Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar.
|
|
- Andreas Magnusson
- för 8 år sedan
- Visningar:
Transkript
1 INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Kurskod: HF1006, HF1008 Skolår: 2016/17 armin@kth.se Redovisas under sista två (av totalt fem) labbövningar i Analys-delen. Preliminärt: Datateknik : 7 dec 2016, 10:15-15:00 Elektroteknik: 5 dec :15-15:00, och 6 dec 13:15-15:00 Medicinsk teknik: 7 dec 2016, 10:15-15:00 Individuellt arbete. Använd MATLAB för att lösa dina uppgifter. I nedanstående uppgifter a, b, c och d är de sista fyra siffrorna i ditt personnummer. Har du t ex pn så är a=2, b=3, c=4 och d=8 som du substituerar i dina uppgifter och därefter löser dem. 5 labbövningar är schemalagda i kursens andra del ( dvs Analys-delen). Första 3 labbövningar är lärarledda lektioner i Matlab. De sista två (av 5 i del 2) labbövningarna är avsedda för redovisning av inlämningsuppgift 2. REDOVISNING. i) Under kursens gång gör du nedanstående uppgifter 1-6, skriver kommentarer till dina lösningar, sparar varje uppgift som separat m-fil (scrip och redovisar under sista två (av totalt fem) labbövningar i Analys-delen. ii) Hinner du inte redovisa dina (korrekta) lösningar i tid måste du göra även uppgift 7. I detta fall, när du gjort färdigt uppgifterna 1-7, bokar du via en tid för redovisning hos din klasslärare ( för Analys-delen). iii) Du redovisar (med hjälp av din laptop) dina uppgifter genom att förklara dina lösningar och visa att dina Matlab-koder fungerar. Lösningarna sparas på lärarens USBminne. Du behöver inte lämna in någon pappersversion av lösningen. Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar. clc %% SUBPLOT figure(4) x=1:0.1:10; y1=3*x.^3-2*x.^2+2*x; subplot(2,2,1) plot(x,y1) title('y1=3*x.^3-2x.^2+2*x');
2 subplot(2,2,2) x=1:0.1:10; y2=sin((x.^2-2*x)./x); plot(x,y2,'r') title(' y2=sin((x.^2-2*x)./x)'); subplot(2,2,3) x=1:0.5:10; z1=cos((x.^2+1)./x); plot(x,z1,' g s -.') title(' z1=cos((x.^2+1)./x)'); subplot(2,2,4) x=-5:0.1:5; z=3*x.^2-5; plot(x,z) title('z=3*x.^2-5'); %% 1 B) Plotta grafer till y=3sin(x) +cos(10x) och y= 4sin(2x) i intervallet 0 x 2π så att de ligger separat i två koordinatsystem som ligger horisontellt bredvid varandra. Tips. Använd subplot(1,2,1) och subplot(1,2,2). Spara script som Uppgift1 Uppgift 2. Symbolisk matematik med Matlab. Beräkning av integraler derivator och gränsvärden Läs gärna help avsnitt om syms subs, ezplot, diff, int, double, limit börjar med uppgiften. innan du Testa följande exempel i Matlab och förklara med några ord varje kommando. %% Uppgift 2. clc %% syms var1 var2 deklarerar symboliska variabler i Matlab syms x f=(x^2-2*x)/(x^2-1) y5=subs(f,x,5) ezplot(f,[-15,15]) solve(f==0,x) %% DERIVATOR g=diff(f,x) h=diff(f,x,2) solve(g==0,x) %% INTEGRALER integral1=int(f) %obestämd integral fdx 5 I1=int(f,3,5) % integral 3 I1b=double(I1) f ( x) dx % numeriska värdet av I1 integral2=int(g) I2=int(sqrt(sin(x)+exp(x)),0,1) % integralen kan inte beräknas exakt,
3 % (matlab upprepar uttrycket för integralen utan beräkning) % medan samma integral kan beräknas numerisk % med kommandot double I2num=double(I2) % eller med direkt numerisk beräkning I2num= double(int(sqrt(sin(x)+exp(x)),0,1)) %% GRÄNSVÄRDEN L1=limit(f,x,inf) L2=limit(f,x,-inf) L3=limit(f,x,1,'left') L4=limit(f,x,1,'right') L5=limit(f,x,-1,'left') L6=limit(f,x,-1,'right') Spara script som Uppgift2 Uppgift 3. Lös följande uppgift med hjälp av Matlab Betrakta funktionen f ( x) = ( x a) e ( x a) Plotta grafen till f(x) i intervallet a 2 x a Beräkna arean av det område som definieras av a x a + 2, 0 y f ( x). 3.3 Beräkna volymen av den kropp som uppstår vid rotation av området a x a + 2, 0 y f ( x) kring x-axeln b) kring y-axeln. 