Delade meningar. Ett spel om matematikens språk

Storlek: px
Starta visningen från sidan:

Download "Delade meningar. Ett spel om matematikens språk"

Transkript

1 Delademeningar Ettspelommatematikensspråk

2 Design: AlexanderHallberg Version1.0 Layout: AlexanderHallberg Tacktill: JohanSilvermo MagnusMattsson ChristianKarlsson KentLindblad NiklasLindblad KarlAlfredsson CarlHeath HelenaSällström PerWetterstrand GRUpplevelsebaseratLärande GRUtbildning UpplevelsebaseratLärande (GRUL)syftartillattutveckla,utbildaoch genomföraverksamhetmedden upplevelsebaseradepedagogikensomverktyg ochförhållningssätt.grulsätterdetlivslånga lärandetifokusochvändersigtillalla verksamheterinomutbildningssektorn.den primäramål gruppenärpedagogiskpersonal inomgrundskolanssenareår,gymnasieskolan, vuxenutbildningochpåhögskola. Förmerinformationsewww.grul.se Copyright Dennasimulationär CopyrightGRUL2008. Materialetfårfrittkopierasochanvändasi utbildningsverksamhetsålängekällaanges. Bakgrund Speletharskapatsförattgöradetlättareatt tillgodosebehovetavmuntligundervisning inommatematiken.mångaläraresägerattdet störstaproblemetmedmuntligundervisningär attdeintehartid. Tilldettakankopplasattenstordelaveleverna iårskursen7 9harstorabristerisitt matematiskaspråk.iställetanvänderdeett vardagligtspråkförattförklaramatematiska termerochbegrepp.detblirsedanonödigtsvårt förelevernaattgåövertillmerkomplicerad matematikdärdestöterpåordsomsaknar motsvarighetidetvardagligaspråket. Tid 15min+15minefterdiskussion AntalDeltagare Spelasbästigrupperom3 4personer Introduktion Delademeningarärettsorteringskortspelsom gårutpåattelevernaskafågåigenomkortmed olikaordochtermerpåförattsedansorterain korteniolikakategorier.idennaövning användestvåkategorier,ordsomärmatematik ochordsominteärdet.någraavordenharflera betydelser(t.ex.bråkochdivision)ochkommer inteatthanågotsjälvklartsvar.detärdåupptill elevernaattinomgruppernadiskuteraoch bestämmavadsomärmatematikochinte.det skavaralikamångakortibådakategoriernaoch gruppernamåstevaraenigaombeslutensomde tar.

3 Handledningsinstruktioner Förarbete Skrivutallaordkorten(bilaga1.)såattvarje gruppharenkopiaavvarjeblad.klippsedan isärdemsåattvarjegruppfårenkortlek.blanda gärnakortenilekenmenblandaintesamman kortlekardåvarjekortlektendastskahaen kopiaavvarjekort.möbleraomiklassrummet såattgruppernasitteravskiltifrånvarandra mensåattduändålättkanöverblickadem. Underspeletsgång Enpersonurgruppendrardetöverstakorteti kortlekenochläseruppordet.gruppenmåstedå gemensamtbeslutaomordetpåkortetär matematisktellerinte.beslutomdettatasmed hjälpavdiskussionochkommermanintefram tillettbeslutsåfårgruppendiskuteratilldess attdennåttnågonslagsenighet.närgruppen beslutatläggerdenkortetpåbordetochsorterar indetunderantingen icke matte eller matte. Vissaordplatsariflerakategorier dessa fungerarsomdiskussionsunderlag.speletärslut närallakortärsorteradeitvålikastora kategorier.poängenräknasdåsamman.detär baradeordmedenbartmatematiskbetydelse somgerpoäng.dengruppenmedflestpoängi slutetvinner.12poängärmax. Efterdiskussion Placeradeltagarnapåettsättsomgörattalla kandelta.förslagsvissätternistolarnaienring såattallakanseochhöravarandra. Ommöbleringsignalerarattspeletärslutoch deltagarnafårlitetidattreflekteraövervadde justvaritmedom.efterdiskussionenfårgärnata tidsåavsätt15 20minochvarnogamedattalla verkligenfårkommatilltals.detviktigaäratt uppmanatilldiskussionochatthålladen levandegenomattintevärderavadeleverna säger.dettaärettutmärkttillfälleattföraett samtalommatematikochhurelevernaserpå ämnetochreflekterarövermatematikensspråk. Frågorattdiskuteraomspelet Vadtrornidennaövninghandladeom? Vadkännernispontantförövningen? Hursvårupplevdeniattövningenvar? Vilkaordvarsvårareänandra? Vadbetyderegentligendeorden? Hurviktigtärdetattskiljapåvardagliga ordochmatematiskaord? Hurmångaflerordfinnsdetsomhar meränenmening? Hurgicknitillvägaförattbeslutahur kortenskulleplaceras? Hursvårttyckerdudetäratttala matematik? Hurtrorduattmankangöra matematikenenklareattförstå? Tipsochförslag Begärnagruppernatänkaöveroch försökaförklaravadordenbetyder. Vissaordärväldigtsvåraattförklara medvardagligtspråk,vilketeleverna snabbtkommerattmärka.dekräver iställetenmatematiskförklaring. Detärbaraderättsorteradeordenmed enbartmatematiskbetydelsesomger poäng,alltsåkanmanmaxha12poäng. Enbramodellförpoängräknandeäratt

