Matematisk analys, laboration II. Per Jönsson Teknik och Samhälle, Malmö Högskola

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Matematisk analys, laboration II. Per Jönsson Teknik och Samhälle, Malmö Högskola"

Transkript

1 Matematisk analys, laboration II Per Jönsson Teknik och Samhälle, Malmö Högskola

2 Viktig information om laborationerna I analyskursen ingår tre obligatoriska laborationer. Under laboration används Matlab/GNU Octave och under laboration och 3 datoralgebrasystemet Maxima. För att bli godkänd krävs att alla tre laborationerna har redovisats på ett godtagbart sätt. Vid laborationerna gäller följande: Laborationsuppgifterna (och eventuella förberedelseuppgifter) skall vara gjorda innan man kommer till laborationen (du är alltså tvungen att sitta hemma eller i datorsal före laborationen och göra uppgifterna samt förbereda dig). Har du stött på problem med uppgifterna kan du komma till frågetimmarna innan laborationen. Under laborationen skall uppgifterna redovisas. Under laborationen kan du även få hjälp med något moment du inte har lyckats få rätt på hemma. Studenter som inte har förberett uppgifterna när de kommer till laborationen underkänns. Vid laborationstillfälle redovisas laboration, vid laborationstillfälle redovisas laboration. Man kan t.ex. inte utebli under laboration och sedan redovisa laboration och vid laborationstillfälle. Det går inte att byta laborationsgrupp under kursens gång. Om man inte kan närvara på en laboration på grund av sjukdom så måste detta anmälas snarast till kursledaren. För de som har anmält frånvaro på grund av sjukdom till kursledaren finns ett reservtillfälle i slutet av kursen då man kan redovisa laborationer man missat. Endast studenter som har meddelat frånvaro till kursledaren på grund av sjukdom bereds plats vid reservtillfällena. Reglerna ovan tolkas strikt och är till för att få laborationsmomentet att fungera praktiskt och underlätta er egen planering Användning av Maxima Maxima är ett så kallat datoralgebrasystem (computer algebra system CAS). För att ladda ner Maxima går man in på På sidan finns även omfattande dokumentation till programmet på flera olika språk. Installationen på Windows självförklarande. För MAC finns instruktionsfilm på it slearning. I datoralgebraprogram utför man operationer på symboler som representerar matematiska objekt. De matematiska objekten kan vara formler, ekvationer, funktioner och så vidare. Operationerna sker i enlighet med kända algebraiska lagar och regler. Exempel på datoralgebraiska operationer är sådana som beräknar derivatan av en funktion d sin x ex dx eller som löser en differentialekvation y + y = te t, y(0) =.

3 Skriv in kommandon i Maxima Maxima startas genom att dubbelklicka på ikonen med texten wxmaxima. Vid starten kommer ett fönster, vilket är illustrerat överst i figur, att öppnas. Fönstret är Maximas arbetsfönster och har flera olika funktioner. För att använda Maxima börja med att trycka ner Enter-tangenten så att en inmatningspil --> kommer fram i Maximas arbetsfönster. Skriv in kommandot efter inmatningspilen. I vårt fall vill vi derivera x sin(x) och skriver in kommandot diff(x*sin(x),x). Kommandot utförs sedan genom att trycka ner Shift-tangenet och sedan Enter-tangenten varvid Maxima returnerar en svarsutskrift. Figur : Maximas arbetsfönster. Kommandon skrivs efter inmatningspilen och utförs genom att trycka ner Shift-tangenet och sedan Enter-tangenten. Kommandon kan även ges genom att använda rullgardinsmenyerna. 3

4 3 Räkning med tal Maxima har fem aritmetiska operatorer. Dessa är i prioritetsordning ˆ5 potens (upphöjt till) prioritet * multiplikation prioritet / division prioritet + addition prioritet 3 - subtraktion prioritet 3 Då två operatorer har samma prioritetsordning utförs beräkningarna från vänster till höger. Maxima ger exakta svar (och ej decimaltal) vid räkning med heltal och rationella tal. Kommandot för kvadratrötter är sqrt. Kvadratrötter för heltal och rationella tal representeras alltid på enklast möjliga form. Förutom att räkna exakt kan Maxima också göra numeriska approximationer och ge uttryck som flyttal genom användning av kommandot float. Tal och uttryck kan lagras i identifierare (variabler) på följande sätt namn : uttryck Observera hur vi använde kolon och inte likhetstecken för att tilldela identifieraren ett värde. Exempel. (a) För att beräkna 3 skriver vi *3^ Eftersom ^ har högst prioritet börjar Maxima med att beräkna 3^. Sedan följer multiplikation med och Maxima svarar 8 (b) Division och multiplikation har samma prioritet. Då vi skriver /*3 börjar Maxima från vänster och beräknar / sedan följer multiplikation med 3, vilket ger svaret 3 För att undvika missförstånd bör man sätta ut parenteser och skriva talet som (/) 3 Exempel. (a) För att beräkna och lagra i identifieraren f skriver vi 4