3.4 Beräkna längden av kurvan mellan punkterna A(a,f(a) och B(a+2,f(a+2)). Tips. Använd matlab-kommandon från upp2. Kolla motsvarande formler i stencilen Tillämpningar av integraler Spara script som Uppgift3 Uppgift 4. DIFFERENTIALEKVATIONER. Exakta lösningar till några typer av differentialekvationer med kommandot dsolve. Läs gärna hjälp-avsnitt om dsolve innan du börjar med uppgiften. Sintax: syms y( % deklarerar y( som symbolisk funktion av t dsolve(ekvation,villkor1,villkor2,villkor3,...) % löser ekvationen med givna villkor SKRIVSÄTT i Matlabs dsolve : FUNKTION OCH DERIVATOR: Glöm inte att deklarera syms y( Matematik Matlab y ( y y ( diff(y) y ( diff(y,2)
4 VILLKOR Matematik Matlab y a) = b y ( a) = b Två steg Steg1: Steg2: y ( a) = b Två steg Steg1: Steg2: ( y(a)==b Dy=diff(y) Dy(a)==b D2y=diff(y,2) D2y(a)==b Testa följande exempel i Matlab. Exempel 1. Använd kommandot dsolve i Matlab för att lösa följande differentialekvation 10t y ( + 10y( = e, y(0)=1. Plotta lösningen. Lösning: Bas-syntax för dsolve i Matlab när vi löser en DE består av följande kommandon: Sintax: syms y( % deklarerar y( som symbolisk funktion av t dsolve(ekvation,villkor) % löser ekvationen med givna villkor Skrivsätt: Derivatan y ( skriver vi som diff(y). 10t För att lösa vår ekvation y ( + 10y( = e, y(0)=1 och plotta lösningen, använder vi följande script: %% Uppgift 4, exempel 1 clc syms y( % deklarera y( som symbolisk funktion ekv1=diff(y)+ 10*y == exp(-10* % ekvationen V1=y(0) == 1 % villkoret sol1=dsolve(ekv1, V1) % löser DE (lösningen kallas sol1) f1=simplify(sol1) % förenklar lösning och ändrar namn till f1 figure(1) % nästa graf kommer att plottas i figure(1) ezplot(f1,[-3,3]) % plottar lösningskurvan i intervallet [-3,3] Exempel 2. Använd kommandot dsolve i Matlab för att lösa följande differentialekvation y ( + 5y ( + 6y( = 10 *sin(2 *, y(0)=1, y ( 0) = 2. Plotta lösningen. Lösning: Anmärkning: vilkoret V2, y ( 0) = 1 definierar vi i två steg: Steg1: Dy=diff(y) Steg2: V2=Dy(0)==2 ( se matlab help om dsolve) %% Uppgift 4, exempel 2 syms y( % deklarera y(x) som symbolisk funktion ekv4=diff(y,2)+5*diff(y)+ 6*y == 10*sin(2* % ekvationen V1=y(0) == 1 % villkor 1: y(0)=1
5 Dy=diff(y) % mellansteg: Beteckna y' som Dy V2=Dy(0)==2 % villkor 2 y'(0)=2 sol1=dsolve(ekv4, V1,V2) % lösning figure(2) % nästa graf kommer att plottas i figure(2) ezplot(sol1,[0,10]) % plottar lösningskurvan Spara script som Uppgift4 Uppgift 5. Använd kommandot dsolve i Matlab för att lösa följande differentialekvationer (med givna villkor). Plotta varje lösning (lösning k i figure(k)). 1. y ( (1 + a + b) y( = 0, y ( 0) = 3 (a och b är parametrar från ditt personnummer) 2. y ( (2 + b) y ( + (1 + b) y( = 2t + 3, y ( 0) = 0, y ( 0) = 1 3. y ( + (4 + c) y( = 0, y ( 0) = 0, y ( 0) = 1 Spara script som Uppgift5 Uppgift 6. ( Använd Matlab för att lösa följande uppgift.) Bestäm strömmen i( i nedanstående LCR-krets då u( =(10+a)cos(40 V, L=1 H, R1=30 Ω, R2=40 Ω, C=0.001F, i(0)=1 A, i ( 0) = 1 A /s 6.1 (Papper och penna) Ställ upp en differentialekvation för strömmen i(. 6.2 Lös ekvationen m a p i( dvs beräkna strömmen i( (använd Matlab). Tips: Använd kommandot dsolve. 6.3 Plotta lösningen med hjälp av kommandot ezplot Spara script som Uppgift6 Om du redovisar första 6 uppgifter under kursens gång behöver du INTE göra uppgift 7! Uppgift 7. ( Använd Matlab för att lösa följande uppgift.) Bestäm strömmen i( i nedanstående LCR-krets då u( =(10+b)exp(-10 V, L=(2+b+c) H, R1=(3+b) Ω, i(0)=1 A. 7.1 (Papper och penna) Ställ upp en differential ekvation för strömmen i( 7.2 Lös ekvationen m a p i( dvs beräkna strömmen i( (använd Matlab) Tips: Använd kommandot dsolve. 7.3 Plotta lösningen. Spara script som Uppgift7