4 hahanduppräckningochdelaut poängenofficiellt. Ärdetnågongruppsomblirklar tidigareändeandrasåpoängteraattdet ärentävlingochattdeborde kontrollerasinsortering. Deordsomdeintekanfårelevernahelt enkeltgissavaddebetyder.diskutera gärnaiefterhandhurderesoneradenär desorteradekorten. Försökattundvikafrågorsomenbart genererarjaochnejochställistället frågorsominnebärattelevernamåste förklaravaddemenar. Detmåsteliggalikamångakortibåda kategorierna,alltså18kortivarje kategori. Läsigenomordförklaringarnainnanså attdukanförklaravaddesvåraorden verkligenbetyderpåettbrasätt. Icke matematiskaord Alkali ärengruppkemiskaföreningarmedi allmänhetlutaktigsmak,somharförmåganatt upptavätejonervarviddeienvattenlösningger ettph värdeöver7.ensådanlösningkallas alkalisk. Anjon Ennegativtladdadjoniskförening Entropi Ettmåttpåoordningen/kaosetiett system Exoterm Beskriverenkemiskellerfysikalisk processsomavgervärmeutåt Bilaterala Betydertvåsidiga Anekdot Kortskämtsamellerbetecknande historiaomkändperson Konselj Ettregeringssammanträdedär statschefenmedverkar,detvillsägakungen Antabus Användssomavvänjningsmedeli sambandmedalkoholmissbruk Proposition Ettförslagfrånregeringen Disposition Uppdelningenavnågot Praxis Rutin,sedvänja,konventionomdet faktiskaförfarandet,oskrivenöverenskommelse Extraktion betyderdraut Matematiskaordmeddelad betydelse Sats ettbevisatpåstående,ettpåståendesom inteärbevisatfårintekallasförensats.även uppsättningavnågot. Potens Attmultipliceraetttalmedsigsjälvtett antalgånger. Ärävenmannenssexuellaförmåga. Produkt resultatetavmultiplikation. Ävennågottillverkat. Bråk bråksynonymtmedetttal,somtalarom

