Fö 3 Periodiska signaler, Fourierserieanalys. Jag inleder först med ett resonemang på tavlan!!! Fö 3 Periodiska signaler, Fourierserieanalys

Storlek: px
Starta visningen från sidan:

Download "Fö 3 Periodiska signaler, Fourierserieanalys. Jag inleder först med ett resonemang på tavlan!!! Fö 3 Periodiska signaler, Fourierserieanalys"

Transkript

1 Fö 3 Priodisa signalr, Fourirsrianalys Fourirsrianalys Jag inldr förs d rsonang på avlan!!! opyrigh Lass Alfrdsson, LiH Fö 3 Priodisa signalr, Fourirsrianalys 5 a 6 Sua av cos/sin b 3 x 3sin 6 cos SGD6, rad/s 3 4 s blå urva grön urva röd urva opyrigh Lass Alfrdsson, LiH

2 Fö 3 Priodisa signalr, Fourirsrianalys 3 Fourirsriuvcling av priodisa signalr En fysialis -priodis signal x, dvs. x x, an urycas so följand sua av sinusar: sin x Fourirsriuvcling av x f : grundvinlfr v ns f : grundfrvns : dlvärdsnivå si n grundon : sin,, 3, 4 : övronr dlonr opyrigh Lass Alfrdsson, LiH Fö 3 Priodisa signalr, Fourirsrianalys 4 Ex: Approxiaion av fyranvåg N x ( ( udda Gibbs fnon opyrigh Lass Alfrdsson, LiH

3 Fö 3 Priodisa signalr, Fourirsrianalys 5 Fourirsriuvcling, saanfan: j x Saband: där ( sin( x ( d arg Grundvinlfrvns Apliudspru Fasspru j x( d Koplxa fourirsriofficinr rllvärd x opyrigh Lass Alfrdsson, LiH Fö 3 Priodisa signalr, Fourirsrianalys 6 Spru grafis bsrivning av priodis signal j j j j sin j ( ( Enlsidig Dubblsidig oplx spru oplx spru Aningn -axl llr -axl opyrigh Lass Alfrdsson, LiH

4 Fö 3 Priodisa signalr, Fourirsrianalys 7 Spru grafis bsrivning av priodis signal j j j j sin Dlon har vinlfrvns arg arg Enlsidig apliudspru rsp. fasspru Dubblsidig apliudspru rsp. fasspru opyrigh Lass Alfrdsson, LiH Fö 3 Priodisa signalr, Fourirsrianalys 8 Fourirsriuvcling JAVA-do: Gnrring av priodisa signalr d hjälp av (cosinusforad basfunionr: OBS sa ävn da själv! opyrigh Lass Alfrdsson, LiH

5 x ( Fö 3 Priodisa signalr, Fourirsrianalys 9 LI-sys: priodis in priodis u j j y ( Sabil LI-sys j avlan D Ex.: j j j D j j D y ( x d Ex.: y ( x j d Ex. Allän saband: för dn priodisa signaln x( an rhållas från x för drivaasignaln x (: x j opyrigh Lass Alfrdsson, LiH Fö 3 Priodisa signalr, Fourirsrianalys Krsbräningar ( här sös y(.fourirsriuvcla ällsignalrna (.x n älla x (. Använd lisrösori för ällornas dlvärdn ( Y 3.Använd j -odn för ällornas dlonr: j j sin( R, j L, j Bräna sö sorh på oplx for: j Y Y Dlon : y ( Y sin( 4.Suprposiion gr idsuryc för sö sorh: y ( Y y ( Y Y sin( opyrigh Lass Alfrdsson, LiH

6 Fö 3 Priodisa signalr, Fourirsrianalys Signal(dlff i( R Aiv lris ff då u( & i( = sin( : u( U P R I R i d R Signalff för allän signal x(: P Lå li x ( d P li x ( d Spcialfall; o x( är -priodis Signaldlff: li x( d x( d opyrigh Lass Alfrdsson, LiH Fö 3 Priodisa signalr, Fourirsrianalys Klirrfaorn & Parsvals forl Klirrfaorn (HD: K är å på övronshaln hos signaln x(! Parsvals forl: Bvis: K övronrna alla dlonr x ( d x ( d sinus! 4 opyrigh Lass Alfrdsson, LiH

7 Fö 3 Priodisa signalr, Fourirsrianalys 3 Fouriranalys: y Fouriranalys & fourirsyns j x( och (llr är givna. Bsä x d Signalns frvnsspru, dvs. riad so funion av, frvns f llr vinlfrvns, är ofa av inrss. Vanlign riar an då apliudspru och fasspru: x( 7f 5f * 3f f f 3f 5f 7f f arg 5f f 3f 7f 7f 3f f 5f f opyrigh Lass Alfrdsson, LiH Fö 3 Priodisa signalr, Fourirsrianalys 4 Fourirsyns: y Fouriranalys & fourirsyns j och (llr är givna. Bsä/sapa x M j I praisa saanhang nöjr an sig d n approxiaion: xm,,,, M M M M M M x x 7f 5f 3f f f 3f 5f 7f f arg 7f 5f f 3f 7f 3f f 5f f opyrigh Lass Alfrdsson, LiH

Periodisk summa av sinusar

Periodisk summa av sinusar 1 Periodis sua av sinusar Låt x( t) = Asin( ω a t + α ) + Bsin( ω b t + β ). O ω a! x( t) är T-periodis, dvs. x( t) = x( t +T ) ω b ed T = π ω 1, där ω 1 = SGD( ω a,ω ) Största Geensaa Delare (SGD) b =

Läs mer

På föreläsningen går jag relativt snabbt igenom grunderna fourierserieutveckling av periodiska signaler, bild 2 7.