6 Lycka till!
de uppgifter i) Under m-filerna iv) Efter samlade i en mapp. Uppgift clear clc Sida 1 av 6
Inlämningsuppgift 2, HF1006.. (MATLAB) INLÄMNINGSUPPGIFT 2 (MATLAB) Kurs: Linjär algebra och analys Del2, analys Kurskod: HF1006 Skolår: 2018/19 Redovisas under en av de tre schemalaggs gda redovisningstillfällen
Läs merUppgifter 9 och 10 är för de som studerar byggteknik
INLÄMNINGSPPGIFT MATEMATIK OCH MATEMATISK STATISTIK, HF003 007/08 ( DIFFERENTIAL EKVATIONER ) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av två uppgifter. Individuellt
Läs merINLÄMNINGSUPPGIFT 1 MATEMATIK 2, HF1000 ( DIFFERENTIAL EKVATIONER)
INLÄMNINGSPPGIFT MATEMATIK, HF000 ( DIFFERENTIAL EKVATIONER) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av tre uppgifter. Individuellt arbete. Du väljer tre av nedanstående
Läs merKomplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 17 dec 010 Moment: TEN (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys, HF1006 (Program: Datateknik),
Läs merSymboliska beräkningar i Matlab
CTH/GU LABORATION 6 MVE45-5/6 Matematiska vetenskaper Inledning Symboliska beräkningar i Matlab Verktygslådan Symbolic Math Toolbox i Matlab kan utföra symbolisk matematik. Vi skall se på ett antal exempel
Läs merKomplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 7 juni 2011 Tid: 13:15-17:15 Moment: TEN2 (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys,
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation
Läs merLaboration 1, M0039M, VT16
Laboration 1, M0039M, VT16 1 Förberedelser Ove Edlund, Staffan Lundberg LTU (1) Gör dig bekant med Matlab-manualen finns för nedladdning på Fronter. (2) Läs igenom laborationens teoridel, avsnitt 2 nedan.
Läs merTENTAMEN HF1006 och HF1008 TEN2 10 dec 2012
TENTAMEN HF006 och HF008 TEN 0 dec 0 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Svante Granqvist Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och
Läs merLaboration i Maple, kurs HF1905, Matematisk analys Skolår: 2018/19. Laboration i Maple, Matematisk analys HF1905.
Laboration i Maple, kurs HF1905, Matematisk analys Skolår: 018/19 Laboration i Maple, Matematisk analys HF1905. Matematisk analys, Kurskod: HF1905 Skolår: 018/19 Lärare: Klass A: Jonas Stenholm Klass B:
Läs merATT RITA GRAFER MED KOMMANDOT "PLOT"
MATLAB, D-plot ATT RITA GRAFER MED KOMMANDOT "PLOT" Syntax: Vi börjar med det enklaste plot-kommandot i matlab,,där x är en vektor x- värden och y en vektor med LIKA MÅNGA motsvarande y-värden. Anta att
Läs mer4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),
Lunds Tekniska Högskola Matematik Helsingborg Lösningar Analys, FMAA5 9-8-9. a) e sinx) cosx) dx e sinx) + C. b) 4x dx polynomdivision] x + x + x + dx x x + ] ln x + + ) ln) + ) ln) ln). c) Trigonometriska
Läs merTENTAMEN HF1006 och HF1008 TEN2 13 jan 2014
TENTAMEN HF00 och HF008 TEN jan 04 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Richard Eriksson Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och anals,
Läs merPlanering för Matematik kurs D
Planering för Matematik kurs D Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs D Antal timmar: 9 (7 + ) I nedanstående planeringsförslag tänker vi oss att D-kursen studeras på 9 klocktimmar.
