Symboliska beräkningar i Matlab
|
|
- Viktoria Arvidsson
- för 8 år sedan
- Visningar:
Transkript
1 CTH/GU LABORATION 6 MVE45-5/6 Matematiska vetenskaper Inledning Symboliska beräkningar i Matlab Verktygslådan Symbolic Math Toolbox i Matlab kan utföra symbolisk matematik. Vi skall se på ett antal exempel på symboliska beräkningar. Inget kan ersätta att räkna med penna och papper, men ibland kanman vara hjälpt av att ha möjlighet att låta Matlab eller något liknande programsystem utföra en del kalkyler. Vi börjar med att göra en symbolisk formel för volymen av ett klot med radien r >> syms r >> volym=4/*pi*r^ volym = 4/*pi*r^ Vi kan beräkna volymen för t.ex. r = med subs enligt >> v=subs(volym,r,).97 Symboliska variabeln r i uttrycket volym substitueras med värdet och v räknas ut (numeriskt). Senare skall vi se hur vi kan göra om ett symboliskt uttryck till en function, som ett alternativt sätt att göra samma beräkning. Algebraiska uttryck och ekvationer Vi kan faktorisera, utveckla och förenkla ett uttryck med factor, expand och simplify enligt >> syms a b >> factor(a^+*a*b+b^) (a+b)^ >> expand((a+b)^4) a^4+4*a^*b+6*a^*b^+4*a*b^+b^4 >> expand(sin(a+b)) cos(a)*sin(b) + cos(b)*sin(a)
2 >> simplify((a^+b^-*a*b)/(a-b)) a - b >> simplify(exp(a+b)/exp(a-b)) exp(*b) Vi kan lösa t.ex. polynomekvationen x 4 x +x = med solve enligt >> s=solve( x^4-x^+*x- ) s = - 5^(/)/ - / 5^(/)/ - / / - (^(/)*sqrt(-))/ (^(/)*sqrt(-))/ + / dvs. vi har lösningarna (rötterna) x, = ± 5 och x,4 = ± i. Vi kan få Matlab att skriva ut lite snyggare (mer lättläst) med pretty(s). Pröva gärna! Numerisk funktion av symboliska formler I exemplet från inledningen gjorde vi en symbolisk formel för volymen av ett klot med radien r enligt >> syms r >> volym=4/*pi*r^ volym = 4/*pi*r^ Vi beräknade volymen för r = med >> v=subs(volym,r,).97 Alternativt kan vi göra en (numerisk) funktion av den symboliska formeln med matlabfunction enligt >> volymfun=matlabfunction(volym) % volymfun=matlabfunction(volym, vars,{ r }) volymfun Nu kan vi beräkna volymen för t.ex. r = som en helt vanlig funktionsberäkning >> v=volymfun().97 Konstruktionen med matlabfunction gör det möjligt att rita upp symboliska funktioner. För att rita en graf måste man ju ha konkreta siffervärden. Detta kommer vi använda senare i denna laboration.