5 hurstorttaletxärdådetjämförsmedtalety. Kanävenvarafysiskthandgemäng Division betyderdelning. Ävenenundergruppiseriesystemförlagsport Dividera motsatsentillmultiplikation,kan iblandtolkassomupprepadsubtraktion. Ävenenförvirradtankegång Axel ettbegreppinomgeometri. Ävenenkroppsdel Båge begreppetbågeinomgeometri. Ävenettslanguttryckförmotorcykel Jämn Omdetärenmultipelavtvå(ellerom mansåvilljämntdelbartmedtvå)ärdetett jämnttal;annarsärdetettuddatal. Ärävenbl.a.enytasominteharnågragropar Formel ettuttryckellernotation,som beskriverviktigasambandelleregenskapermed hjälpavolikasymboler. ÄvenenmotorsporttillexempelFormel1 Rum inommatematikenärrumenmängd, vanligtvismednågonytterligarestruktur. Ävenentermförattbeskrivaenavgränsad, inneslutenyta Index endiskretvariabelsomskiljerolika elementiettmatematisktobjekt. Ärävendetsammasomregister. Matematiskaord(Detärenbart dessaordsomgerpoäng) Algebra ärengreninommatematikensomkan definierassomengeneraliseringochutökning avaritmetiken.algebrakanocksåbeskrivassom förhållanden,vilkauppkommer,närettändligt antalräkneoperationerutförspåenändlig mängdavtal.populärtbrukaralgebraibland kallasförbokstavsräkning,mendettaärnågot missvisande. Avstånd ärettmåttpåhurlångtifrånvarandra tvåobjektär. Algoritm ärenbegränsadmängd väldefinieradeinstruktionerförattlösaen uppgift,somfrångivnautgångstillståndmed säkerhetledertillnågotgivetsluttillstånd. Area ytaellermåttpåenfigurstotala ytinnehåll Axiom ärengrundsatssomkanaccepteras utanbevis,genomkonventionellersomkan antasvarasjälvklartsann. Aritmetik ärdengreninommatematikensom handlaromrenträknandeochinnefattar elementäraegenskaperhosspeciellaaritmetiska operationerpåtal.detraditionellaoperatorerna äraddition,division,multiplikation,och subtraktion. Variabel Envariabelärnågotsomkanändras. Inommatematikenochdatavetenskapen

6 betecknardenettnamngivetobjektsom användsförattrepresenteraettokäntvärde. Biljon 1000miljarder,ellerenmiljontedelav entriljon Cirkel Ärenperfektrundkurvaochenform inomgeometri Procent ärsynonymtmedordethundradeloch uttrycketperhundra Täljare TaletTkallasförbråketstäljare(Tsom itak)ochtaletnkallasförbråketsnämnare(n sominere) Median ärdettalienmängdsom storleksmässigtliggersåattdetfinnslikamånga talsomärstörreänochmindreänmedianen.

7

8

9

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov

Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov År Startvecka 2013 2 Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov Vecka Lektion (2h) Datum Kapitel Avsnitt 2 Ti 08-jan Kap 1: Räta linjen

Läs mer

Räkna med C# Inledande programmering med C# (1DV402)

Räkna med C# Inledande programmering med C# (1DV402) Räkna med C# Upphovsrätt för detta verk Detta verk är framtaget i anslutning till kursen Inledande programmering med C# vid Linnéuniversitetet. Du får använda detta verk så här: Allt innehåll i verket

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Pedagogisk planering aritmetik (räkning)

Pedagogisk planering aritmetik (räkning) Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande

Läs mer

Centralt innehåll som vi arbetar med inom detta område:

Centralt innehåll som vi arbetar med inom detta område: BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp

Läs mer

Räkneflyt. Addition och Subtraktion. Färdighetsträning i matte. Talområde 11-20

Räkneflyt. Addition och Subtraktion. Färdighetsträning i matte. Talområde 11-20 Räkneflyt Addition och Subtraktion område 11-20 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Innehållsförteckning Introduktion 2-3 Räkneflyt är kopplat till Lgr11 och Diamant 7 Förståelse

Läs mer

EXTRA UPPGIFTER I C++ PROGRAMMERING-A

EXTRA UPPGIFTER I C++ PROGRAMMERING-A EXTRA UPPGIFTER I C++ PROGRAMMERING-A Uppgifterna är ej sorterade efter svårighetsgrad 1. Gör ett program som kan beräkna arean och omkretsen av en cirkel om användaren (du) matar in cirkelns radie. Skapa

Läs mer

Matematik i Gy11. 110912 Susanne Gennow

Matematik i Gy11. 110912 Susanne Gennow Matematik i Gy11 110912 Susanne Gennow Var finns matematik? Bakgrund Nationella utredning 2003 PISA 2009 TIMSS Advanced 2008 Skolinspektionens rapporter Samband och förändring åk 1 3 Olika proportionella

Läs mer

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk.