Läs merLaboration 2 M0039M, VT2016
Laboration 2 M0039M, VT2016 Ove Edlund, Staffan Lundberg, TVM 24 februari 2016 1 Teoridel 1.1 Serielösningar till differentialekvationer Den grundläggande idén (se t.ex. utdelat material, Lektion 18) är
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER
Läs merTENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 9 jan 07 Tid -8 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
Läs merTentamen i Envariabelanalys 2
Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna
Läs merTENTAMEN HF1006 och HF1008
TENTAMEN HF6 och HF8 Datum TEN 8 jan 9 Tid -8 Linjär algebra och analys, HF6 och HF8 Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs av ma poäng För betyg
Läs merTentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs merTENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN april 07 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
Läs merFörkortning och förlängning av rationella uttryck (s. 29 Origo 3b)
1 Print 1 Algebraiska 2 Variabler 1 Algebraiska 3 Input 1 Algebraiska 4 For 1 Algebraiska uttryck, Rationella uttryck Förkortning och förlängning av rationella uttryck (s. 29 Origo 3b) Eleverna kan träna
Läs merFri programvara i skolan datoralgebraprogrammet Maxima
Per Jönsson & Thomas Lingefjärd Fri programvara i skolan datoralgebraprogrammet Maxima I takt med att priserna sjunker utrustar allt fler skolor sina elever med små bärbara datorer. Detta innebär nya och
Läs merTENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 6 mars 06 Tid 8:-: Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
Läs merFörkortning och förlängning av rationella uttryck (s. 27 Origo 3c)
1 Print 1 Algebraiska 2 Variabler 1 Algebraiska 3 Input 1 Algebraiska 4 For 1 Algebraiska uttryck, Rationella uttryck 1 Algebraiska uttryck, Gränsvärden Förkortning och förlängning av rationella uttryck
Läs merMatematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS
Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall
Läs merTENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor
TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge
Läs merHögskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk
Läs merArmin Halilovic: EXTRA ÖVNINGAR
ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) = b) 0 =0 c) 5 = 5 Alltså x 0 et av ett tal x är lika med själva talet x om talet är positivt eller lika med 0 et av x är lika med det
Läs merKontrollskrivning KS1T
Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger
Läs merIntroduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
Läs merMathematica. Utdata är Mathematicas svar på dina kommandon. Här ser vi svaret på kommandot från. , x
Mathematica Första kapitlet kommer att handla om Mathematica det matematiska verktyg, som vi ska lära oss hantera under denna kurs. Indata När du arbetar med Mathematica ger du indata i form av kommandon
Läs merTENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN jan 06 Tid 5-75 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär
Läs merEnvariabelanalys 5B1147 MATLAB-laboration Derivator
Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan
Läs merCTH/GU LABORATION 1 MVE /2013 Matematiska vetenskaper. Mer om grafritning
CTH/GU LABORATION 1 MVE16-1/13 Matematiska vetenskaper 1 Inledning Mer om grafritning Vi fortsätter att arbeta med Matlab i matematikkurserna. Denna laboration är i stor utsträckning en repetition och
Läs meri utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,
Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5
Läs merInstitutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)
Läs merv0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Läs merLABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
Läs merH1009, Introduktionskurs i matematik Armin Halilovic
H009, Introduktionskurs i matematik Armin Halilovic ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) b) 0 =0 c) 5 5 Alltså x Absolutbeloppet av ett tal x är lika med själva talet x om
Läs merPlanering för Matematik kurs E
Planering för Matematik kurs E Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs E Antal timmar: 60 (0 + 0) I nedanstående planeringsförslag tänker vi oss att E-kursen studeras på 60 klocktimmar.
Läs merChalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standar LMA033a Matematik BI
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 443 kl. 8.3.3 Tentamen Telefonvakt: Christoffer Standar 73 88 34 LMA33a Matematik BI Tentan rättas och bedöms anonymt. Skriv tentamenskoden
Läs merTentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
Läs merMatematiska Institutionen, K T H. B. Krakus. Matematik 1. Maplelaboration 2.
Matematiska Institutionen, K T H. B. Krakus Matematik. Maplelaboration. . Kommandon, funktioner och konstanter i denna laboration: expand(uttryck) simplify(uttryck) utvecklar uttrycket. T.ex. expand((x+)*(x-)^);
Läs merRepetitionsuppgifter
MVE5 H5 MATEMATIK Chalmers Repetitionsuppgifter Integraler och tillämpningar av integraler. (a) Beräkna (b) Avgör om den generaliserade integralen arctan(x) ( + x) dx. dx x x är konvergent eller divergent.