På föreläsningen går jag relativt snabbt igenom grunderna fourierserieutveckling av periodiska signaler, bild 2 7. 1 På föreläsningen går jag relaiv snabb igenom grunderna fourierserieuveckling av periodiska signaler, bild 7. Genomgångens syfe: En kor repeiion av begrepp som jag huvudsakligen ugår från a du känner

Läs mer

KAPITEL 1 Föreläsning 1 2

KAPITEL 1 Föreläsning 1 2 KAPIEL Föreläsning Inroduion Komplex represenaion av sinus & cosinus Komplex ampliud Periodisa signaler Sperum Sampling Signalmanipulaioner Kap. : Inroduion ill Signaler & Sysem Insignal Sysem Usignal

Läs mer

vara en given funktion som är definierad i punkten a. i punkten a och betecknas f (a)

vara en given funktion som är definierad i punkten a. i punkten a och betecknas f (a) Drivaans iniion DERIVATANS DEFINITION Dfiniion Lå y f vara n givn funkion som är inirad i punkn a f a f Om gränsvärd israr som rll al sägr vi a funkionn är drivrbar i punkn a Gränsvärd kallas drivaan av

Läs mer

Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 12. Ex) på användning av z-transform: ljud. z-transform och TDFT, formler

Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 12. Ex) på användning av z-transform: ljud. z-transform och TDFT, formler Sigal- och Bildbhadlig FÖREÄSNING -trasfor - varför tar vi upp d? Aväds ofta vid dsig av tidsdiskrta syst. Vi ska s hur d hägr ihop d TDFT och DFT. D tas upp i alla grudkursr/böckr i sigal-bhadlig. aplac-trasfor

Läs mer

FOURIERTRANSFORMEN FOURIERTRANSFORMEN. Signalenergi. Frekvensegenskap hos signal. a f. Fouriertransformen till x(t):

FOURIERTRANSFORMEN FOURIERTRANSFORMEN. Signalenergi. Frekvensegenskap hos signal. a f. Fouriertransformen till x(t): Fö 5-8 Fourierransorm: signalanalys, sysemanalys & AM FOURIERTRANSFORMEN På avlan (och/eller pd-dokumen): Repeiion, alning & ourierserier Uvidgning, Fourierserieuveckling Fourierransorm Fö 5-8 Fourierransorm:

Läs mer

TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2

TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2 Kap 7 Fourirrasormaalys av idskoiurliga sigalr Kap 7 Fourirrasormaalys av idskoiurliga sigalr Fourirrasorm Fourirrasorm ill x(: F F { x( } X( x( j d Ivrsa ourirrasorm ill X(: { X( } x( π X( j d Jr. ourirsri:

Läs mer

arctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar

arctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar DERIVERINGSREGLER och några gomtriska tillämpningar DERIVERINGSREGLER ( f ( ) + g( )) ) + g ( ) ( af ( )) a ) a konstant ( af ( ) + bg( )) a ) + bg ( ) a b konstantr Produktrgln: ( f ( ) g( )) ) g( ) +

Läs mer

Fallrörelse med luftmotstånd

Fallrörelse med luftmotstånd Fallöls d lufosånd Fallöls d lufosånd Dnni G 00 Fallöls d lufosånd n ula alas av yngdafn F g g, dä ä ulans assa oh g ä yngdalaionns noalväd. Dssuo påvas ulan av lufosånd so g upphov ill fiionsafn F f..

Läs mer

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr

Läs mer

INTRODUKTION. Akut? RING: 031-51 20 12

INTRODUKTION. Akut? RING: 031-51 20 12 INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och

Läs mer

1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1

1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1 Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +

Läs mer

Tidsprogram VSM Fredag ***************************** ( xx) = antal anmälda Ver. 10

Tidsprogram VSM Fredag ***************************** ( xx) = antal anmälda Ver. 10 Tidsprogram VSM Fredag 140725 140713 ***************************** ( xx) = antal anmälda 140708 Ver. 10 Tid Löpning Längd A läktaren 11.00 M35-40 400m H (1+5) /91,4/ 11.10 M45 400m H (5) /91,4/ 11.20 M50-55

Läs mer

VATEK Multifix kopplingar för alla rörtyper

VATEK Multifix kopplingar för alla rörtyper Vtk_logo_cmyk-2012.pf 1 2011-11-25 13.09 VATEK Multifix kopplingr för ll rörtypr VATEK MULTIFIX ÄR EN SERIE rgfst rörkopplingr för ll typr v rör till å vttn och gslningr. Kopplingrn introucrs i Svrig v