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk. täljare bråkstreck ett bråk nämnare Vilket bråk är störst? Ett bråk kan betyda mer än en hel. Olika bråk kan betyda lika mycket. _ 0 två sjundedelar en hel och två femtedelar > 0 > 0 < > > < > Storlek

Läs mer

Detaljplanering. Matematik 1A LÅ 2013/2014. Jonas Bengtsson

Detaljplanering. Matematik 1A LÅ 2013/2014. Jonas Bengtsson Detaljplanering Matematik 1A Jonas Bengtsson Läromedel: Matematik 00 1a, Natur & Kultur Information Detta är en detaljplan i kursen Matematik 1A för läsåret 2013/2014. Varje vecka innehåller 3 st lektionspass

Läs mer

Inledande programmering med C# (1DV402) Introduktion till programmering

Inledande programmering med C# (1DV402) Introduktion till programmering Introduktion till programmering Upphovsrätt för detta verk Detta verk är framtaget i anslutning till kursen Inledande programmering med C# vid Linnéuniversitetet. Du får använda detta verk så här: Allt

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Kap1 1.1 Tal i olika former Mål Mål Mål Mål Mål Mål Rek. uppgifter 1101, 1106, 1107, 1113, 1118, 1120 Talmängder

Kap1 1.1 Tal i olika former Mål Mål Mål Mål Mål Mål Rek. uppgifter 1101, 1106, 1107, 1113, 1118, 1120 Talmängder Kap1 1.1 Tal i olika former Mål Mål Mål Mål Mål Mål Rek. uppgifter Känna till de vanligaste talmängderna och de Veta hur talmängderna betecknas Ha kunskap om hur de olika talmängderna är 1101, 1106, 1107,

Läs mer

Matematik 1A 4 Potenser

Matematik 1A 4 Potenser Matematik 1A 4 Potenser förklara begrepp t ex. potens, bas, exponent och grundpotensform (Nivå E C) tolka, skriva och räkna med tal i grundpotensform (Nivå E A) helst kunna redogöra för räkneregler för

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets

Läs mer

Matematik 1B. Taluppfattning, aritmetik och algebra

Matematik 1B. Taluppfattning, aritmetik och algebra Matematik 1a Centralt innehåll Metoder för beräkningar med reella tal skrivna på olika former inom vardagslivet och karaktärsämnena, inklusive överslagsräkning, huvudräkning och uppskattning samt strategier

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Matematik 3000 kurs A

Matematik 3000 kurs A Studieanvisning till läroboken Matematik 3000 kurs A Innehåll Kursöversikt...4 Vad skall du kunna efter Matematik kurs A?...5 Så här jobbar du med boken...6 Studieenhet Arbeta med tal...7 Studieenhet Procent...12

Läs mer

Fibonacci. Miniporträttet

Fibonacci. Miniporträttet Miniporträttet ANDREJS DUNKELS Fibonacci I serien berömda matematiker har NÄMNAREN denna gång valt Fibonacci. Frågan är hur våra siffror sett ut idag om inte Fibonacci lagt ner så stor möda på att sprida

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

Kurskod: GRNMAT2 Verksamhetspoäng: 600

Kurskod: GRNMAT2 Verksamhetspoäng: 600 Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

Studiehandledning. kurs Matematik 1b

Studiehandledning. kurs Matematik 1b Studiehandledning kurs Matematik 1b Innehållsförteckning Inledning och Syfte... 1 Ämnesplan för ämnet matematik... 1 Ämnets syfte... 1 Centralt innehåll... 2 Problemlösning... 2 Taluppfattning, aritmetik

Läs mer

Kommunövergripande Mål i matematik, åk 1-9

Kommunövergripande Mål i matematik, åk 1-9 Kommunövergripande Mål i matematik, åk 1-9 Många skolor har lagt ner mycket tid på att omforma de mål som anges på nationell nivå till undervisningsmål på den egna skolan. Tanken är att vi nu ska kunna