5 vilket ger f : 5/8 + /7 - / För att få fram talet i decimalform skriver vi float(f) och Maxima svarar (b) Uttrycket fås genom ( + 5/) (3/ 7/5) ( + 5/)/(3/ - 7/5)^ med resultatet 350 (c) Talet (5/) 7 beräknas genom (5/)^7 och Maxima spottar ur sig svaret Exempel 3. (a) Talet 56 beräknas genom vilket ger sqrt(56) 4 För att få fram svaret har Maxima konstaterat att 56 = 4 4 = 4. (b) Betrakta det lite mera komplicerade rotuttrycket Då vi skriver in kommandot sqrt(0)*sqrt(6)/sqrt(4) ger Maxima svaret 5 5

6 4 Fördefinierade konstanter och symboler I Maxima finns bland annat följande fördefinierade konstanter och symboler. %pi π %e, exp() e.788 (basen för naturliga logaritmen). %i, imaginära enheten. inf positiva oändligheten. minf negativa oändligheten. Maxima känner till exakta regler för en rad operationer med π och e. Symbolerna för oändlighet används bland annat vid beräkning av gränsvärden. Exempel 4. (a) Då vi skriver varde : cos(%pi/4) returnerar Maxima (b) För att få det numeriska värdet för / skriver vi float(varde) vilket ger värdet med 4 värdesiffror (c) Då vi beräknar naturliga logaritmen av e log(%e) får vi svaret 6

7 5 Funktioner Maxima har ett antal standardfunktioner. abs(x) ger absolutbeloppet x. sqrt(x) ger kvadratroten x. exp(x) ger exponentialfunktionen e x. log(x) ger naturliga logaritmen ln(x). sin(x) ger sin(x) där x måste vara i radianer. cos(x) ger cos(x) där x måste vara i radianer. tan(x) ger tan(x) där x måste vara i radianer. cot(x) ger cot(x) där x måste vara i radianer. asin(x) ger arcsin(x). acos(x) ger arccos(x). atan(x) ger arctan(x). atan(y,x) ger vinkeln mellan vektorn (x, y) och x-axeln. Förutom alla räkneregler som gäller för funktionerna så känner Maxima även till speciella värden som sin(π/4) = / och så vidare. För att beräkna en funktion för ett givet värde på x eller någon parameter kan vi också skriva funktionsuttrycket följt av värdena på x och parametrarna på samma rad. Funktioner plottas enkelt med kommandot plotd. Exempel 6. (a) För att beräkna tan(π/3) skriver vi och får 3 tan(%pi/3) (b) Vi kan beräkna ln(e ) genom och får log(%e^) (c) Drar vi roten ur det negativa talet 4 sqrt(-4) svarar Maxima i vilket ska tolkas som det imaginära talet i. (d) I många fall får man det inskrivna i retur då detta är den enklaste representationen av funktionsvärdet. Skriver vi 7

8 sin() så får vi bara samma funktion i retur sin() Det finns inget enklare sätt att representera funktionsvärdet. (e) För att beräkna värdet av funktionen f(x) = sin(x) cos(x) då x = π/4 skriver vi sin(*x)*cos(x), x= %pi/4 och får svaret Exempel 7. (a) För att plotta funktionerna f(x) = e x och g(x) = e x i intervallet [ 3, 3] ger vi kommandot plotd([exp(x),exp(-x)],[x,-3,3]) vilket ger plotten till vänster i figur. (b) Betrakta funktionen f(x) = a sin(bx c). Följande kommando plottar funktionen i intervallet [ 5, 5] för a = 3, b = och c = plotd(a*sin(b*x-c),[x,-5,5]),a=3,b=,c= Det går också bra att lagra funktionen i en identifierare och sen anropa plotrutinen på följande sätt f : a*sin(b*x-c) plotd(f,[x,-5,5]),a=3,b=,c= Plotten visas till höger i figur x x Figur : Två funktionsplottar i Maxima. 8