Läs mer

Vad är reglerteknik? Reglerteknik AK F1. Vad är ett dynamiskt system? Principer för reglering. Vad är återkoppling? Alternativ: Framkoppling

Vad är reglerteknik? Reglerteknik AK F1. Vad är ett dynamiskt system? Principer för reglering. Vad är återkoppling? Alternativ: Framkoppling Rglrknik AK F Vad är rglrknik? Vad är rglrknik? ID-rglaorn Rglrknik handlar om rglring av dynamiska sysm A få dynamiska sysm a ppföra sig som önska / 4 2 / 4 Vad är dynamisk sysm? rincipr för rglring Dynamiska

Läs mer

Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:

Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt: Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga

Läs mer

SEPARABLA DIFFERENTIALEKVATIONER

SEPARABLA DIFFERENTIALEKVATIONER Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till

Läs mer

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (

Läs mer

Föreläsning 10. Digital signalbehandling. Kapitel 7. Digitala FourierTransformen DFT. LTH 2011 Nedelko Grbic (mtrl. från Bengt Mandersson)

Föreläsning 10. Digital signalbehandling. Kapitel 7. Digitala FourierTransformen DFT. LTH 2011 Nedelko Grbic (mtrl. från Bengt Mandersson) Digital sigalbhadlig ESS040 Förläsig 0 Digital sigalbhadlig ESS040 Kapitl 7 Digitala FourirTrasform DFT LTH 0 dlo Grbic (mtrl. frå Bgt Madrsso Istitutio för ltro- och iformatiosti Lud Uivrsity 53 Digital

Läs mer

TSBB31 Medicinska bilder Föreläsning 1

TSBB31 Medicinska bilder Föreläsning 1 TSBB3 Medicinska bilder Föreläsnin Inormaion hp://www.cvl.isy.liu.se/educaion/underraduae/sbb3 Repeiion (och lie ny?) av D Fourierransorm Vikia sinaler (unkioner) Tolknin Teorem Eenskaper Linjär sysem

Läs mer

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER Vi brr sysm v lijär omog DE (v förs ordig) md os offiir dx x x d dx x x d dx x x d där x ), x ( ),, x ( ) är ob fuior v vribl ( Ovsåd sysm

Läs mer

Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12

Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12 KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn

Läs mer

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Armin alilovi: EXTRA ÖVNINGAR omogna linjära diffrntialkvationr OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Linjär diffrntialkvation (DE) md konstanta koffiintr är n kvation av följand

Läs mer

SVÄNGNINGAR Odämpad svängning för ett diskret system med en frihetsgrad.

SVÄNGNINGAR Odämpad svängning för ett diskret system med en frihetsgrad. SVÄNGNINGA Odäpad svängnng för e dsre sse ed en frhesgrad. r svängnng jäder [N/] Sas jävsläge. [g ] [ ] & & : & & & So har lösnngen; Bsn C cos Lösnngen nnebär; Vnelhasgheen rad/s och svängnngsfrevensen

Läs mer

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr

Läs mer

TENTAMEN. HF1903 Matematik 1 TEN2 Skrivtid 13:15 17:15 Fredagen 10 januari 2014 Tentamen består av 3 sidor

TENTAMEN. HF1903 Matematik 1 TEN2 Skrivtid 13:15 17:15 Fredagen 10 januari 2014 Tentamen består av 3 sidor ENAMEN HF9 Mmik EN Skrivid : 7: Frdgn jnuri nmn bsår v sidor Hjälpmdl: Udl ormlbld Räkndos j illån nmn bsår v uppgir som ol kn g poäng F är undrkän bg mn md möjligh ill komplring Komplringn kn nds görs

Läs mer

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.) Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn

Läs mer

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr

Läs mer

Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y

Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y Diffrnilkvionr, lndd ml DIFFERENTIALEKVATIONER, BLANDADE EXEMPEL Ugif i Bsäm y [srl DE, linjr DE, homogn konsn llr ickkonsn kofficinr ] för ndnsånd diffrnilkvionr ii Bsäm dn llmänn lösningn ill vrj DE

Läs mer

Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic

Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt

Läs mer

TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.

TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4. TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar

Läs mer

T rädinventering & okulär besiktning

T rädinventering & okulär besiktning I ill Shl y - 2018-04-24, D 2016-15389 T ii & ul ii M l, B 201 8-01 - 26 T ii u Pul B h A Ohl Sjö, A Kul AB T ii u på upp H Lih, Expli Tii h ul ii Sfi I ill Shl y - 2018-04-24, D 2016-15389 E ii i i E

Läs mer

Kontrollskrivning i TSDT84 Signaler & System samt Transformer för D

Kontrollskrivning i TSDT84 Signaler & System samt Transformer för D Institutionen för Systemteknik 1( 8 ) Kontrollskrivning i TSDT84 Signaler & System samt Transformer för D Provkod: KTR1 Tid: 2019-01-10 kl. 8.00-12.00 Lokal: KÅRA Lärare: Lasse Alfredsson, tel. 013-28

Läs mer

Kontrollskrivning i TSDT84 Signaler & System samt Transformer för D

Kontrollskrivning i TSDT84 Signaler & System samt Transformer för D Institutionen för Systemteknik 1( 8 ) Kontrollskrivning i TSDT84 Signaler & System samt Transformer för D Provkod: KTR1 Tid: 2018-10-26 kl. 14.00-18.00 Lokal: TER3, TERE Lärare: Lasse Alfredsson, tel.