Läs merIntroduktion till Matlab
Introduktion till Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht10 1 Inledning Ni kommer använda Matlab i nästan alla kurser i utbildningen. I matematikkurserna kommer vi ha studio-övningar nästan
Läs merTENTAMEN TEN2 i HF1006 och HF1008
TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 5 april 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A,
Läs merTentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL
Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Läs mer4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.
TM-Matematik Mikael Forsberg 73 1 3 31 Pär Hemström 7 3 57 För ingenjörs och distansstudenter Envariabelanalys ma3a 1 8 Skrivtid: 9:-1:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att
Läs merAnvändarmanual till Maple
Användarmanual till Maple Oktober, 006. Ulf Nyman, Hållfasthetslära, LTH. Introduktion Maple är ett mycket användbart program för symboliska och i viss mån numeriska beräkningar. I Maple finns ett stort
Läs merMAPLE MIKAEL STENLUND
MAPLE MIKAEL STENLUND. Introduktion I dina inlämningsuppgifter skall ett program som heter Maple användas för att lösa ett antal matematiska problem. Maple är ett symbolhanterande program som har ett antal
Läs merUppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln
Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script
Läs meru(x) + xv(x) = 0 2u(x) + 3xv(x) = sin(x) xxx egentliga uppgifter xxx 1. Sök alla lösningar till den homogena differentialekvationen
Differentialekvationer I Modellsvar till räkneövning 6 Den frivilliga uppgiften U1 påminner om nyttiga kunskaper, och räknas inte för extrapoäng (fråga vid behov). U1. Lös funktionerna u(x) och v(x) från
Läs merChalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström MVE475 Inledande Matematisk Analys
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 1715 kl. 14. - 18. Tentamen Telefonvakt: Jonny Lindström 733 674 MVE475 Inledande Matematisk Analys Tentan rättas och bedöms anonymt. Skriv
Läs merChalmers tekniska högskola Datum: kl Telefonvakt: Carl Lundholm MVE475 Inledande Matematisk Analys
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 6825 kl. 8.3 2.3 Tentamen Telefonvakt: Carl Lundholm 5325 MVE475 Inledande Matematisk Analys Tentan rättas och bedöms anonymt. Skriv tentamenskoden
Läs mery y 1 = k(x x 1 ) f(x) = 3 x
Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för
Läs merLösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Läs mer17.1 Kontinuerliga fördelningar
7. Kontinuerliga fördelningar En SV X är kontinuerlig om F X (x) är kontinuerlig för alla x F X (x) är deriverbar med kontinuerlig derivata för alla x utom eventuellt för ändligt många värden Som vi tidigare
Läs mera3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen.
MMA Matematisk grundkurs TEN Datum: 4 juni Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan
Läs merMVE465. Innehållsförteckning
Lösningar på övningsuppgifter Detta dokument innehåller mina renskrivna lösningar på övningsuppgifter i kursen Linjär algebra och analys fortsättning (). Jag kan inte lova att samtliga lösningar är välformulerade
Läs merAt=A' % ' transponerar en matris, dvs. kastar om rader och kolonner U' % Radvektorn U ger en kolonnvektor
% Föreläsning 1 26/1 % Kommentarer efter %-tecken clear % Vi nollställer allting 1/2+1/3 % Matlab räknar numeriskt. Observera punkten som decimaltecken. sym(1/2+1/3) % Nu blev det symboliskt pi % Vissa
Läs merTENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 8 jan 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
Läs merLaborationstillfälle 1 Lite mer om Matlab och matematik
Laborationstillfälle Lite mer om Matlab och matematik En första introduktion till Matlab har ni fått under kursen i inledande matematik. Vid behov av repetition kan materialet till de övningar som gjordes
Läs merhar ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)
Läs merDemonstration av laboration 2, SF1901
KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion
Läs merStudietips inför kommande tentamen TEN1 inom kursen TNIU23
Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
Läs merRepetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T
Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet
Läs mer5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 2006-09-11 2 Andra veckan Trigonometri Veckans begrepp enhetscirkeln, trigonometriska ettan trigonometrisk funktion, sinuskurva period, fasförskjutning, vinkelhastighet
Läs merx ( f u 2y + f v 2x) xy = 24 och C = f
Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet
Läs mer= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6
freeleaks NpMaD ht2007 för Ma4 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2007 2 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 6 Förord Kom ihåg Matematik
Läs mer4 Fler deriveringsregler
4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x
Läs mer+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n
Repetition, Matematik I.. Bestäm koefficienten vid 2 i utvecklingen av ( + 2 2 ) 5. 2. Bestäm koefficienten vid 2 i utvecklingen av ( + ) n för n =, 2,,.. Beräkna a 5 5a 2b + 5a 2b 2 5a 2 b + 5a 6b 2b
Läs merx) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 11 juni 014
Läs merChalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standard LMA515 Matematik KI, del B.