9 6 Omskrivning av uttryck I problemlösning använder man ofta kända algebraiska lagar för skriva om ett eller flera uttryck till lämpligare form. Vad som är lämpligare form beror på det aktuella problemet. En form som är enkel och funktionell i ett sammanhang behöver inte nödvändigtvis vara det i ett annat. Nedan följer ett antal användbara kommandon. expand collectterms factor partfrac gfactor ratsimp fullratsimp trigsimp trigexpand trigreduce skriver ett symboliskt uttryck som en summa av produkter. skriver ett symboliskt uttryck i termer av potenser i en variabel. faktoriserar ett uttryck i reella faktorer. Om uttrycket är ett heltal fås en uppdelning i primfaktorer. partialbråksuppdelar ett uttryck. faktoriserar ett uttryck i komplexa faktorer. förenklar rationella uttryck och funktioner som har rationella uttryck som argument. använder ratsimp upprepade gånger. förenklar ett trigonometriskt uttryck med användning av bland annat den trigonometriska ettan sin x + cos x =. använder trigonometriska formler för att utveckla uttryck av typen sin(x + y). skriver om produkter och potenser av sin och cos till en summa av termer vilka bara innehåller enskilda sin och cos. Exempel 8. (a) Polynomet (x + 3) 3 utvecklas genom expand((*x + 3)^3) och vi får svaret 8 x x + 54 x + 7 (b) Det går också bra att lagra uttrycket i en identifierare och sedan ge kommandot expand. Så ger svaret f : (3*x + b)^ expand(f) 9 x + 6 b x + b (c) Vi utvecklar uttrycket (ax + b) + (a + b)x med f : expand((a*x+b)^ + (a+b)*x) Kommandot collectterms(f,x) 9

10 ger sedan uttrycket i termer av potenser i variabeln x och Maxima svarar a x + ( a b + b + a) x + b Exempel 9. (a) Vi ska faktorisera t 3 t 5t + 6 och skriver factor(t^3-*t^-5*t+6) Maxima svarar (t 3) (t ) (t + ) (b) För att faktorisera x 4 i reella faktorer ger vi kommandot factor(x^4-) och får svaret (x ) (x + ) ( x + ) Faktorisering i komplexa faktorer fås genom gfactor(x^4-) med resultatet (x ) (x + ) (x i) (x + i) (c) Notera att faktorisering endast görs över rationella tal. Vi kommer alltså inte att få faktoriseringar av typen x = (x + )(x ) och då vi skriver factor(x^-) lämnar Maxima uttrycket obearbetat. (d) Det går bra att faktorisera summor av rationella uttryck. Till exempel fås faktoriseringen av x 3 + 3y x y + 3 genom att skriva factor((x^3+3*y^)/(x^-y^) + 3) Maxima returnerar x (x + 3) (y x) (y + x) (e) Vi har uttrycket 3x x x 9 x 6. Följande kommando skriver uttrycket på gemensam nämnare 0

11 ratsimp(/(3*x+9) + x/(x^-9) - /(*x-6)) Maxima svarar 7 6 x + 8 Exempel 9. (a) Det trigonometriska uttrycket sin(x + y) utvecklas genom vilket ger p : trigexpand(sin(*x+y)) cos ( x) sin y + sin ( x) cos y Uttrycket kan expanderas ytterligare och då vi skriver q : trigexpand(p) får vi ( cos x sin x ) sin y + cos x sin x cos y (b) För att skriva uttrycket sin 3 (x) cos (x) i termer av enkla sin och cos ger vi kommandot trigreduce(sin(x)^3 - cos(x)^) och vi får följande svarsutskrift 3 sin x sin (3 x) 4 cos ( x) 7 Ekvationer Maxima kan lösa enklare ekvationer och ekvationssystem analytiskt. solve(ekv,x) löser ekvationen med avseende på x. solve([ekv,ekv,..], löser ekvationssystemet med avseende [x,x,...]) på variablerna x, x,.... Om exakta symboliska lösningar inte kan bestämmas returneras kommandot obehandlat. Exempel 0. (a) Andragradsekvationen x = x löses genom solve(x^=*x-,x)

