MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA3 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 7 januari 03 Examinator: Karl Lundengård Skrivtid: 4 timmar Hjälpmedel: Miniräknare, penna, linjal, radermedel samt formelsamling på 7 sidor som bifogas till tentamen. Tentamen består utav 5 uppgifter värda upp till 5 poäng stycket. För uppgifter som består av flera delar är maxpoängen för varje del angiven. För att få högsta poäng på en uppgift krävs att ett korrekt och tydligt angivet svar och en klar beskrivning av hur lösningen är strukturerad och vilka ekvationer och samband som används. Uppgifterna är ungefärligt ordnade efter svårighetsgrad. Betygsgränser: Betyg 3: poäng, Betyg 4: 7 poäng, Betyg 5: poäng, Maxpoäng: 5. Låt f(x) = sin(x) + cos(x) 0 sin(x) Använd Newton-Raphsons metod för att hitta ett nollställe värde a sådant att f(a) = 0. Låt din första gissning vara a =. Räkna med radianer. a) Gör tre iterationer av Newton-Raphsons metod för att uppskatta a. (4 p) b) Ange hur många korrekta siffror din uppskattning av a har. Du kan anta att Newton- Raphsons metod konvergerar. ( p) Lösning: f(x) = sin(x) + cos(x) 0 sin(x) Formeln för Newton-Raphsons metod: a n+ = a n f(x) f (x) Funktionen f deriveras f (x) = cos(x) sin(x) + cos(x) 0 sin (x) a) Med första värde a 0 = fås sin() + cos() 0 sin() a = cos() sin() + a =, 3008 a 3 =, 3039 cos() 0 sin () = 0, 845 0, 46 0 0,846 0, 5403 0, 9093 + 0,5403 0 0,708 =, 550 / 7
Lösning: b) Notera att a och a 3 har tre gemensamma siffror. Vi antar att Newton-Raphsons metod konvergerar vilket gör att dessa tre siffror är korrekta.. Låt I = 0 9 x x 4 + dx Beräkna följande integral numeriskt med hjälp av Rombergs metod och kortaste steglängd h = 0, 5. g(x) = 9x x 4 + Rombergs metod är en kombination av trapetsmetoden och Richardson-extrapolation. Vi börjar med trapetsmetoden. ( T (h) = h f(x 0) + f(x ) +... + f(x n ) + ) f(x n) ( ) T = ( ( ) ( ) 3 f(0) + f + f() + f + ) f() = = ( ) +.835 + 4.5 + 4.4536 + 4.7647 = 33 0 = 7.397 ( T () = f(0) + f() + ) f() = 37 = 7.38 T () = (f(0) + f()) = 5.7647 Sedan använder vi Richardson-extrapolation ˆT ˆT (h) = T (h) + T (h) T (h) 3 T () T () ˆT () = T () + = 7.95 3 ( ) ( ) = T + T ( ) T () = 7.3 3 ˆT (h) = ˆT (h) + ˆT (h) ˆT (h) 5 ( ) ˆT = ˆT () + ˆT ( ) ˆT () = 7.76 5 / 7
3. Hitta ett polynom går igenom följande fyra punkter: (x, y ) = (, 6), (x, y ) = (0, ), (x 3, y 3 ) = (, 4), (x 4, y 4 ) = (, 4) Lösning: Du kan använda vilken interpolationsmetod du vill. Eftersom vi har 4 punkter räcker det med ett polynom av grad 3. p(x) = a + bx + cx + dx 3 Här används Newton-interpolation. p(x) = c + c (x x ) + c 3 (x x )(x x ) + c 4 (x x )(x x )(x x 3 ) y = c y = c + c (x x ) y 3 = c + c (x 3 x ) + c 3 (x 3 x )(x 3 x ) y 4 = c + c (x 4 x ) + c 3 (x 4 x )(x 4 x ) + c 4 (x 4 x )(x 4 x )(x 4 x 3 ) 0 0 0 c y (x x ) 0 0 (x 3 x ) (x 3 x )(x 3 x ) 0 (x 4 x ) (x 4 x )(x 4 x ) (x 4 x )(x 4 x )(x 4 x 3 ) c c 3 c 4 = y y 3 y 4 Nedanstående system skall alltså lösas, detta kan göras med vilken metod man vill men eftersom den är triangular kan bakåtsubstitution användas. 0 0 0 c 6 c 6 0 0 c 0 = 4 c = 4 3 3 6 6 4 Alltså c 3 c 4 c 3 c 4 p(x) = 6 4(x + ) + 3(x + )x + (x + )x(x ) = 3x + 3x + x 3 Fortsätter på andra sidan, Var God Vänd 3 / 7