3 4 Gränsvärden, derivator och primitiv funktion Vi kan beräkna gränsvärden sin(ax) x x a >> it(sin(a*x)/x,x,) a >> it(tan(x),x,pi/, left ) Inf >> it(x*sin(/x),x,) x π/ tan(x) x x sin( x ) Vi kan derivera en funktion f(x) = tan(+cos(x )) >> f=tan(+cos(x^)); >> Df=diff(f,x) Df = -*(+tan(+cos(x^))^)*sin(x^)*x Vi kan bestämma primitiv funktion 5x 8x+9 dx >> f=5*x^-8*x+9 f = 5*x^-8*x+9 >> F=int(f) F = 5*x^-4*x^+9*x Integrationskonstanten får vi hålla reda på själva. Vi deriverar för att kontrollera svaret >> DF=diff(F) DF = 5*x^-8*x+9
4 5 Integraler Vi beräknar en bestämd integral >> q=int(x*sin(x),,) q = sin() - cos() xsin(x)dx Uppgift. Beräkna arean A av de områden som omsluts av graferna till funktionerna f(x) = x 8 5x 8 + x x g(x) = 4 5x + Ledning: Definiera funktionerna, både symboliskt och numeriskt (avsnitt ), och rita deras grafer med >> f=x^/8-5*x^/8+x/4- >> g=x^/-5*x/+/ >> fn=matlabfunction(f); >> gn=matlabfunction(g); >> xn=linspace(-,7); >> plot(xn,fn(xn),xn,gn(xn), r-- ) >> axis equal, axis([- 7-4]) Bestäm sedan skärningspunkterna med solve (avsnitt ) enligt >> s=solve(f-g) s = - 5^(/) 5^(/) + för att sedan beräkna arean med int på lämpligt sätt. Integrationsgränserna plockar ni ur vektorn s, t.ex. s() ger skärningen längst till höger. (Svaret skall bli A = 5 6.) 4
5 6 Differentialekvationer Vi beräknar lösningar till differentialekvationen { y = y(t)+sin(t)+cos(t), t 4 y() = c >> syms t >> y=dsolve( Dy=-y+sin(t)+cos(t), y()=c ) sin(t) + c/exp(t) och ritar upp lösningarna för några olika värden på c med >> yfun=matlabfunction(y, vars,{ t, c }) yfun >> T=linspace(,4); >> for c=-:.5: plot(t,yfun(t,c)), hold on end Vi löser andra ordningens differentialekvation 4 y +y + sin(x) >> y=dsolve( Dy+*Dy+y=*sin(x), x ) x*cos(x) - x*(cos(x) - sin(x)) - cos(x) - x*sin(x) + C/exp(x) + (C*x)/exp(x) >> y=simplify(y) C/exp(x) - cos(x) + (C*x)/exp(x) och kontrollerar att lösningen verkligen uppfyller ekvationen med >> r=diff(y,)+*diff(y)+y-*sin(x) r = Uppgift. Rita graferna av lösningen till differentialekvationen y + (x )sin(x) över x+ intervallet x, för några olika värden på konstanten i lösningen. 5
Symboliska beräkningar med Matlab
CTH/GU LABORATION 6 MVE16-1/13 Matematiska vetenskaper Symboliska beräkningar med Matlab 1 Inledning Verktygslådan Symbolic Math Toolbox i Matlab kan utföra symbolisk matematik. Nu skall vi se på ett antal
Symboliska beräkningar med Matlab
CTH/GU MMG - 8/9 Matematiska vetenskaper Symboliska beräkningar med Matlab Inledning Verktygslådan Symbolic Math Toolbox i Matlab kan utföra symbolisk matematik. Vi skall se på ett antal exempel på symboliska
Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar.
INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Kurskod: HF1006, HF1008 Skolår: 2016/17 armin@kth.se www.sth.kth.se/armin Redovisas under sista två (av totalt fem) labbövningar i Analys-delen. Preliminärt:
de uppgifter i) Under m-filerna iv) Efter samlade i en mapp. Uppgift clear clc Sida 1 av 6
Inlämningsuppgift 2, HF1006.. (MATLAB) INLÄMNINGSUPPGIFT 2 (MATLAB) Kurs: Linjär algebra och analys Del2, analys Kurskod: HF1006 Skolår: 2018/19 Redovisas under en av de tre schemalaggs gda redovisningstillfällen
Planering för Matematik kurs D
Planering för Matematik kurs D Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs D Antal timmar: 9 (7 + ) I nedanstående planeringsförslag tänker vi oss att D-kursen studeras på 9 klocktimmar.
Matematiska Institutionen, K T H. B. Krakus. Matematik 1. Maplelaboration 2.