12 och Maxima svarar [x = %i, x = %i + ] Vi har fått två komplexa lösningar i och i +. (b) För att lösa ekvationen e kt = med avseende på t ger vi kommandot solve(*exp(-k*t)=,t) Maxima returnerar [ t = log ] k För att verifiera att detta verkligen är en lösning sätter vi in det i uttrycket på följande sätt *exp(-k*t)), t=log()/k och Maxima ger värdet. (c) Det går bra att lagra en ekvation i en identifierare och sedan ge kommandot solve. För att lösa ut κ ur uttrycket T T = ( P P ger vi kommandona ) κ κ ekv : T/T = (P/P)^((k-)/k) solve(ekv,k) varvid Maxima svarar ( ) log P P k = ( ) log T T log ( ) P P (d) Maxima är inte så användbart när man ska lösa trigonometriska ekvationer. Till exempel ger kommandot solve(sin(x)=/,x) svaret [ ] x = π 6 tillsammans med en varning att en del av lösningarna kan ha missats. (e) Ekvationen cos(x) = x har ingen analytisk lösning och då vi skriver solve(cos(x)-x=0,x)

13 returnerar Maxima uttrycket obearbetat. Exempel. (a) För att lösa ekvationssystemet x + 3y + 4z = 3 x y 3z = 5x 3y + z = med avseende på x, y och z skriver vi ek : *x + 3*y + 4*z = 3 ek : *x - *y - 3*z = ek3 : 5*x - 3*y + *z = solve([ek,ek,ek3],[x,y,z]) Maxima svarar då [[ x = 59 67, y = 45 67, z = 3 ]] 67 (b) För att lösa ekvationssystemet { ax + y = 3 x y = med avseende på x och y skriver vi solve([a*x+y=3,x-y=-],[x,y]) Maxima returnerar [[ x = a +, y = a + 3 ]] a + Från det givna uttrycket ser vi att lösning saknas precis då a =. 8 Uppgifter att redovisa Nedanstående uppgifter skall redovisas under laborationstillfället. Observera att uppgifterna skall göras hemma innan laborationen och att det är redovisning som gäller under laborationen. Maximakommandona som behövs för att lösa uppgifterna kopierar du till ett Worddokument eller liknande så att det går att följa vad du gjort. Klipp även in Maximas svarsutskrifter och eventuella plottar eller figurer. Du skall visa upp dokumentet med kommandon och svarsutskrifter för din laborationshandledare i samband med redovisningen. Du skall också vara beredd på att svara på frågor kring hur du har löst uppgifterna. Se till att svara på alla uppgifterna.. Beräkna 5 /7. Gör beräkningen med Maxima och för hand. 8. Vilket tal får du då du skriver 5^/? Förklara hur du tänker. Hur skriver du 5 /? 3

14 3. Beräkna (a) Gör räkningarna för hand och se till att du använder den minsta gemensamma nämnaren då du sätter på gemensamt bråkstreck. (b) Låt Maxima göra beräkningen 4. Beräkna följande värden exakt: (a) cos(π/6), (b) tan( 3π/4). 5. Plotta y = ln(x) och y = log 0 (x) i intervallet [, 0]. Ledning: log 0 (x) = ln(x)/ ln(0). 6. Bestäm vinkeln mellan vektorn (3, ) och x-axeln. Ge värdet som ett flyttal. 7. Skriv om följande uttryck som ett polynom i x ( x a ) ( x b b ) ( x c c ) a 8. Multiplicera de två polynomen f(x) = x 4 + 4x 3 7x + 0x och g(x) = x 5x + 3 och förenkla resultatet. 9. Utveckla (a) (x + 3)(x 3) (x + 3) (b) (3x + 5) (3x 5) 0. Utveckla följande uttryck (a) sin(x + y) i termer av sin(x), sin(y), cos(x) och cos(y) (b) sin(3x) i termer av sin(x) och cos(x). Faktorisera följande uttryck (a) x 4 + 4x 3 + 6x + 4x + (b) x 7x + xy 7y. Förenkla (a) 3x x x 9 x 6 (b) x+ + x x x+ 3. Lös följande ekvationer. (a) y 0 = y 0e kt. (b) x 3 + x 4 5x = 0. (c) x + x + = Lös följande ekvationssystem. { 3x + 8y + z = 3x + 8y = 5 (a) (b) x 4y + z = 0 x 5y = 3 5x y + 7z = 4 4

Att undervisa och studera matematik med datoralgebraprogrammet Maxima. Per Jönsson och Thomas Lingefjärd

Att undervisa och studera matematik med datoralgebraprogrammet Maxima. Per Jönsson och Thomas Lingefjärd Att undervisa och studera matematik med datoralgebraprogrammet Maxima Per Jönsson och Thomas Lingefjärd Malmö och Göteborg 2009 1 Kort om Maxima Begreppet CAS (computer algebra system) eller på svenska

Läs mer

Datoralgebraprogrammet Maxima med tillämpningar. Per Jönsson

Datoralgebraprogrammet Maxima med tillämpningar. Per Jönsson Datoralgebraprogrammet Maxima med tillämpningar Per Jönsson Malmö Högskola, 2011 2 Innehåll 1 Datoralgebrasystemet Maxima 5 1.1 Inledning............................. 5 1.2 Installera Maxima........................