4. För att kalibrera en ljuskänslig sensor så belyses den med ljus av olika våglängd varvid den spänning som sensorn genererar mäts. Resultatet redovisas i tabellen nedan: Ljusets våglängd (nm) 450 500 550 600 650 700 Sensorspänning (mv) 36 50 6 79 9 3 a) Antag att spänningen från sensorn, u, beror på ljusets våglängd, λ, på följande sätt u(λ) = a + bλ Hitta a och b så att spänningen från sensorn beskrivs så bra som möjligt i minstakvadrat-mening. (p) Lösning: b) Sensorn kan anses tillräckligt bra kalibrerad om residualvektorn, det vill säga vektorn med element r i = y i u(λ i ) där y i är mätvärde nummer i och λ i är våglängd nummer i, har en Euklidesk norm mindre än. Med andra ord: r < Kontrollera om detta är uppfyllt. c) Ge ett förslag på hur man matematiskt kan förbättra kalibreringen (det vill säga minska residualvektorns norm). (p) Ljusets våglängd (nm) 450 500 550 600 650 700 Sensorspänning (mv) 36 50 6 79 9 3 (p) a) Här skall vi använda minsta-kvadrat-metoden. Först definierar vi följande: 450 36 500 50 A = 550 600, y = 6 79 650 9 700 3 Sedan löses normalekvationerna [ ] a A A = A y b [ ] [ ] [ ] 6 3450 a 03 = 3450 07500 b 606050 4 / 7
om dessa löses (med Gauss-elimination eller liknande) fås: a =.98, b = 0.303 b) För att beräkna residualvektorn kan vi använda A och y som definierades i föregående uppgift. r = A.954 [ ] 0.838 a y = 3.76 b 0.3905.5048 3.380 Den Euklideska normen är det vanliga sättet att mäta längden hos en vektor: r = 6 ri = 5.7537 > i= Sensorn är alltså inte tillräckligt bra kalibrerad. c) Ett sätt att minska på residualen är att använda ett annat samband än det föreslagna, t.ex. så skulle u(λ) = a + bλ + cλ troligtvis ge ett bättre resultat. 5. Vid analys av hur bladet på ett vindkraftverk deformeras då de snurrar så kan man stöta på andra ordningens differentialekvationer av detta slag: q (t) + 3q (t) = sin(t) + sin(t) a) Skriv om differentialekvationen som ett system av första ordningens differentialekvationer. (p) b) Utgå från att q(0) = 3 och q (0) = 0. Uppskatta sedan q(0, 75) genom att använda Runge-Kuttas (klassiska) metod och steglängd h = 0, 5. (4p) 5 / 7
Lösning: a) Låt q (t) = q(t) och q (t) = q (t). Då kan differentialekvationen skrivas om på följande sätt: q = q q = 3q + sin(t) + sin(t) q (0) = 3 q (0) = 0 b) Nu kan vi använda Runge-Kuttas metod med h = 0.5. k (q ) = hq (0) = 0, 5 0 = 0 k (q ) = h( 3q (0) + sin(0) + sin( 0)) = 0 ( k (q ) = h q (0) + k ) (q ) = 0 ( ( k (q ) = h 3 q (0) + k ) ( ) ) (q ) h + sin + sin(h) = 0, 5 ( 3 0 + sin(0, 5) + sin(0, 5)) = 0, 4 ( k 3 (q ) = h q (0) + k ) = 0, 055 ( ( k 3 (q ) = h 3 q (0) + k ) ( ) ) h + sin + sin(h) = 0, 0776 k 4 (q ) = h (q (0) + k 3 ) = 0, 094 k 4 (q ) = h ( 3 (q (0) + k 3 ) + sin(h) + sin(h)) = 0, 853 q(0, 5) 3, 0084 q (0, 5) 0, 098 6 / 7
Om man använder samma metod gånger till. k (q ) = 0, 045 k (q ) = 0, 699 k (q ) = 0, 0558 k (q ) = 0, 86 k 3 (q ) = 0, 0478 k 3 (q ) = 0, 0 k 4 (q ) = 0, 077 k 4 (q ) = 0, 89 q(0, 5) 3, 0599 q (0, 5) 0, 95 k (q ) = 0, 045 k (q ) = 0, 3765 k (q ) = 0, 050 k (q ) = 0, 48 k 3 (q ) = 0, 006 k 3 (q ) = 0, 80 k 4 (q ) = 0, 308 k 4 (q ) = 0, 979 q(0, 75) 3, 543 LYCKA TILL! 7 / 7