Läs mer

Digital Signalbehandling i multimedia

Digital Signalbehandling i multimedia Digil siglhdlig, Isiuio ör lkro- och iormioskik LH, Lud Uivrsiy Digil siglhdlig, Is ör lkro- och iormioskik örläsig Exmpl: Ekok Digil Siglhdlig i mulimdi EI65 Smplig AD Digil sig. hdl. Digil krs DA Lågpssilr

Läs mer

Tentamen i Linjär algebra 2010 05 21, 8 13.

Tentamen i Linjär algebra 2010 05 21, 8 13. LINKÖPINGS UNIVERSITET Mamaika Iniuionn Ulf Janfalk Kurkod: ETE Provkod: TEN Tnamn i Linjär algbra,. Inga hjälpmdl. Ej räkndoa. Rula mddla vi -po. För godkän räckr poäng och min uppgifr md llr poäng. Godkända

Läs mer

FÄRGLAGD A STENSUNDSVÄGEN BOSTÄDER BILPLATSER GARAGE 86 ST

FÄRGLAGD A STENSUNDSVÄGEN BOSTÄDER BILPLATSER GARAGE 86 ST STNSUNSVÄN Ø Ø : Ø OSTÄR S TRO RK ST 3 RK 3 ST RK ST SUMM 7 ST 663 ILPLTSR +. +.3 R 6 ST -3 /. +.7 MRK Lr 5 ST SUMM ST.5 + IV. > VI SO P 3 677 b 3 3 UN SL TRO +.5 + 3.5 + 6. VÄ PL NN g V S +7 +3. +.6.5

Läs mer

Digital Signalbehandling i multimedia

Digital Signalbehandling i multimedia Digil siglbhdlig, Isiuio ör lkro- och iormioskik LH, Lud Uivrsiy örläsig Digil Siglbhdlig i mulimdi EI65 Digil siglbhdlig, Isiuio ör lkro- och iormioskik Digil Siglbhdlig Smplig AD Digil sig. bhdl. Digil

Läs mer

Digital signalbehandling

Digital signalbehandling Istitutio ör ltro- och iormtiosti LH, Lud Uivrsity örläsig : Siglbhdlig ESS4 Siglbhdlig siglbhdlig A/D sig. bhdl. ESS4 Smplig Rostrutio ISB -3-873-5, ISB -3-87374- Sigl Procssig: Pricipls, Algorithms,

Läs mer

Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 6. Ex) på användning av z-transform: En avancerad hörapparat

Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 6. Ex) på användning av z-transform: En avancerad hörapparat Sigal- och Bildbhadlig FÖREÄSNING 6 -trasform - varför tar vi upp d? Aväds ofta vid dsig av tidsdiskrta systm. Vi ska s hur d hägr ihop md TDFT och DFT. D tas upp i alla grudkursr/böckr i sigal-bhadlig.

Läs mer

Svar och lösningar, Modul 1.

Svar och lösningar, Modul 1. Svar och lösningar, Modul. A Använd t.ex. följande lexikon: H : han hör vad som sägs, D : han är döv, O : han är ouppmärksam, M : han kommer att missa mötet. Vi får svar: H ((D O) & M) B Vi har Att E bara

Läs mer

Bengt Assarsson. Hemsida. www.bassarsson.com. Litteratur m m

Bengt Assarsson. Hemsida. www.bassarsson.com. Litteratur m m Bng Assarsson Forskning Makro, konomri Skar, EMU, frfrågsysm Finansdparmn Svrigs Riksbank Sora konomriska modllr Svnsk modll BASMOD Modll för världskonomin Modll för kors prognosr Inflaion/rlaiva prisr

Läs mer

jz j k k k k k k k kjz j k k j j k k k k j j

jz j k k k k k k k kjz j k k j j k k k k j j Avsedet I Podoen melodi ur gamla Valamo losters oihod a d j j Kom, låt oss ge den sista ssen åt den dö de, tac an de Gud. j jz j a d j j j j j j För hon/han har gått ort från si na nä ra och sri der nu

Läs mer

System, Insignal & Utsignal

System, Insignal & Utsignal 1 Sysem, Insignal & Usignal Insignal x[n] SYSTEM H! H = sysemoperaorn Usignal y() = H{y()} y[n] = H{x[n]} w E SYSTEM = en maemaisk modell av e fysikalisk sysem, al. en algorim, som för olika insignaler

Läs mer

System, Insignal & Utsignal

System, Insignal & Utsignal Kap 1 Signaler och Sysem x Sysem y = H{x} 1 Sysem, Insignal & Usignal Insignal x() x[n] SYSTEM H! H = sysemoperaorn Usignal y() = H{y()} y[n] = H{x[n]} w E SYSTEM = en maemaisk modell av e fysikalisk sysem,

Läs mer

som gör formeln (*) om vi flyttar första integralen till vänsterledet.

