STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 10 25. RÄNTA 1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid (löptid). Ränta på ränta Vid förräntning n gånger per år med räntan r/n blir värdet av en krona efter t år R = (1 + r n )nt för n = 1, 2, 3,... och R = lim n (1 + r n )nt = e rt vid kontinuerlig förräntning. För r = 5% och t = 1 ges värdena av följande tabell: n förräntning varje värde 1 år 1.05 = 1.050000 2 halvår (1 + 0.05 2 )2 = 1.050625 4 kvartal (1 + 0.05 4 )4 = 1.050945 12 månad (1 + 0.05 12 )12 = 1.051161 52 vecka (1 + 0.05 52 )52 = 1.051245 365 dag (1 + 0.05 365 )365 = 1.051267 kontinuerligt e 0.05 = 1.051271 Årsräntan beror alltså i detta fall även på n. Vad som är väsentligt här är tillväxtfaktorn, R. Denna kan även uttryckas med hjälp av räntan, r, men då måste man specifisera vilken ränta som avses. Vanligast kanske är att definiera räntan som avkastningen r a = R 1. Övning 1 Visa att om avkastningen är r under en del av en tidsperiod och r under återstoden, så är avkastningen r + r + r r under hela tidsperioden. Avkastningen är alltså inte additiv men det är däremot räntan vid kontinuerlig förräntning eller kortare den kontinuerliga räntan: 1
r c = ln R. Övning 2 Visa att om den kontinuerliga räntan är r under en del av en tidsperiod och r under återstoden, så är den kontinuerliga räntan r + r under hela tidsperioden. Vid konstant tillväxt gäller R = e rct. Den kontinuerliga räntan kan därför även definieras som den momentana avkastningen per tidsenhet: e rct 1 lim = r c. t 0 t Nuvärde X 0 kronor idag är värda X T kronor om T år. Här är det framtida värdet av X 0 och X T = R T X 0 X 0 = d T X T nuvärdet (present value) av X T. Här är R T tillväxtfaktorn under T år och d T = R 1 T diskonteringsfaktorn (discount factor). Vi ska även skriva X 0 = P V (X T ). För att värdera framtida utbetalningar jämför man deras nuvärden. Övning 3 Jämför värdet av 417 kronor om ett år och 430 kronor om två år med 395 kronor idag om årsavkastningen är 5% bägge åren. Övning 4 Uttryck dubbleringstiden (den tid det tar att dubblera ett kapital) som funktion av den kontinuerliga räntan. Speciellt: Hur lång tid tar det att dubblera ett kapital då räntan är 5%? Betalströmmar En betalström är en följd av reella tal, x = (x 0, x 1,...x n ), samt en följd av tidpunkter 0 = t 0 < t 1 <... < t n. Innehavaren av betalströmmen erhåller x i kronor vid t i. (Detta innebär att innehavaren betalar x i kronor om x i < 0.) Motparten, utställaren av betalströmmen, innehar betalströmmen x. Betalningsförloppret delas alltså in i n perioder; (t i 1, t i ), i = 1,..., n. Här följer tre exempel på betalströmmar: Lån Du lånar idag S kronor och betalar tillbaka K kronor i slutet av varje period. Detta svarar mot betalströmmen (S, K,..., K). 2
Sparande Du sätter in K kronor i början av varje period och tar ut hela sparbeloppet i slutet av den sista perioden. Detta ger betalströmmen ( K,..., K, S). Annuitet Du betalar in S kronor idag och få ut K kronor i slutet av varje period. Detta ger betalströmmen ( S, K,..., K). Detta är även den betalström långivaren får när du tar ett lån. När inte annat sägs ska vi anta att perioderna är lika långa; t 0 = 0, t 1 = 1,..., t n = n i någon enhet; dag, månad eller år t.ex. Detta kan man alltid uppnå genom att låta x k = 0 för vissa k. Diskonteringsfaktorn per period betecknas i detta fall med d. Betalströmmens nuvärde ges därför av P V (x) = x 0 + dx 1 +... + d n x n. Övning 5 Du erhåller 2000 kr om året i 10 års tid med början om ett år. Beräkna nuvärdet av denna betalström om avkastningen är 5% per år. Övning 