Matematiska Institutionen, K T H. B. Krakus Matematik. Maplelaboration. . Kommandon, funktioner och konstanter i denna laboration: expand(uttryck) simplify(uttryck) utvecklar uttrycket. T.ex. expand((x+)*(x-)^);
Matematik 1. Maplelaboration 1.
Matematiska Institutionen, K T H. B. Krakus Matematik. Maplelaboration. Före laborationen: Bekanta Dig med innehållet på sid 3. Ögna igenom de genomräknade exemplen 8 på sid 4 7. Använd PoP (papper och
CTH/GU LABORATION 1 MVE /2013 Matematiska vetenskaper. Mer om grafritning
CTH/GU LABORATION 1 MVE16-1/13 Matematiska vetenskaper 1 Inledning Mer om grafritning Vi fortsätter att arbeta med Matlab i matematikkurserna. Denna laboration är i stor utsträckning en repetition och
Mer om funktioner och grafik i Matlab
CTH/GU 2017/2018 Matematiska vetenskaper Mer om funktioner och grafik i Matlab 1 Inledning Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och
4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),
Lunds Tekniska Högskola Matematik Helsingborg Lösningar Analys, FMAA5 9-8-9. a) e sinx) cosx) dx e sinx) + C. b) 4x dx polynomdivision] x + x + x + dx x x + ] ln x + + ) ln) + ) ln) ln). c) Trigonometriska
5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004
KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje
5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 2006-09-11 2 Andra veckan Trigonometri Veckans begrepp enhetscirkeln, trigonometriska ettan trigonometrisk funktion, sinuskurva period, fasförskjutning, vinkelhastighet
Namn Klass Personnummer (ej fyra sista)
Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga
Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna
Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår
Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS
Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan
ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål
ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683 KARL JONSSON Nyckelord och innehåll Andra ordningens linjära differentialekvationer Homogena ekvationen Fundamental lösningsmängd, y 1 (t),
Funktioner och grafritning i Matlab
CTH/GU LABORATION 3 MVE11-212/213 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på (elementära) matematiska funktioner i Matlab, som sinus och cosinus.
Tentamen i Envariabelanalys 2
Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna
5B1134 Matematik och modeller Lösningsförslag till tentamen den 13 januari T = 1 ab sin γ. b sin β = , 956 0, 695 0, 891
KTH Matematik 5B1134 Matematik modeller Lösningsförslag till tentamen den 13 januari 6 1. a) Bestäm sidlängderna i en triangel med vinklarna 44, 63 73 om arean av triangeln är 64 cm. Ange svaren som närmevärden
Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas
5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren och
KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24 och 24-25 25-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C = (5, 1).
R AKNE OVNING VECKA 2 David Heintz, 13 november 2002
RÄKNEÖVNING VECKA 2 David Heintz, 3 november 22 Innehåll Uppgift 29.4 2 Uppgift 29. 3 3 Uppgift 29.2 5 4 Uppgift 3. 7 5 Uppgift 3. 9 6 Uppgift 3.2 Uppgift 29.4 Prove that ln( + x) x for x >, and that ln(
Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström MVE475 Inledande Matematisk Analys
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 1715 kl. 14. - 18. Tentamen Telefonvakt: Jonny Lindström 733 674 MVE475 Inledande Matematisk Analys Tentan rättas och bedöms anonymt. Skriv
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3b GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
S n = (b) Med hjälp av deluppgift (a) beräkna S n. 1 x < 2x 1? i i. och
Uppgift 1 För vilka x R gäller x 4 = 4? Uppgift Låt S n = n k=1 3 k (a) Visa att S n är en geometrisk summa (b) Med hjälp av deluppgift (a) beräkna S n Uppgift 3 Lös ekvationen e x + e x = 3 Uppgift 4
Namn Klass Personnummer (ej fyra sista)
Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga
MVE465. Innehållsförteckning
Lösningar på övningsuppgifter Detta dokument innehåller mina renskrivna lösningar på övningsuppgifter i kursen Linjär algebra och analys fortsättning (). Jag kan inte lova att samtliga lösningar är välformulerade
i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,
Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5
Användarmanual till Maple
Användarmanual till Maple Oktober, 006. Ulf Nyman, Hållfasthetslära, LTH. Introduktion Maple är ett mycket användbart program för symboliska och i viss mån numeriska beräkningar. I Maple finns ett stort
x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 11 juni 014
KOKBOKEN 3. Håkan Strömberg KTH STH
KOKBOKEN 3 Håkan Strömberg KTH STH Hösten 006 Håkan Strömberg KTH Syd Innehåll Derivatans definition.............................. 5 Uppgift................................. 5 Uppgift.................................