som gör formeln (*) om vi flyttar första integralen till vänsterledet. Armi Hlilovic: EXTRA ÖVNNGAR Prtill itgrtio PARTELL NTEGRATON uu(vv ( dddd uu(vv( uu (vv(dddd ( ), (pppppppppppppppp iiiiiiiiiiiiiiiiiiiiii) KKKKKKKKKKKKKK: uuuu dddd uuuu uu vv dddd Förklrig: Eligt produktrgl

Läs mer

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig) Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland

Läs mer

Cirkelkriteriet (12.3)

Cirkelkriteriet (12.3) Föreläsning 3-4 Cirkelkriteriet (12.3) En situation där global stabilitetsanalys kan utföras. r + u G(s) y f( ) där f( ) är en statisk olinjäritet, t ex f(y) = 1 y 0 1 y < 0 eller Antag att: f(y) = y 2

Läs mer

Lösningar till Problemtentamen

Lösningar till Problemtentamen KTH Mkanik 2005 10 17 Mkanik II, 5C1140, M, T, CL 2005 10 17, kl 14.00-18.00 Lösninga till Pobltntan Uppgift 1: Två cylinda d adina spktiv R sitt ihop so n stl kopp. Dn kan ota fitt king n fix hoisontll

Läs mer

System med variabel massa

System med variabel massa Sysm m varabl massa Rörlsmängn hos kropp m är: p m mv Anag nu a kroppns massa änras gnom a v llför massor m pr snh, som har hasghn v k. Rörlsmängsföränrngn pr snh hos kroppn blr: pm m( vk v är ( v k v

Läs mer

Tentamen 2008_03_10. Tentamen Del 1

Tentamen 2008_03_10. Tentamen Del 1 Tntamn 28_3_ Tntamn Dl KS motsvarar (Dluppgift -2) Dluppgift Dt dcimala hltalt 95 är givt. a) Ang talt i dt hadcimala talsstmt. b) Ang talt i dt binära talsstmt. c) Ang talt md BCD-kod Dluppgift 2 z z

Läs mer

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x,

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x, Matmatik CTH&GU Tntamn i matmatiska mtodr E (TMA04), dl A, 000-0-, kl.45-.45 Tlfon: Andrs Logg, tl. 0740-4590 OBS: Ang linj och inskrivningsår samt namn och prsonnummr på skrivningsomslagt. Ang namn och

Läs mer

R E S U L T A T B L A N K E T T SIDA 1 Växtproduktionsekologi. Skördeår: Plan: L Havre (VCU). Sort * Behandling

R E S U L T A T B L A N K E T T SIDA 1 Växtproduktionsekologi. Skördeår: Plan: L Havre (VCU). Sort * Behandling R E S U L T A T B L A N K E T T SIDA 1 Wejbygården 26265 ÄNGELHOLM -10-31 -04-05 300 NPK 27-3-5 81 9 15-05-02 110 NPK 27-3-5 30 3 6 Sådatum : -04-03 Skörd Vatt. Mog- Rutans Strå- Plant- Strå- Mjölkg/ha

Läs mer

Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).

Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1). Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns

Läs mer

Ulefos Multifi x Rörkopplingar för alla rörtyper

Ulefos Multifi x Rörkopplingar för alla rörtyper Ulfos Multifi x Rörkopplingr för ll rörtypr ULEFOS MULTIFIX är n sri rgfst rörkopplingr för ll typr v rör. För gs välj pckning v NBR. Kopplingrn introucrs i Svrig v Ulfos i slutt v 90-tlt och hr sn ss

Läs mer

27. NATURLJUD. o k k o k k k. p k k k kz k k o k k k k k k n k k k. k o k. a f4 Fredrik: kk k. k dk. a f4 4 j. k n. k n k k. k n k n k n.

27. NATURLJUD. o k k o k k k. p k k k kz k k o k k k k k k n k k k. k o k. a f4 Fredrik: kk k. k dk. a f4 4 j. k n. k n k k. k n k n k n. 27. NATURLJUD 171 a f4 Fredri: 4 o o p z o o Hysch-hysch! Tys-ta u! Ett ljus som är-mar sej! O ja, det är di-tör. Göm er på stört! Å Pirater: a f4 4 j m 4 j j m l l d d u om-mer visst di - tör! Å ej, u

Läs mer

1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et.

1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et. Styrels e möte 7mars 2010 Bila gor: 1. D ago r d ning 2. N är va r o lis t a 1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et. 2. F o rma

Läs mer

SÖDRA FLERBOSTADSH USEN

SÖDRA FLERBOSTADSH USEN Bjöovä, 181130- Göyfko SÖDR LERBOSTDSH USEN Nl vl k ä Dv fälkk hä Bv k Ej y öy k p l ä fj lo Bk Växä på jälkl, 200-600 v y k ä l c p o p Ö fö Håjo y Hlvöpp håjo y: Tääck//jöl/k 363,7 2 k p l ä fj lo Håjo