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK KRAVNIVÅER Åtvidabergs kommuns grundskolor MATEMATIK Reviderade april 2009 Förord Välkommen att ta del av Åtvidabergs kommuns kravnivåer och bedömningskriterier för grundskolan. Materialet har tagits fram

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

Studiehandledning för Matematik 1a

Studiehandledning för Matematik 1a Studiehandledning för Matematik 1a Innehåll Studiehandledning för Matematik 1a... 1 Inledning och Syfte... 2 Ämne - Matematik... 3 Ämnets syfte... 3 Matematik 1a... 4 Centralt innehåll... 4 Kunskapskrav...

Läs mer

Min man kommer ursprungligen från

Min man kommer ursprungligen från t í m e a d a n i Varför räknar du just så? Denna artikel bygger på ett examensarbete för lärarutbildningen. I arbetet undersöktes skillnader mellan lärares, svenska föräldrars och invandrarföräldrars

Läs mer

Matematikens historia (3hp) Vladimir Tkatjev

Matematikens historia (3hp) Vladimir Tkatjev Matematikens historia (3hp) Vladimir Tkatjev Dagens program Introduktion och kursens översikt Talbegreppets utveckling Den äldsta matematiken - EGYPTEN och BABYLON Obligatorisk kurslitteratur Tord Hall

Läs mer

Att beräkna t i l l v ä x t takter i Excel

Att beräkna t i l l v ä x t takter i Excel Att beräkna t i l l v ä x t takter i Excel Detta kapitel är en liten matematisk vägledning om att beräkna tillväxttakten i Excel. Här visas exempel på potenser och logaritmer och hur dessa funktioner beräknas

Läs mer

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven

Läs mer

MATEMATIK - grunderna och lite till - Hans Elvesjö

MATEMATIK - grunderna och lite till - Hans Elvesjö MATEMATIK - grunderna och lite till - Hans Elvesjö 1 Största delen av boken ligger på höstadienivå med en mindre del på gymnasienivå Den har ej för avsikt att följa läroplanen men kan med fördel användas

Läs mer

Ett jämnt liv. Ett spel om jämställdhet och statistik

Ett jämnt liv. Ett spel om jämställdhet och statistik Ett jämnt liv Ett spel om jämställdhet och statistik Introduktion I skolans uppdrag ingår att elever skall fostras i en värdegrund som baseras på jämställdhet, jämlikhet och alla människors lika värde.

Läs mer

MATEMATIK. Läroämnets uppdrag

MATEMATIK. Läroämnets uppdrag MATEMATIK Läroämnets uppdrag Syftet med undervisning i matematik är att utveckla ett logiskt, exakt och kreativt matematisk tänkande hos eleven. Undervisningen skapar en grund för förståelsen av matematiska

Läs mer

Sammanfattning: Matematik 1b

Sammanfattning: Matematik 1b Sammanfattning: Matematik 1b Ma1c kräver kompletterande delar om vektorer samt trigonometri 1. Kapitel 1: Aritmetik Centrala delar i kapitlet: - Räkneordning - Tal i bråkform och decimalform - Tal i potensform

Läs mer

Lektion 1 Introduktion till DrJava och Java

Lektion 1 Introduktion till DrJava och Java Lektion 1 Introduktion till Målsättning med lektionen: Bekanta er med programmet DrJava som ni skall använda under kursen för att skriva och köra javaprogram Hur man använder variabler, aritmetik och matematiska

Läs mer

Högskoleprovet Så presterar du bättre

Högskoleprovet Så presterar du bättre Högskoleprovet Så presterar du bättre I det här lilla häftet kommer du att få information om hur högskoleprovet går till rent praktiskt, vad du skall tänka på under själva provdagen och tips för att du

Läs mer

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå

Läs mer

Wiggo Kilborn. Om tal i bråkoch decimalform en röd tråd

Wiggo Kilborn. Om tal i bråkoch decimalform en röd tråd Wiggo Kilborn Om tal i bråkoch decimalform en röd tråd Tal i bråkoch decimalform en röd tråd Wiggo Kilborn Nationellt centrum för matematikutbildning Göteborgs universitet 20 Detta verk är licensierad

