Presentation i WORD Målsättning Genom

Läs mer

Helsingfors universitet, Agrikultur-forstvetenskapliga fakulteten Skoglig ekologi och resurshushållning

Helsingfors universitet, Agrikultur-forstvetenskapliga fakulteten Skoglig ekologi och resurshushållning Helsingfors universitet, 18.5.2015 Agrikultur-forstvetenskapliga fakulteten Skoglig ekologi och resurshushållning DEL 2 Matematik (max 0 p.) 7. a) Matti och Maija börjar vandra från samma punkt i motsatta

Läs mer

tokiga transporter SPN-uppdrag

tokiga transporter SPN-uppdrag HUVUDUPPGIFT: Hur reser vuxna egentligen? 1. Hur reser vuxna egentligen? Välj ut en vuxen i din närhet som du litar på och träffar ofta. Välj ut tre dagar under arbetsveckan (måndag till fredag) då du

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

Regression med Genetiska Algoritmer

Regression med Genetiska Algoritmer Regression med Genetiska Algoritmer Projektarbete, Artificiell intelligens, 729G43 Jimmy Eriksson, jimer336 770529-5991 2014 Inledning Hur många kramar finns det i världen givet? Att kunna estimera givet

Läs mer

med huvudräkning fortsätter du med papper och penna eller miniräknare. Kontrollera sedan dina svar i facit och beräkna poängsumman.

med huvudräkning fortsätter du med papper och penna eller miniräknare. Kontrollera sedan dina svar i facit och beräkna poängsumman. PEDER CLAESSON Uppslaget handlar denna gång om huvudräkningsknep. Peder Claesson har valt att utgå från två huvudräkningsblad Testa dig själv I och II. Testa dig själv I är enkelt och kan ges till eleverna

Läs mer

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning Karlstads GeoGebrainstitut Institutionen för matematik och datavetenskap Karlstads universitet Mats Brunström Maria Fahlgren GeoGebra ett digitalt verktyg för framtidens matematikundervisning Invigning

Läs mer

Lathund, samband & stora tal, åk 8

Lathund, samband & stora tal, åk 8 Lathund, samband & stora tal, åk 8 Den vågräta tallinjen kallas x-axeln och den lodräta tallinjen kallas y-axeln. Punkten där tallinjerna skär varandra kallas origo (0,0). När man beskriver en punkt i

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

Inlä mning 3 Dätä 2012

Inlä mning 3 Dätä 2012 Inlä mning 3 Dätä 2012 Deadline: 2013-01-31 23:59 Inlämning sker i form av en excel-fil mailad till tig2012data@gmail.com innan deadline. Om du har funderingar eller tycker att något är otydligt kan du

Läs mer

Om ellipsen och hyperbelns optiska egenskaper

Om ellipsen och hyperbelns optiska egenskaper Om ellipsen och hyperbelns optiska egenskaper Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs kurvor som uppkommer

Läs mer

Konsten att bestämma arean

Konsten att bestämma arean Konsten att bestämma arean Lektion Ett (Matematiskt område - Talmängder) Vad är viktigast? Introducera tanken om att felet skulle kunna vara viktigare än svaret. Vad väger äpplet? Gissa. Jämför med mätvärdet

Läs mer

Microsoft Office Excel, Grundkurs 2. Funktioner

Microsoft Office Excel, Grundkurs 2. Funktioner Dokumentation - Kursmaterial Innehåll 2. Funktioner Övningar Kursövning E2.xlsx Egna Övningar E2E.xlsx - OnePRO IT, Bengt Nordström - 1 - www.onepro.se 2.1 Funktioner Funktioner i Excel är ett samlingsbegrepp

Läs mer

Bra ekonomi för T4. Frågeställning. Svar

Bra ekonomi för T4. Frågeställning. Svar Bra ekonomi för T4 Frågeställning Fyra mycket snåla systrar har fått ärva en kolonilott. Lotten har formen av triangel där alla sidor är tjugo meter. Systrarna är överens om att dela kostnaderna för ett

Läs mer

Klimatsmart resande och hållbara transporter - En förnyelsebar resa

Klimatsmart resande och hållbara transporter - En förnyelsebar resa KlimatVardag 20100306 Klimatsmart resande och hållbara transporter - En förnyelsebar resa Michael Johansson Miljöstrategi/LTH Lunds Universitet Campus Helsingborg KlimatVardag Helsingborg 6 mars 2010 Från

Läs mer

Instruktion 1. I var och en av dessa celler kan man mata in något av följande:

Instruktion 1. I var och en av dessa celler kan man mata in något av följande: Instruktion 1. Kalkylprogrammen används till allt från vardagliga till mer komplicerade beräkningar. Du kan använda kalkylbladet till att lägga upp alltifrån en enkel hushållsbudget till ett bokföringssystem

Läs mer

Komma iga ng med formler och funktioner

Komma iga ng med formler och funktioner Komma iga ng med formler och funktioner Det kan vara både krångligt och tidskrävande att utföra beräkningar, både enkla och mer komplexa. Med funktionerna och formlerna i Excel blir det mycket lättare.