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Fri programvara i skolan datoralgebraprogrammet Maxima

Fri programvara i skolan datoralgebraprogrammet Maxima Per Jönsson & Thomas Lingefjärd Fri programvara i skolan datoralgebraprogrammet Maxima I takt med att priserna sjunker utrustar allt fler skolor sina elever med små bärbara datorer. Detta innebär nya och

Läs mer

Uppföljning av diagnostiskt prov HT-2016

Uppföljning av diagnostiskt prov HT-2016 Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri

Läs mer

Studiehandledning till. MMA121 Matematisk grundkurs. Version 2012-09-03

Studiehandledning till. MMA121 Matematisk grundkurs. Version 2012-09-03 Studiehandledning till MMA Matematisk grundkurs läsåret 0/ Version 0-09-0 Kursinformation för MMA Mål Avsikten med kursen MMA Matematisk grundkurs är att ge grundläggande kunskaper i matematik, av betydelse

Läs mer

Uppgiftshäfte Matteproppen

Uppgiftshäfte Matteproppen Uppgiftshäfte Matteproppen Emma ndersson 0 Joar Lind 0 Sara Lundsten 05 Malin Forsberg 06 UPPSL UNIVERSITET Innehåll Uppdelning av häfte Uppgifter Block. Bråkräkning........................ Uttryck..........................

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson Introduktion till MATLAB Introduktion till MATLAB sid. 2 av 12 Innehåll 1 Vad är MATLAB? 3 1.1 Textens syfte..................................... 3 2 Grundläggande

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall

Läs mer

Matematisk analys, laboration I. Per Jönsson Teknik och Samhälle, Malmö Högskola

Matematisk analys, laboration I. Per Jönsson Teknik och Samhälle, Malmö Högskola Matematisk analys, laboration I Per Jönsson Teknik och Samhälle, Malmö Högskola Viktig information om laborationerna Ianalyskurseningårtreobligatoriskalaborationer.UnderlaborationanvändsMatlab/GNU Octave

Läs mer

SAMMANFATTNING TATA41 ENVARIABELANALYS 1

SAMMANFATTNING TATA41 ENVARIABELANALYS 1 SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

Laboration: Grunderna i Matlab

Laboration: Grunderna i Matlab Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid

Läs mer

Introduktion till Python Teoridel

Introduktion till Python Teoridel Institutionen för teknikvetenskap och matematik, LTU 2 november 2014 Laboration 1, M0043M, HT14 Laborationsuppgifter skall lämnas in senast 21 november 2014. Introduktion till Python Teoridel 1 Inledning

Läs mer

Tal och polynom. Johan Wild

Tal och polynom. Johan Wild Tal och polynom Johan Wild 14 augusti 2008 Innehåll 1 Inledning 3 2 Att gå mellan olika typer av tal 3 3 De hela talen och polynom 4 3.1 Polynom........................... 4 3.2 Räkning med polynom...................

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1 TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +

Läs mer

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde: TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Upphämtningskurs i matematik

Upphämtningskurs i matematik Upphämtningskurs i matematik C.J. 2013 Föreläsningsunderlaget är uppbyggt utgående från kurserna i den långa gymnasiematematiken, ellips-kursböckerna (Schilds förlag) har använts som förebild. Böckerna

Läs mer

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson ATT KUNNA TILL MA1203 Matte C 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov C1 Kunna kvadreringsreglerna! (...utan att titta i formelsamlingen) Kunna konjugatregeln! (...utan

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

Block 4 - Funktioner. Funktionsbegreppet Definitionsmängd

Block 4 - Funktioner. Funktionsbegreppet Definitionsmängd Block 4 - Funktioner Funktionsbegreppet Definitionsmängd Värdemängd Grafen för en funktion Polynom Konstanta polynom Linjära polynom Andragradspolynom Potenser, exponential- och logaritmfunktioner Potensfunktioner

Läs mer

2320 a. Svar: C = 25. Svar: C = 90

2320 a. Svar: C = 25. Svar: C = 90 2320 a Utgå ifrån y = sin x Om vi subtraherar 25 från vinkeln x, så kommer den att "senareläggas" med 25 och således förskjuts grafen åt höger y = sin(x 25 ) Svar: C = 25 b Utgå ifrån y = sin x Om vi adderar