Läs mer

verkar horisontellt åt höger på glidblocket. Bestäm tangens för vinkeln så att

verkar horisontellt åt höger på glidblocket. Bestäm tangens för vinkeln så att Istitutioe fö Mei Chiste Nybeg Ho Essé Nichols Apzidis 011-08- 1) Tete i SG1130 och SG1131 Mei, bsus Vje uppgift ge högst 3 poäg. Ig hjälpedel. Sivtid: 4 h OBS! Uppgifte 1-8 sll iläs på sept pppe. Lyc

Läs mer

ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH

ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH ATLAS-xprimntt på CERN (wb-kamra idag på morgonn) 5A1247, modrn fysik, VT2007, KTH Laborationr: 3 laborationr: AM36: Atomkärnan. Handlar om radioaktivitt, absorbtion av gamma och btastrålning samt mätning

Läs mer

Mening med ditt liv G/H. o n G/H

Mening med ditt liv G/H. o n G/H =132 J f s s Meg ed d v /H s s s Kr-ur Svesso 1.De vr e gåg e - e po so yc-e v - e vr för 2.To-år - e gc så sbb för-b, h ev - de v - e så - so h / s s ss s s s s J J f b J f J p o o o J p o o o b s s s

Läs mer

Tentamen TMV210 Inledande Diskret Matematik, D1/DI2

Tentamen TMV210 Inledande Diskret Matematik, D1/DI2 Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)

Läs mer

BESLUT Meddelat i Stockholm. Uppgiven ställföreträdare:

BESLUT Meddelat i Stockholm. Uppgiven ställföreträdare: Avdelning 03 2012-01 - 2 3 Meddelat i Stockholm Sida l (4) Mål nr UM 10352-1 1 KLAGANDE 1. 2. Uppgiven ställföreträdare: MOTPART Migrationsverket ÖVERKLAGAT AVGÖRANDE Förvaltningsrättens i Göteborg, migrationsdomstolen,

Läs mer

a (och liknande ekvationer). a har lösningar endast om 1 a 1 (eftersom 1 sin( x ) 1). 3 saknar lösningar.

a (och liknande ekvationer). a har lösningar endast om 1 a 1 (eftersom 1 sin( x ) 1). 3 saknar lösningar. TRIGONOMETRISKA EKVATIONER A) Ekvationen sin( x) a (och liknande ekvationer) Ekvationen sin( x) a har lösningar endast om a (eftersom sin( x ) ) Exempelvis, ekvationen sin( x) saknar lösningar Uppgift

Läs mer

JS "KNATTE" CUP INOMHUS 2009

JS KNATTE CUP INOMHUS 2009 POJKAR 6 SÖNDAGEN DEN 5/4 OBS! Spelas på 5 manna mål GRUPP 1 GRUPP 2 Skurups AIF (Grön) Skivarps GOIF (Röd/Svart) Öja FF (Blå) Kyrkheddinge IF 2 (Grön) Kyrkheddinge IF1 (Grön) Tomelilla IF (Blå/Vit) Skabersjö

Läs mer

SKOL RESA. På Gotland! RESORT VISBY

SKOL RESA. På Gotland! RESORT VISBY SKOL RESA På God 2015 RESORT VISBY BOKNING 0498-25 10 10 WWWKNEIPPBYNSE ö f ä E & So gå föjd: Bå /, uch/mddg å öf Buf Vby Hm-Kby-Vby Hm Log um/ugo md ho F é h Kby Somm& Vd Mgof å Kby y Äymgofb d fä A Gu

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 0 jan 0 HF00 och HF008 Momn: TEN Analys, hp, skrflg namn Kursr: Analys och lnjär algbra, HF008, lärar: Frdrk Brgholm och Ing Jovk, Lnjär algbra och analys, HF00, lärar: Armn Hallovc Eamnaor: Armn

Läs mer

Medborgarnas synpunkter på skattesystemet, skattefusket och Skatteverkets kontroll Resultat från en riksomfattande undersökning hösten 2006

Medborgarnas synpunkter på skattesystemet, skattefusket och Skatteverkets kontroll Resultat från en riksomfattande undersökning hösten 2006 M y å y, S R å ö ö 2006 R 2007:3 3 Fö S ö 1996 å ö å å ö. Uö ä å ä: Mä ( ä) ä. Mä ä å y y,, ä ä å y S ä. I å 2006 å ö ä y, (ä). D (ä) 2007:4, M y å S ä. Uö y : ö ö ä y S, ö ö ö å S,, ä ä å ä å y ö. Fä

Läs mer

DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege

DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga

Läs mer

ANALYS AV DITT BETEENDE - DIREKTIV

ANALYS AV DITT BETEENDE - DIREKTIV Karl-Magnus Spiik Ky Tst / 1 ANALYS AV DITT BETEENDE - DIREKTIV Bifogat finnr du situationr där man btr sig på olika sätt. Gnom att svara på dssa frågor får du n bild av ditt gt btnd (= din människotyp).