Mer om funktioner och grafik i Matlab
CTH/GU 2/22 Matematiska vetenskaper Inledning Mer om funktioner och grafik i Matlab Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och cosinus
x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)
Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning
Laboration 2, M0043M, HT14 Python
Laboration 2, M0043M, HT14 Python Laborationsuppgifter skall lämnas in senast 19 december 2014. Förberedelseuppgifter Läs igenom teoridelen. Kör teoridelens exempel. Teoridel 1 Att arbeta med symboliska
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),
Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan
Newtons metod. 1 Inledning. 2 Newtons metod. CTH/GU LABORATION 6 MVE /2013 Matematiska vetenskaper
CTH/GU LABORATION 6 MVE011-2012/2013 Matematiska vetenskaper 1 Inledning Newtons metod Vi skall fortsätta med att lösa ekvationer. I förra veckan såg vi på intervallhalveringsmetoden. Den är pålitlig men
Envariabelanalys 5B1147 MATLAB-laboration Derivator
Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan
log(6). 405 så mycket som möjligt. 675
MMA Matematisk grundkurs TEN Datum: 8 augusti Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan
vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning
5B1134 Matematik och modeller Lösningsförslag till tentamen den 12 januari 2005
KTH Matematik B Matematik modeller Lösningsförslag till tentamen den januari. a) I en triangel är två av sidlängderna 7 respektive 8 längdeneter vinkeln mellan dessa sidor är. Bestäm den tredje sidans
Repetitionsuppgifter
MVE5 H5 MATEMATIK Chalmers Repetitionsuppgifter Integraler och tillämpningar av integraler. (a) Beräkna (b) Avgör om den generaliserade integralen arctan(x) ( + x) dx. dx x x är konvergent eller divergent.
Planering för Matematik kurs E
Planering för Matematik kurs E Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs E Antal timmar: 60 (0 + 0) I nedanstående planeringsförslag tänker vi oss att E-kursen studeras på 60 klocktimmar.
4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.
TM-Matematik Mikael Forsberg 73 1 3 31 Pär Hemström 7 3 57 För ingenjörs och distansstudenter Envariabelanalys ma3a 1 8 Skrivtid: 9:-1:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att
Moment 10.1,10.2 Viktiga exempel Övningsuppgifter T10.1,T10.2,T10.3a,b,c,e,Ö10.1a-f,Ö10.3b-e
Moment 0.,0. Viktiga exempel 0.-0.5 Övningsuppgifter T0.,T0.,T0.3a,b,c,e,Ö0.a-f,Ö0.3b-e Integraler Definition. F(x) sägs vara primitiv funktion till f(x) på intervallet I om F (x) = f(x) Anmärkning. Det
Uppgiftshäfte Matteproppen
Uppgiftshäfte Matteproppen Emma ndersson 0 Joar Lind 0 Sara Lundsten 05 Malin Forsberg 06 UPPSL UNIVERSITET Innehåll Uppdelning av häfte Uppgifter Block. Bråkräkning........................ Uttryck..........................
Fri programvara i skolan datoralgebraprogrammet Maxima
Per Jönsson & Thomas Lingefjärd Fri programvara i skolan datoralgebraprogrammet Maxima I takt med att priserna sjunker utrustar allt fler skolor sina elever med små bärbara datorer. Detta innebär nya och
SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009
KTH Matematik SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 9 1. a) Visa att sin(6 ) = /. () b) En triangel har sidor av längd 5 och 7, och en vinkel är 6 grader. Bestäm
PRÖVNINGSANVISNINGAR
PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.