Läs mer

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett

Läs mer

Algebraiska räkningar

Algebraiska räkningar Kapitel 1 Algebraiska räkningar 1.1 Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller bl.a. följande enkla räkneregler, som man väl använder utan att speciellt tänka på dem:

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

Laboration 1: Linjär algebra

Laboration 1: Linjär algebra MALMÖ HÖGSKOLA Centrum för teknikstudier MA119A VT 2010, Yuanji Cheng Viktigt information om labb Vid laborationen gäller följande: 1. Labben görs i grupp av två studenter, och redovisningsuppgifterna

Läs mer

Symboliska beräkningar i Matlab

Symboliska beräkningar i Matlab CTH/GU LABORATION 6 MVE45-5/6 Matematiska vetenskaper Inledning Symboliska beräkningar i Matlab Verktygslådan Symbolic Math Toolbox i Matlab kan utföra symbolisk matematik. Vi skall se på ett antal exempel

Läs mer

3.3. Symboliska matematikprogram

3.3. Symboliska matematikprogram 3.3. Symboliska matematikprogram Vi skall nu övergå till att behandla de vanligaste matematikprogrammen, och börja med de symboliska. Av dessa kan både Mathematica och Maple användas på flere UNIX-datorer.

Läs mer

Övning log, algebra, potenser med mera

Övning log, algebra, potenser med mera Övning log, algebra, potenser med mera Uppgift nr 1 Förenkla uttrycket x 3 + x 3 + x 3 + x 3 + x 3 Uppgift nr 2 Förenkla x x x+x x x Uppgift nr 3 Skriv på enklaste sätt x 2 x x x 8 x x x Uppgift nr 4 Förenkla

Läs mer

Lab 1, Funktioner, funktionsfiler och grafer.

Lab 1, Funktioner, funktionsfiler och grafer. Lab 1, Funktioner, funktionsfiler och grafer. Starta gärna en dagbok genom att ge kommandot diary lab1. Skriv in alla beräkningar som efterfrågas i uppgifterna i dagboken. Glöm inte diary off om det skrivna

Läs mer

Räkna med C# Inledande programmering med C# (1DV402)

Räkna med C# Inledande programmering med C# (1DV402) Räkna med C# Upphovsrätt för detta verk Detta verk är framtaget i anslutning till kursen Inledande programmering med C# vid Linnéuniversitetet. Du får använda detta verk så här: Allt innehåll i verket

Läs mer

LMA222a. Fredrik Lindgren. 17 februari 2014

LMA222a. Fredrik Lindgren. 17 februari 2014 LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

MATMAT01b (Matematik 1b)

MATMAT01b (Matematik 1b) Sida 1 av 6 MATMAT01b (Matematik 1b) ATT KUNNA TILL PROV MATMAT01b1 - Öka, respektive minska temperaturer - Skriva tal skrivna med text med siffror, Ex två tiondelar = 0,2 - Hitta på två bråk som ger en

Läs mer

Introduktion till Matlab 1

Introduktion till Matlab 1 Laboration 1, M0043M, HT14 Laborationsuppgifter skall lämnas in senast 21 november 2014. Introduktion till Matlab 1 Förberedelseuppgifter 1. Gör dig bekant med Matlab-manualen finns för nedladdning på

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3, Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5

Läs mer

Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar.

Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Kurskod: HF1006, HF1008 Skolår: 2016/17 armin@kth.se www.sth.kth.se/armin Redovisas under sista två (av totalt fem) labbövningar i Analys-delen. Preliminärt:

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

Kapitel 5: Primitiva funktioner

Kapitel 5: Primitiva funktioner Kapitel 5: Primitiva funktioner c 005 Eric Järpe Högskolan i Halmstad Primitiva funktioner är motsatsen till derivata. Att integrera är motsatsen till att derivera. Definition F är primitiva funktion till

Läs mer

Inledning till Maple

Inledning till Maple Institutionen för matematik 2000 04 06 KTH Bronislaw Krakus Inledning till Maple www.math.kth.se/~bronek/maple/inledning.pdf > tubeplot([cos(t), sin(t), 0], t = Pi..2*Pi, radius = 0.25*(t - Pi), orientation

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström LMA222a Matematik DAI1 och EI1

Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström LMA222a Matematik DAI1 och EI1 MATEMATIK Hjälpmedel: inga Calmers tekniska ögskola Datum: 1015 kl. 0.0 12.0 Tentamen Telefonvakt: Jonny Lindström 07 607040 LMA222a Matematik DAI1 oc EI1 Tentan rättas oc bedöms anonymt. Skriv tentamenskoden

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009 KTH Matematik SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 9 1. a) Visa att sin(6 ) = /. () b) En triangel har sidor av längd 5 och 7, och en vinkel är 6 grader. Bestäm

Läs mer

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner. Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att

Läs mer

polynomfunktioner potensfunktioner exponentialfunktioner

polynomfunktioner potensfunktioner exponentialfunktioner Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,

Läs mer

f (a) sin

f (a) sin Hur kan datorn eller räknedosan känna till värdet hos till exempel sin0.23 eller e 2.4? Denna fråga är berättigad samtidigt som ingen tror att apparaterna innehåller en gigantisk tabell. Svaret på frågan

Läs mer

3. Skissa minst en period av funktionskurvan 3y = 4 cos(8x/7). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan.

3. Skissa minst en period av funktionskurvan 3y = 4 cos(8x/7). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 015-01-09

Läs mer

Fyra fyror. Mikael Knutsson. Tredje utgåvan, Mikael Knutsson

Fyra fyror. Mikael Knutsson. Tredje utgåvan, Mikael Knutsson Fyra fyror Mikael Knutsson Tredje utgåvan, 2003-11-23 2001-2003 Mikael Knutsson 1 Inledning Man får använda fyra fyror, varken mer eller mindre. Med dem skall man skriva talet n. Man får sätta in dem efter

Läs mer

Tentamen Matematisk grundkurs, MAGA60

Tentamen Matematisk grundkurs, MAGA60 MATEMATIK Karlstads universitet 2010-11-02, kl 8.15-13.15 Hjälpmedel: Inga Ansvarig lärare: Håkan Granath Tel: 2181, alt. 0735-37 37 34 Tentamen Matematisk grundkurs, MAGA60 För uppgift 1 skall endast

Läs mer

Allmänt om Mathematica

Allmänt om Mathematica Allmänt om Mathematica Utvecklades av Wolfram Research (Stephen Wolfram) på 80-talet Programmet finns bl.a. till Windows, Mac OS X, Linux. Finns (åtminstone) installerat i ASA B121 (Stansen), i matematik

Läs mer

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.

Läs mer

Uppgift 1-6. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans.

Uppgift 1-6. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Del B Del C Provtid Hjälpmedel Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

Gruppuppgifter 1 MMA132, Numeriska metoder, distans

Gruppuppgifter 1 MMA132, Numeriska metoder, distans Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003

Läs mer

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår

Läs mer

KOKBOKEN 3. Håkan Strömberg KTH STH

KOKBOKEN 3. Håkan Strömberg KTH STH KOKBOKEN 3 Håkan Strömberg KTH STH Hösten 006 Håkan Strömberg KTH Syd Innehåll Derivatans definition.............................. 5 Uppgift................................. 5 Uppgift.................................

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Repetitionsuppgifter i matematik De fyra enkla räknesätten Här övar vi på de fyra räknesätten för hela tal (positiva och negativa), tal i bråkform och tal i decimalform Bestäm de tal på tallinjen, som

Läs mer

DERIVATA. = lim. x n 2 h h n. 2

DERIVATA. = lim. x n 2 h h n. 2 DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt

Läs mer

Lab 2, Funktioner, funktionsfiler och grafer.

Lab 2, Funktioner, funktionsfiler och grafer. Lab 2, Funktioner, funktionsfiler och grafer. Laborationen innehåller 8 deluppgifter. Uppg. 1-3: behandlar Matlabs grundläggande operationer Uppg. 4-5: behandlar kurvritning Uppg. 6-8: behandlar funktionsfiler

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa

Läs mer

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24, 24-25 och 25-26 26-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C =

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln.

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 11 juni 014

Läs mer

Avsnitt 5, introduktion.