Läs mer

På en punkt mellan tiden och evigheten

På en punkt mellan tiden och evigheten På en pun men iden och evigheen Kr-unnr Svensson och Ms Brown =126 n På en pun me - n id - en och ev - ig - he - en sår g en som - mr ff /H / F n n mf s s s s s n mf n n n n n s s s s s s s opyrigh 1981

Läs mer

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275) EKNISKA HÖGSKOLAN I LUND Istitutioe för eletrovetesp etme i Digitl Siglbehdlig ESS EI/EI75 7-5- id:. -. Sl: MA F-J Hjälpmedel: Formelsmlig, Räedos. Motiver tgde. De oli lede i lösigr s u följs. Rit gär

Läs mer

Digital Signalbehandling i multimedia

Digital Signalbehandling i multimedia LH, Lud Uivrsi örläsig Digil Siglhdlig i mulimdi EI65 Digil Siglhdlig Smplig AD Digil sig. hdl. Digil krs DA Lågpssilr Lågpssilr Rkosrukio Digil Sigl Procssig: Pricipls, Algorihms, d Applicios. Joh G.

Läs mer

T rädinventering & okulär besiktning

T rädinventering & okulär besiktning T äivi & okulä bsiki Klocklu, Fs, 201 5-11 - 2 0 Asvi fö ufö äivi ä As Ohlsso Sjöb,, lfo: 0733-14 93 10, - pos: s@bokosul.s Ivi ä ufö på upp v I Åb, Exploiskoo, lfo: 08-508 26 3 81. 2 v 8 Täivi och okulä

Läs mer

{ ( )} = X s. ( ) /< t. Stabilitet för energifria LTI-system. L{ } e(t) i 0 (t) E(s) I 0 (s) ( ) ( )e st 0. Kretsberäkningar, linjära RLMC-nät

{ ( )} = X s. ( ) /< t. Stabilitet för energifria LTI-system. L{ } e(t) i 0 (t) E(s) I 0 (s) ( ) ( )e st 0. Kretsberäkningar, linjära RLMC-nät Kap 4 Laplaceanfomanaly av idkoninueliga yem 9 Sabilie fö enegifia LTI-yem Maginell abil yem: De flea begänade inignale ge upphov ill begänade uignale Kap 4 Laplaceanfomanaly av idkoninueliga yem 0 Sabilie

Läs mer

GRÖNSKANDE NÄTVERK - SKOLA/FÖRSKOLA OCH PARK

GRÖNSKANDE NÄTVERK - SKOLA/FÖRSKOLA OCH PARK GÖNSANDE NÄVE - SOLA/FÖSOLA OCH PA SÖFJÄLLE FÖSOLA 5 AVD VANBYSOLAN NY SOLA FÖSOLA 5 AVD UDSÖMSA ÄDGÅDEN FÖSOLA 7 AVD FÖSOLA 5 AVD FÖSOLA 7 AVD ÅPAEN IANGELPAEN PAPEGOJPAEN FOSÅE SUUPLAN SAMUNYJANDE AV

Läs mer

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4 Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 5 Ndlko Grbi (mtrl. rå Bgt Madrsso

Läs mer

Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning

Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning Digital sigalbhadlig ESS4 Förläsig 6 Dfiitio: Fourirtrasform av tidsdiskrt sigal DF, sid 5 Digital sigalbhadlig ESS4 Kapitl 4 Fourirtrasform av aalog sigal, F Fourirtrasform av digital sigal, DF fortsättig

Läs mer

TNA004 Analys II Tentamen Lösningsskisser

TNA004 Analys II Tentamen Lösningsskisser TNA004 Analys II Tentamen 07-06-0 - Lösningssisser. y ( ) y( ) e är linjär av första ordningen. Välj integrerande fator Multipliation av (*) med IF ger oss IF ln( ) e d e (Obs! ty vi har y(0) 0 ). ( )

Läs mer

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4 Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 4 Ndlko Grbi (mtrl. rå Bgt Madrsso)

Läs mer

Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00

Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00 Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.

Läs mer

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN)

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN) Armi Hlilovi: ETRA ÖVNINGAR, S676 Ik-omog sysm Mrismod Sid v 0 ICKE-HOMOGENA DIERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEICIENTER I HOMOGENA DELEN Vi brkr sysm v lijär ik-omog DE v örs ordig md kos koiir

Läs mer

Tentamen i Kemisk termodynamik kl 8-13

Tentamen i Kemisk termodynamik kl 8-13 Tntamn i misk trmdynamik 20040-23 kl 83 Hjälpmdl: Räkndsa, BETA ch Frmlsamling för kursrna i kmi vid TH. Endast n uppgift pr blad! Skriv namn ch prsnnummr på varj blad! Alla använda kvatinr sm int finns

Läs mer

JS "KNATTE" CUP INOMHUS 2010 POJKAR 7 ÅR LÖRDAGEN DEN 10/4 OBS! Spelas på 5 manna mål

JS KNATTE CUP INOMHUS 2010 POJKAR 7 ÅR LÖRDAGEN DEN 10/4 OBS! Spelas på 5 manna mål POJKAR 7 ÅR LÖRDAGEN DEN 10/4 OBS! Spelas på 5 manna mål GRUPP 1 GRUPP 2 GRUPP 3 GRUPP 4 GRUPP 5 Skurups AIF 2 (Gröna) Rydsgårds AIF 1 (Vita) Tomelilla IF 1 (Blå/Vit) Skivarps GIF (Röd/Svarta) Kyrkheddinge