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 343 kl. 8.3.3 Tentamen Telefonvakt: Christoffer Standard 73 88 34 LMA55 Matematik KI, del B Tentan rättas och bedöms anonymt. Skriv tentamenskoden
Läs mer% Föreläsning 4 22/2. clear hold off. % Vi repeterar en liten del av förra föreläsningen:
% Föreläsning 4 22/2 clear hold off % Vi repeterar en liten del av förra föreläsningen: % Vi kan definiera en egen funktion på följande sätt: f = @(x) 2*exp(-x/4) + x.^2-7*sin(x) f(2) % Detta ger nu funktionsvärdet
Läs merChalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström LMA222a Matematik DAI1 och EI1
MATEMATIK Hjälpmedel: inga Calmers tekniska ögskola Datum: 1015 kl. 0.0 12.0 Tentamen Telefonvakt: Jonny Lindström 07 607040 LMA222a Matematik DAI1 oc EI1 Tentan rättas oc bedöms anonymt. Skriv tentamenskoden
Läs merDel I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Läs merNär man vill definiera en matris i MATLAB kan man skriva på flera olika sätt.
"!$#"%'&)(*,&.-0/ 177 Syftet med denna övning är att ge en introduktion till hur man arbetar med programsystemet MATLAB så att du kan använda det i andra kurser. Det blir således inga matematiska djupdykningar,
Läs merLaboration: Grunderna i Matlab
Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid
Läs merMATLAB Laboration problem med lokala extremvärden
MATLAB Laboration problem med lokala extremvärden Sonja Hiltunen, sohnya@gmail.com Sanna Eskelinen, eskelinen.sanna@gmail.com Handledare: Karim Daho Flervariabelanalys 5B1148 Innehållsförteckning Problem
Läs merTANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Läs merSF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att
SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w
Läs merKomplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN juni 0 HF006 och HF008 Tid :-7: Moment: TEN (Analys), hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF008, lärare: Fredrik Bergholm och Inge Jovik, Linjär algebra och analys, HF006,
Läs merPreliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
Läs merIntroduktion till Matlab
CTH/GU LABORATION 1 TMV216/MMGD20-2017/2018 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska
Läs merLaboration 2, M0043M, HT14 Python
Laboration 2, M0043M, HT14 Python Laborationsuppgifter skall lämnas in senast 19 december 2014. Förberedelseuppgifter Läs igenom teoridelen. Kör teoridelens exempel. Teoridel 1 Att arbeta med symboliska
Läs merUppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim
Tentamen (TEN) i MATEMATIK, HF 7 dec 7 Tid :-7: KLASS: BP 7 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken typ som helst, en formelsamling och ett bifogat formelblad. Denna lapp lämnar du in
Läs merlog(6). 405 så mycket som möjligt. 675
MMA Matematisk grundkurs TEN Datum: 8 augusti Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan
Läs merx (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs.
MATEMATIK Chalmers tekniska högskola Tentamen -8-8, kl. 4.-8. TMV6 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Adam Andersson, telefon: 7-884 Hjälpmedel: Inga, bara papper och penna. För full
Läs merMatematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
Läs merUppgift 1. (3p) a) Bestäm definitionsmängden till funktionen f ( x) c) Bestäm inversen till funktionen h ( x)
Tentamen TEN, (analysdelen) HF9, Matematik atum: aug 9 Skrivtid: : - 8: Eaminator: Armin Halilovic 8 79 8 Jourhavande lärare: Armin Halilovic 8 79 8 För godkänt betyg krävs av ma poäng Betygsgränser: För
Läs merx 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.
. Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig
Läs merx 1 1/ maximum
a), 1 1 Definitionsmängd: 1,1 En funktion kan ha lokal maximum eller lokal minimum endast i punkter x av följande tre typer: (i) stationära punkter (punkter där 0) (ii) ändpunkter till (endast de ändpunkter
Läs merBetygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna
Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår
Läs mer