Läs mer

Laboration 1. "kompilera"-ikonen "exekvera"-ikonen

Laboration 1. kompilera-ikonen exekvera-ikonen Programmerade system I1 Syfte Laboration 1. Syftet med denna laboration är dels att göra dej bekant med de verktyg som kan vara aktuella i programmeringsarbetet, dels ge en första inblick i att skriva

Läs mer

Kommentarmaterial till kunskapskraven i matematik

Kommentarmaterial till kunskapskraven i matematik Kommentarmaterial till kunskapskraven i matematik Skolverket Stockholm 2012 www.skolverket.se ISBN: 978-91-87115-68-4 Innehåll 1. Inledning... 4 Vad materialet är och inte är...4 Materialets disposition...5

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

Kontraktsprogrammering

Kontraktsprogrammering Kontraktsprogrammering Programmera med kontrakt Samma som i vardagen Två parter (minst), bägge följer sin del 2 Bilköp Kund Krav Betala varje månad Förtjänst Få en bil Försäljare Ge kunden en bil och serva

Läs mer

Matematik klass 2 Facit

Matematik klass 2 Facit Matematik klass 2 Facit Höstterminen s. 2-5 Vårterminen s. 6-11 Extrabok 2A s. 12-14 Extrabok 2B s. 15-19 Anneli Weiland Matematik åk 2 FACIT 1 s.2 mönster: HEJ s.4 negativa och positiva tal -2 0 1 1 2

Läs mer

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen MATEMATIK Mål att sträva mot enligt nationella kursplanen Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Datorspel med agenter som lär sig matematik utan symboler. Lena Pareto Högskolan Väst

Datorspel med agenter som lär sig matematik utan symboler. Lena Pareto Högskolan Väst Datorspel med agenter som lär sig matematik utan symboler Lena Pareto Högskolan Väst 1 Idé: matematik i ny förklädnad koncept: positiva tal negativa tal decimal systemet addition subtraktion multiplikation

Läs mer

Elevenkät. Årskurs 4. Skolverket 106 20 Stockholm

Elevenkät. Årskurs 4. Skolverket 106 20 Stockholm j h Elevenkät Årskurs 4 Skolverket 106 20 Stockholm International Association for the Evaluation of Educational Achievement Copyright IEA, 2007 k l Instruktioner I det här häftet finns frågor om dig själv.

Läs mer

Matematik. Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015

Matematik. Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015 Matematik Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015 Tal Vad kan subtraktionen 4 7 innebära? Kan något vara mindre än noll? De här frågorna sysselsatte matematiker i många århundranden. Så länge

Läs mer

Laboration 1. "kompilera"-ikonen "exekvera"-ikonen

Laboration 1. kompilera-ikonen exekvera-ikonen Syfte Laboration 1. Objektorienterad programmering, Z1 Syftet med denna laboration är dels att göra dej bekant med de verktyg som kan vara aktuella i programmeringsarbetet, dels ge en första inblick i

Läs mer

MATEMATIK. Ämnets syfte. Kurser i ämnet

MATEMATIK. Ämnets syfte. Kurser i ämnet MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

3-5 Miniräknaren Namn:

3-5 Miniräknaren Namn: 3-5 Miniräknaren Namn: Inledning Varför skall jag behöva jobba med en massa bråk, multiplikationstabeller och annat när det finns miniräknare som kan göra hela jobbet. Visst kan miniräknare göra mycket,

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Målet med undervisningen är att eleverna ges förutsättningar att:

Målet med undervisningen är att eleverna ges förutsättningar att: Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska

Läs mer

Ett litet steg. Ett spel om klimatfrågan

Ett litet steg. Ett spel om klimatfrågan Ett litet steg Ett spel om klimatfrågan Introduktion Detta utbildningsmaterial syftar till att belysa klimatfrågan individorienterat och hur olika delar av världen kan påverka/påverkar klimatet. Tid 60