Avsnitt 5, introduktion. KTHs Sommarmatematik Introduktion 5:1 5:1 Avsnitt 5, introduktion. Radianer Vinkelmåttet radianer är i matematiska sammanhang bättre än grader, särskilt när man sysslar med de trigonometriska funktionerna

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

cos( x ) I 1 = x 2 ln xdx I 2 = x + 1 (x 1)(x 2 2x + 2) dx

cos( x ) I 1 = x 2 ln xdx I 2 = x + 1 (x 1)(x 2 2x + 2) dx TM-Matematik Mikael Forsberg DistansAnalys Envariabelanalys Distans ma4a ot-nummer Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej

Läs mer

Introduktionskurs i matematik LÄSANVISNINGAR

Introduktionskurs i matematik LÄSANVISNINGAR UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 006 Introduktionskurs i matematik för civilingenjörsprogrammet F Tentamen på Introduktionskursen i matematik äger rum lördagen den 6 september

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Intromatte för optikerstudenter

Intromatte för optikerstudenter Intromatte för optikerstudenter Av Robert Rosén (2012). Ändringar av Daniel Larsson (2013). Ändringar av Jakob Larsson och Emelie Fogelqvist (2014). Kursmål Efter intromatten vill vi att du inom matematik

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen.

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. 2008 10 14 A. Talsystemen. (Adams P.1. Anteckningar från introkursen.) N de naturliga talen Z de hela talen Q de rationella

Läs mer

Intromatte för optikerstudenter

Intromatte för optikerstudenter Intromatte för optikerstudenter Av Robert Rosén (2012). Ändringar av Daniel Larsson, Jakob Larsson, Emelie Fogelqvist och Simon Winter (2013 2016). Kursmål Efter intromatten vill vi att du inom matematik

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen.

a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen. MMA Matematisk grundkurs TEN Datum: 4 juni Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

GYMNASIEMATEMATIK FÖR LÄKARSTUDENTER

GYMNASIEMATEMATIK FÖR LÄKARSTUDENTER 2015-09-02 GYMNASIEMATEMATIK FÖR LÄKARSTUDENTER Nils Karlsson INDEX MATEMATISKA TAL...2 Värdesiffror...2 Absolutbelopp...3 Skala...3 STATISTIK...4 Lägesmått...4 Spridningsmått...4 Normalfördelning...4

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 9 januari 27 Entydighet Om vi har ett polynom som approximerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna

Läs mer

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1) Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning

Läs mer

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1 2011

Instuderingsfrågor för Endimensionell analys kurs B1 2011 Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp

Läs mer

ClassPad 330 Plus studentexamen Hösten 2012 lång matematik. Mer tid för matematik och mindre tid för att lära sig räknaren.

ClassPad 330 Plus studentexamen Hösten 2012 lång matematik. Mer tid för matematik och mindre tid för att lära sig räknaren. ClassPad 330 Plus studentexamen Hösten 2012 lång matematik Mer tid för matematik och mindre tid för att lära sig räknaren. Kära läsare! Användningen av CAS-beräkningar i studentexamen är ännu i ett tidigt

Läs mer

Block 1 - Mängder och tal

Block 1 - Mängder och tal Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av

Läs mer

Beräkningsvetenskap föreläsning 2

Beräkningsvetenskap föreläsning 2 Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa

Läs mer

Kapitel 7. Kontinuitet. 7.1 Definitioner

Kapitel 7. Kontinuitet. 7.1 Definitioner Kapitel 7 Kontinuitet 7.1 Definitioner Vi har sett på olika typer av funktioner. Vi skall fortsätta att undersöka dem, men ur en ny synvinkel. Vår utgångspunkt är nu att försöka undersöka om de är sammanhängande.

Läs mer

Matematik 4 Kap 4 Komplexa tal

Matematik 4 Kap 4 Komplexa tal Matematik 4 Kap 4 Komplexa tal Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande aktivitet

Läs mer

Lösa ekvationer på olika sätt

Lösa ekvationer på olika sätt Lösa ekvationer på olika sätt I denna aktivitet ska titta närmare på hur man kan lösa ekvationer på olika sätt. I kurserna lär du dig att lösa första- och andragradsekvationer exakt med algebraiska metoder.

Läs mer

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är PASS 7. EKVATIONSLÖSNING 7. Grundbegrepp om ekvationer En ekvation säger att två matematiska uttryck är lika stora. Ekvationen har alltså ett likhetstecken och två deluttryck på var sin sida om likhetstecknet.

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 2. Linjär Algebra, Villkor och Logik 1 Linjär Algebra Programsystemet Matlab utvecklades ursprungligen för att underlätta beräkningar från linjär

Läs mer

Block 4 - Funktioner. Funktionsbegreppet Definitionsmängd

Block 4 - Funktioner. Funktionsbegreppet Definitionsmängd Block 4 - Funktioner Funktionsbegreppet Definitionsmängd Värdemängd Grafen för en funktion Polynom Konstanta polynom Linjära polynom Andragradspolynom Potenser, exponential- och logaritmfunktioner Potensfunktioner

Läs mer