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1)

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) NATUR OCH KULTURS PROV VÅRTERMINEN 1997 MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) Provets omfattning: t o m kapitel 5.6 i Matematik 2000 NV kurs AB. Provets omfattning: t o m kapitel 3.5

Läs mer

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Bruksanvisning. Sopmaskin, 60 cm 6,5 Hk, BS bensinmotor Art.: &

Bruksanvisning. Sopmaskin, 60 cm 6,5 Hk, BS bensinmotor Art.: & Bruksanvisning Sopmaskin, 60 cm 6,5 Hk, BS bensinmotor Art.: 90 37 121 & 90 39 263 Annelundsgatan 7A I 749 40 Enköping I Tel 010-209 70 50 I Fax 0171-44 14 10 I www.p-lindberg.se Lycka till med din produkt

Läs mer

Fysik A 08-02-18. Jonn Lantz Din kanelbulle i fysikens ugn jonn.lantz@lme.nu 031-825218

Fysik A 08-02-18. Jonn Lantz Din kanelbulle i fysikens ugn jonn.lantz@lme.nu 031-825218 1. Elmotorn En bensinmotor har sällan en verkningsgrad över 25%, men elmotorer är ofta bättre! (Det är bla. därför vi antagligen får se fler elbilar i framtiden). Ert uppdrag är att bestämma elmotorns

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

TABELLHANTERING. Formler, fungerar det att ha i tabeller?

TABELLHANTERING. Formler, fungerar det att ha i tabeller? TABELLHANTERING Formler, fungerar det att ha i tabeller? Detta lilla kompendium går igenom skillnader i tabeller mellan olika program. Eftersom det finns skillnader på hur tabeller fungerar så skall jag

Läs mer

Linjära ekvationer med tillämpningar

Linjära ekvationer med tillämpningar UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-17 SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel

Läs mer

Konsultuppdrag Epidemi 2012

Konsultuppdrag Epidemi 2012 Konsultuppdrag Epidemi 2012 Frågeställning och förutsättningar Undersök hur följande modell för hur en epidemi sprids genom en befolkning: Kända beteckningar: N = antalet individer i populationen M k =

Läs mer

4-8 Cirklar. Inledning

4-8 Cirklar. Inledning Namn: 4-8 Cirklar Inledning Du har arbetat med fyrhörningar (parallellogrammer) och trehörningar (trianglar). Nu skall du studera en figur som saknar hörn, och som består av en böjd linje. Den kallas för

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form.

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form. Steg 9 10 Bråk och procent Godkänd 9 10 1 Skriv 0,03 i procentform. 16 2 Skriv i blandad form. 5 3 Vilket eller vilka av talen är lika med en åttondel? 0,8 2 8 2 16 0,12 1,8 4 Skriv 7 % i decimalform.

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 29 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Prov Fysik 1 Värme, kraft och rörelse

Prov Fysik 1 Värme, kraft och rörelse Prov Fysik 1 Värme, kraft och rörelse För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1:

Läs mer

Rutschebanen - Fart och matematik med nöjesparkens populäraste attraktion

Rutschebanen - Fart och matematik med nöjesparkens populäraste attraktion Uppgiftsblad Attraktioner: Ta med: Måttband Eftersom både är Tivolis äldsta och mest populära attraktion tycker vi den ska få en alldeles egen uppgift. Den första frågan är därför också: Hur gammal är

Läs mer

Fria matteboken: Matematik 2b och 2c

Fria matteboken: Matematik 2b och 2c Fria matteboken: Matematik 2b och 2c Det här dokumentet innehåller sammanfattning av teorin i matematik 2b och 2c, för gymnasiet. Dokumentet är fritt att använda, modifiera och sprida enligt Creative Commons

Läs mer

Är det stor skillnad på miljöbil och inte miljöbil vad det gäller CO2 utsläpp?

Är det stor skillnad på miljöbil och inte miljöbil vad det gäller CO2 utsläpp? Är det stor skillnad på miljöbil och inte miljöbil vad det gäller CO2 utsläpp? Detta är en bild på ett avgasrörs system hos en icke miljöbil. Av: Carl Greinsmark 9c Gunnesboskolan Handledare: Olle Nyhlén

Läs mer

4 Kolumn Kalkylbladet är uppdelat i rader (horisontellt) och kolumner (vertikalt). Där dessa möts finns alltid en cell.

4 Kolumn Kalkylbladet är uppdelat i rader (horisontellt) och kolumner (vertikalt). Där dessa möts finns alltid en cell. Lathund för Microsoft Excel 1 2 9 4 Kolumn Kalkylbladet är uppdelat i rader (horisontellt) och kolumner (vertikalt). Där dessa möts finns alltid en cell. Innehåll Autofyll Celler Diagram Ändra diagramtyp

Läs mer