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 1.1Introduktion Introduktion Avsnitt 1 handlar till att börja med om hantering av bråkstreck. Samtidigt ges exempel och övningar

Läs mer

Kommunen som arbetsgivare

Kommunen som arbetsgivare KOMMUNLEDNINGSKONTORET Verksamhetsstyrning Karlstad 2014-04-08 Lina Helgerud, lina.helgerud@karlstad.se Kommunen som arbetsgivare Tematisk månadsrapport av indikatorer i strategisk plan Målområde: Arbetsgivarperspektiv

Läs mer

KURSÖVERSIKT LIGFB2 Vt 2009

KURSÖVERSIKT LIGFB2 Vt 2009 1(10) Lärare som ingår i kursteamet: Joakim Samuelsson Cecilia Sveider Ingrid Häggström (IH) Margareta Lindkvist (ML) Christina Wiklund CW) Övriga lärare: KURSÖVERSIKT LIGFB2 Vt 2009 Detta är endast en

Läs mer

NYA KURSPLANER FÖR GRUNDSKOLAN MATEMATIK GRUNDSKOLAN

NYA KURSPLANER FÖR GRUNDSKOLAN MATEMATIK GRUNDSKOLAN NYA KURSPLANER FÖR GRUNDSKOLAN Den 17 mars 1994 fastställde regeringen KURSPLANER FÖR GRUNDSKOLAN att gälla i årskurserna 1 7 från läsåret 1995/96, i årskurs 8 läsåret 1996/97 och i årskurs 9 läsåret 1997/98.

Läs mer

räkna med vasa övningar att genomföra i vasamuseet

räkna med vasa övningar att genomföra i vasamuseet räkna med vasa övningar att genomföra i vasamuseet lärarhandledning 2 (av 2) övningar att genomföra i vasamuseet Denna handledning riktar sig till läraren som i sin tur muntligt instruerar sina elever.

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter

Läs mer

Kommentarer till uppbyggnad av och struktur för ämnet matematik

Kommentarer till uppbyggnad av och struktur för ämnet matematik 2011-06-10 Kommentarer till uppbyggnad av och struktur för ämnet matematik Likheter och skillnader jämfört med den gamla kursplanen Ämnesplanen i gymnasieskola 2011 (Gy 2011) har en ny struktur jämfört

Läs mer

Lokala arbetsplaner Stoby skola

Lokala arbetsplaner Stoby skola Lokala arbetsplaner Stoby skola Rev. 080326 Innehållsförteckning Lokala arbetsplaner Stoby skola... 1... 1 Lokal arbetsplan Engelska... 3 År 1...3 År 2...3 År 3...3 År 4-5...4 Lokal arbetsplan Matematik...

Läs mer

Matematik Åk 3 Tal och räkning

Matematik Åk 3 Tal och räkning FA C I T Lgr 11 Matematik Åk 3 Tal och räkning Catherine Bergman Maria Österlund Kan du använda och beskriva tal? Hur långt kan du räkna framåt? Jag kan räkna till: Hur långt kan du räkna bakåt? Jag kan

Läs mer

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden.

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. Man ser en jämn ström av uppseendeväckande scenarier. Man undviker nog

Läs mer

sex miljoner tre miljarder femton miljoner trehundratusen 6 000 000 520 000 > 50 200 40 000 500 > 40 000 050 5 505 050 < 5 505 500

sex miljoner tre miljarder femton miljoner trehundratusen 6 000 000 520 000 > 50 200 40 000 500 > 40 000 050 5 505 050 < 5 505 500 Namn: Förstå och använda stora tal som miljoner och miljarder Skriv talen med siffror. sex miljoner tre miljarder femton miljoner trehundratusen Läs talen först. Använd sedan > eller > < Vilket tal

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

Algebra viktigt men svårt

Algebra viktigt men svårt CONSTANTA OLTEANU Algebra viktigt men svårt I artikeln diskuteras gymnasieelevers dåliga förståelse av algebra, tänkbara orsaker och kopplingen till aritmetik i grundskolan. Artikeln bygger på delresultat

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v.