Läs mer

R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad A le xa n d e r G i r on

R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad A le xa n d e r G i r on S i da 1 (13 ) A n k o m s tdatum 2016-05 - 31 T y r é n s AB Ut f ä r dad 2016-06 - 08 A le xa n d e r G i r on P r o j e kt Ka b el v e r k e t 6 B e s tnr 268949 P e t e r M y nd es B ac k e 16 118

Läs mer

Hade jag sextusende daler (sång nr 14)

Hade jag sextusende daler (sång nr 14) Hade ag sextusde daler (sång nr 14) Text och musik: Carl Michael Bellman Tor 1 c Arr: Eva Toller 2009. Tor 2 c. och Basso 1 c 1.Ha - de ag sex - tu - s - de. da - ler i kvar - ta - ler, i kvar - ta - ler.

Läs mer

Art nr Benämning Antal Kampanjpris! Adapter för stående arbetebg-rg kr AdapterAD-3/8" FF kr

Art nr Benämning Antal Kampanjpris! Adapter för stående arbetebg-rg kr AdapterAD-3/8 FF kr Art nr Benämning Antal Kampanjpris! 32769109 Adapter för stående arbetebg-rg 150 2 2 225 kr 32769064 AdapterAD-3/8" FF 1 350 kr 32769091 AdapterAD-EF-M14/80 ErgoFix 3 125 kr 32202056 AdapterplattaUG-AD-KS

Läs mer

Samtidig visning av alla storheter på 3-fas elnät

Samtidig visning av alla storheter på 3-fas elnät Samtidig visning av alla storheter på 3-fas elnät Med nätanalysatorerna från Qualistar+ serien visas samtliga parametrar på tre-fas elnätet på en färgskärm. idsbaserad visning Qualistar+ visar insignalerna

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

Inlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B.

Inlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B. Ilämigsuppgift i Digital sigalbhadlig ESS040, T 00 Mådag d ovmbr 00 i EB. I kurs gs två obligatoriska ilämigsuppgiftr som kombiras md frivilliga duggor. Ilämigsuppgiftra är obligatoriska och rsättr 6 timmars

Läs mer

Elementær diskret matematikk, MA0301, våren 2011

Elementær diskret matematikk, MA0301, våren 2011 Lösningsförslag Elmntær iskrt matmatikk, MA00, vårn 0 Oppgav Varj or motsvarar n prmutation av storlk från 9 bokstävrna i TRONDHEIM Alltså är antalt sökta or P(9,) = 9 8 7 6 På liknan sätt får vi att t

Läs mer

också en lösning: Alla lösningar, i detta fall, ges av

också en lösning: Alla lösningar, i detta fall, ges av H009, Introduktionskurs i matematik Armin Halilovic TRIGONOMETRISKA EKVATIONER A) Ekvationen sin( x ) = a (och liknande ekvationer) Ekvationen sin( x ) = a har lösningar endast om a (eftersom sin( x )

Läs mer

Lösningsförslag TATA

Lösningsförslag TATA Lösningsförslag TATA8 08-0-04 (a) Binomialsatsen medför att (b) Eftersom ( ) 5 = +4i i 5X 5 k 4i = () 5 k ( ) k = 5 80 4 +80 40 +0 ( + 4i)( + i) 0 4 + = + i 5= 9 + i, 9 gäller att realdelen blir (c) Summan

Läs mer

där a och b är koefficienter som är större än noll. Här betecknar i t

där a och b är koefficienter som är större än noll. Här betecknar i t REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt

Läs mer

www.liberhermods.se Kurskatalog 2008 Liber Hermods för en lysande framtid

www.liberhermods.se Kurskatalog 2008 Liber Hermods för en lysande framtid www.librhrmods.s Kurskatalog 2008 Libr Hrmods för n lysand framtid 1898 n a d s lärand t l b i x s fl d o m r H Libr Välkommn till Libr Hrmods! hos oss når du dina mål Från och md januari 2008 bdrivr Libr

Läs mer

Utlåtande 2015: RVI (Dnr /2015)

Utlåtande 2015: RVI (Dnr /2015) Utlåtand 25: RVI (Dnr 151-392/25) Rapportring av j vrkställda gynnand bslut nligt 9 och rapportring nligt 28 lagn o stöd och srvic till vissa unktionshindrad (LSS) sat 4 kap 1 socialtjänstlagn (SoL) kvartal

Läs mer

Definition grupp. En grupp (G, ) är en mängd G med en binär operator : G G G som uppfyller följande vilkor:

Definition grupp. En grupp (G, ) är en mängd G med en binär operator : G G G som uppfyller följande vilkor: Grupper Definition grupp En grupp (G, ) är en mängd G med en binär operator : G G G som uppfyller följande vilkor: Definition grupp En grupp (G, ) är en mängd G med en binär operator : G G G som uppfyller

Läs mer

HF1703, Inledande matematik (Byggproduktion) DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER

HF1703, Inledande matematik (Byggproduktion) DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER Den trigonometrisk enhetscirkeln är en cirkel med rdie = och mittpunkt i origo B(0,) C(,0) O D(0,) I en rätvinklig tringel definierr vi

Läs mer