6 Vid skörd av energiskog efter ett år får man tillbaks 1.05 kronor netto för varje satsad krona. Motsvarande siffror vid skörd efter två eller tre år är 1.11 respektive 1.14. Jämför dessa betalströmmer under förutsättning att hela intäkten går att återinvestera i nyplanteringar. Effektiv ränta Den effektiva räntan är den ränta för vilken betalströmmen har nuvärdet 0 och bestämms därför av den diskonteringsfaktor för vilken P V (x) = 0. Förutsättningen är att diskonteringsfaktorn är entydigt bestämd. Övning 7 Visa att om x 0 > 0 och x i < 0 för i = 1,..., n (eller om x i < 0 för i = 0,..., n 1 och x n > 0), så är diskonteringsfaktorn entydigt bestämd. Visa även att räntan är positiv (d < 1) i dessa fall om och endast om x 0 < n n 1 x k (eller x n > x k ). k=1 k=0 Låt m beteckna antalet perioder per år. Diskonteringsfaktorn per år är då d m och den kontinuerliga räntan är därför per år, medan årsavkastningen är m ln 1 d 3
1 d m 1. Övning 8 Ett lån på 1000 kronor betalas av på två månader med 507 kronor per månad. Hur stor är den effektiva räntan? Övning 9 Beräkna den effektiva räntan för betalströmmarna i Övning 6. Övning 10 Visa att den effektiva räntan för lånet respektive sparandet ovan ges av de diskonteringsfaktorer som uppfyller d 1 dn 1 d = S K respektive d n 1 dn 1 d = S K. För att lösa d ur ekvationer av denna typ kan man använda Newtons metod att finna nollställen till en deriverbar funktion, F (x): Gissa ett tal x 0 som du tror ligger nära nollstället. Beräkna sedan x 1, x 2,... via formeln x k = x k 1 F (x k 1) F (x k 1 ), för k = 1, 2,... Denna följd konvergerar mot ett nollställe till F. För varje upprepning dubblas antalet rätta decimaler. Övning 11 Visa att x k är den punkt i vilken tangenten till F i punkten x k 1 skär x axeln samt använd detta till att illustrera konstruktionen av x 1, x 2,... grafiskt. Övning 12 Ett lån på 1000 kronor betalas av på tre månader med 338 kronor per månad. Hur stor är den effektiva räntan? Övning 13 Du lånar 200000 kr i en bank och betalar i slutet av varje månad 3000 kr. Den effektiva räntan ges av 0.5% avkastning per månad. Hur stor är årsräntan? Hur lång tid tar det att betala lånet? Hur mycket ska du betala per månad för att lånet ska vara avbetalat på 5 år? Obligationer En obligation är en betalström av formen ( P, c/m,..., c/m, c/m + F ). Utbetalningarna sker m gånger per år i T = n/m år. T är obligationens löptid (time to maturity), c kupongen (coupon), F det nominella värdet (face value) och P priset. 4
Den effektiva räntan per år bestäms därför av diskonteringsfaktorn d m, där d uppfyller P = c m n d k + d n F. k=1 Det framgår av detta uttryck att obligationspriset är en avtagande funktion av räntan. Obligationspriserna gå alltså ned då räntan går upp. Övning 14 a) Visa att P = c dn d1 m 1 d + dn F. b) Definiera y genom d = 1 1+. D.v.s. y är avkastningen under en period av y m längd 1/m multiplicerad med m. Visa att P = c y + dn (F c y ). Detta uttryck blir speciellt enkelt då c = yf (pari); P = F. Övning 15 Låt P 1 och P 2 beteckna priserna på två obligationer där den andra har längre löptid än den första men som för övrigt är lika (samma kupong, ränta, nominellt värde och periodlängd). Visa att P 1 < P 2 för y < c/f och P 1 > P 2 för y > c/f. Övning 16 Beräkna den effektiva räntan för en femårig obligation med nominellt värde 100 SEK och årlig kupong 4 SEK som betalas ut med 1 SEK varje kvartal. Obligationens pris är 100 SEK. Genom att sätta samman en portfölj av obligationer kan man bilda nya betalströmmar. Övning 17 Betrakta två obligationer med samma löptid, periodlängd