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v. TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det nionde skolåret: Eleven skall ha förvärvat sådana kunskaper i matematik som behövs för att kunna beskriva och hantera situationer samt lösa

Läs mer

Kortaste Ledningsdragningen mellan Tre Städer

Kortaste Ledningsdragningen mellan Tre Städer Kortaste Ledningsdragningen mellan Tre Städer Tre städer A, B och C, belägna som figuren till höger visar, ska förbindas med fiberoptiska kablar. En så kort ledningsdragning som möjligt vill uppnås för

Läs mer

Överbryggningskurs i matematik del I. Teknik och Samhälle 2012

Överbryggningskurs i matematik del I. Teknik och Samhälle 2012 Överbryggningskurs i matematik del I Teknik och Samhälle 0 Malmö 0 Förord och studietips Föreliggande kompendium i två delar är en överbryggning mellan gymnasiets och högskolans matematikkurser. Målet

Läs mer

Sociala strävansmål. De två övergripande områdena är: Normer och värderingar Ansvar och inflytande

Sociala strävansmål. De två övergripande områdena är: Normer och värderingar Ansvar och inflytande Skolans kunskapsmål I läroplanen, Lpo 94, finns kunskapsmålen för grundskolans undervisning beskrivna. Läroplanen anger dessa mål för år 5 och 9, men visar inte vilka detaljkunskaper eleverna ska uppnå.

Läs mer

PROGRAMMERING-Java TENTAMINA

PROGRAMMERING-Java TENTAMINA PROGRAMMERING-Java TENTAMINA Nicolina Månsson 2010-03-17 Tentamensinstruktioner Poängsättning Hela tentamen omfattar 42 poäng. Poäng för varje uppgift står angivet inom parentes före varje uppgift. - För

Läs mer

5Genrepet. Mål. Arbetssätt K 5

5Genrepet. Mål. Arbetssätt K 5 Genrepet Mål I det här kapitlet får eleverna möjlighet att repetera och reparera grunderna i grundskolans matematik. apitlet är indelat i se avsnitt: Tal Bråk och procent Geometri Algebra Statistik och

Läs mer

3-3 Skriftliga räknemetoder

3-3 Skriftliga räknemetoder Namn: 3-3 Skriftliga räknemetoder Inledning Skriftliga räknemetoder vad är det? undrar du kanske. Och varför behöver jag kunna det? Att det står i läroplanen är ju ett klent svar. Det finns miniräknare,

Läs mer

SKOGLIGA TILLÄMPNINGAR

SKOGLIGA TILLÄMPNINGAR STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig

Läs mer

Matte på riktigt! Specialuppdrag från Uppdrag: Matte. o Matematikens ABC o Hur många ryms i en dinosauriemage? o Massor av suddiga tal

Matte på riktigt! Specialuppdrag från Uppdrag: Matte. o Matematikens ABC o Hur många ryms i en dinosauriemage? o Massor av suddiga tal Matte på riktigt! Specialuppdrag från Uppdrag: Matte o Matematikens ABC o Hur många ryms i en dinosauriemage? o Massor av suddiga tal uppdrag: matte Mattedetektiverna Mattespanarna Hej! I vårt nya grundläromedel

Läs mer

FÖRBEREDANDE KURS I MATEMATIK 1. Till detta kursmaterial finns prov och lärare på Internet.

FÖRBEREDANDE KURS I MATEMATIK 1. Till detta kursmaterial finns prov och lärare på Internet. FÖRBEREDANDE KURS I MATEMATIK Till detta kursmaterial finns prov och lärare på Internet. Detta material är en utskrift av det webbaserade innehållet i wiki.math.se/wikis/forberedandematte Studiematerialet

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

http://www.myjoice.com/ http://www.counterpath.net/eyebeam.html

http://www.myjoice.com/ http://www.counterpath.net/eyebeam.html Introduktion Dennamanualtardigigenomstegenattinstalleraochgöranödvändiga inställningariprogrammeteyebeamförattkunnaringamedjoicetjänsten.om dubehövermerhjälpellerharfrågor,tvekainteattvändadigtillvårsupport.

Läs mer