och nominella värde. Den ena har kupongen c 1 och den andra c 2, c 1 < c 2. Priserna är P 1 respektive P 2. a) Konstruera med hjälp av dessa en obligation som har kupongen c men samma nominella värde. Vad blir priset på denna. b) Vilka vikter ska de två obligationerna ha i portföljen för att resultatet ska bli en nollkupongare? c) För vilka värden på c har bägge obligationerna positiv vikt i portföljen? Den effektiva räntan som värderingsmått Den effektiva räntan är ett trubbigt verktyg då det gäller att värdera betalströmmar i allmänhet. Betrakta betalströmmen x = (ab, a b, 1). Denna har nuvärdet P V = ab d(a + b) + d 2 = (d a)(d b). 5
Detta nuvärde är noll för d = a och d = b. Den effektiva räntan är alltså inte entydigt bestämd då a b. Dessutom har nuvärdet av betalströmmen x samma nollställen. Det är därför inte omedelbart klart hur man med hjälp av den effektiva räntan ska kunna avgöra vilken av de två betalströmmarna x och x som är att föredra (om någon). Antag att a = 1 och b = 3: x=(3,-4,1). I detta fall är d = 1 eller d = 3. I det första fallet är räntan noll, i det andra negativ. Nuvärdet är positivt för x och negativt för -x då d < 1, vilket gäller i normalfallet. Betalströmmen x torde därför vara att föredra framför -x. Antag att det är ett år mellan utbetalningarna och att du kan låna in pengar mot 5% avkastningasränta per år och låna ut mot 4%. Följande förfaringssätt visar att det är förmånligt att inneha x: Vid t = 0: Acceptera betalströmmen x. Du får 3 SEK som du lånar ut på ett år mot 4% ränta. Vid t = 1: Lånet återbetalas till dig med 3 1.04 = 3.12 SEK. Du lånar 0.88 SEK på ett år och betalar 4 SEK. Vid t = 2: Du får in 1 SEK och återbetalar lånet med 0.88 1.05 = 0.924 SEK. Kvar 0.076 SEK. På detta sätt erhålls betalströmmen (0, 0, 0.076) och man kan alltså göra en riskfri vinst. Vilket även kallas att göra arbitrage. Övning 18 Hur ska in- och utlåningsräntorna vara relaterade i ovanstående exempel för att det ska gå att göra arbitrage på detta sätt? Övning 19 Du är erbjuden två betalströmmar (1000, 3000, 2000) och ( 1000, 3000, 2000). Utbetalningarna sker en gång per år. a) Beräkna betalströmmarnas effektiva räntor. b) Du kan låna pengar mot 5% ränta per år och låna ut mot 4%. Beskriv hur du kan göra arbitrage (riskfri vinst). Litteratur Luenberger, D.G., Investment Science. Oxford University Press 1998 Detta är en bred framställning som berör många områden inom finansmatematiken. Svar till övningarna 3 P V (417) = 417/1.05 = 397.14, P V (430) = 430/1.05 2 = 390.02 4 T = ln 2/r = 13.86 år=13 år 10 månader och 11 dagar. 5 15443 kr 6 Om hela intäkten återinvesteras, så har man efter sex år 1.34, 1.37 respektive 1.30. Skörd efter 2 år är alltså att föredra. 8 Kontinuerlig ränta=0.1113, avkastning=0.1177 per år. 6
9 Den effektiva räntan ges av årsavkastningarna 0.050, 0.054 respektive 0.045 per år. 12 Kontinuerlig ränta=0.0835, avkastning=0.0871 per år. 13 Årsavkastning=6.2%, 81.30 månader, 3867 kr. 16 Årsavkastning=4.06%. 17 a P = (c 2 c)/(c 2 c 1 )P 1 + (c c 1 )/(c 2 c 1 )P 2 b c = 0, c 2 /(c 2 c 1 )P 1 /P respektive c 1 /(c 2 c 1 )P 2 /P. c För c mellan c 1 och c 2. 18 3r u > r i /(1+r i ), där r u och r i står för ut- respektive inlåningsräntan angiven som årsavkastning. 19 a Den effektiva avkastningen är 0 eller 100% för båda. b Vid t = 0: Låna 1000 kr och acceptera den andra betalströmmen. Vid t = 1: Amortera lånet med 1000 1.05 = 1050 kr. Låna ut återstoden 3000 1050 = 1950 kr. Vid t = 2: Lånet återbetalas till dig med 1950 1.04 = 2028 kr och du betalar 2000 kr. Kvar 28 kr. Du får alltså betalströmmen (0, 0, 28). 7