Chalmers tekniska högskola Datum: kl Telefonvakt: Carl Lundholm MVE475 Inledande Matematisk Analys
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 6825 kl. 8.3 2.3 Tentamen Telefonvakt: Carl Lundholm 5325 MVE475 Inledande Matematisk Analys Tentan rättas och bedöms anonymt. Skriv tentamenskoden
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Endast kommenterade svar!!! OBS: Inte alla delsteg är redovisade!
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examinator: Annemarie Luger Lösningsförslag Anals, problemlösning, 7.5 hp Matematik I den 5 februari 4 Endast kommenterade svar!!! OBS: Inte
för Tekniskt/Naturvetenskapligt Basår
Institutionen för Fysik och Astronomi Tentamen i Matematik D 21-8-16 för Tekniskt/Naturvetenskapligt Basår lärare : Filip Heijkenskjöld, Susanne Mirbt, Lars Nordström Skrivtid: 8.-12. Hjälpmedel: Miniräknare
Moment Viktiga exempel Övningsuppgifter. t 4 3t 2 +2 = 0. x 2 3x+2 = 0
Onsdag oktober kl :5, Sal 09, Moment Viktiga exempel Övningsuppgifter Variabelsubstitution Sats. Antag att funktionen f(x) har en primitiv funktion F(x) och att funktionen t(x) är deriverbar. Då gäller:
Meningslöst nonsens. December 14, 2014
December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett
Tentamen i Matematisk analys MVE045, Lösningsförslag
Tentamen i Matematisk analys MVE5 26-8-23 Lösningsförslag Kl. 8.3 2.3. Tillåtna hjälpmedel: Mathematics handbook for science and engineering (BE- TA) eller CRC Standard Mathematical Tables. Indexeringar
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd
Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
LMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen.
MMA Matematisk grundkurs TEN Datum: 4 juni Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan
Tentamen TMA044 Flervariabelanalys E2
Tentamen TMA044 Flervariabelanalys E2 205-0-05 kl. 4.00-8.00 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 0703 088 304 Hjälpmedel: bifogat formelblad,
3. Skissa minst en period av funktionskurvan 3y = 4 cos(8x/7). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 015-01-09
Preliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt
Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 17 januari 2013
MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA3 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 7 januari 03 Examinator: Karl Lundengård Skrivtid:
7. Ange och förklara definitionsmängden och värdemängden för funktionen f definierad enligt. f(x) = ln(x) 1.
MMA11 Matematisk grundkurs TEN Datum: 1 januari 01 Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och
KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24, 24-25 och 25-26 26-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C =
Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
NpMa3c ht 01 Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser
Chalmers tekniska högskola Datum: kl Telefonvakt: Milo Viviani MVE500, TKSAM-2
Chalmers tekniska högskola Datum: 7--8 kl. 8.. Tentamen Telefonvakt: Milo Viviani MVE5, TKSAM- Tentan rättas och bedöms anonymt. Skriv tentamenskoden tydligt på placeringlista och samtliga inlämnade papper.
5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005
KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd
SF1620 (5B1134) Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under tiden
KTH Matematik 1 SF162 (5B1134) Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under tiden 23-26 27-8-31 1 Geometri med trigonometri Övning 1.1 Rita upp triangeln ABC med A = (1,
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi
Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.
1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer
Uppgift 1-6. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans.
Del B Del C Provtid Hjälpmedel Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
ENDIMENSIONELL ANALYS A3/B kl INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. lim
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS A3/B2 26 3 7 kl. 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar.. Beräkna a) x+4 x 3 +4x dx.5)
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk
RIEMANNSUMMOR. Den bestämda integralen definieras med hjälp av Riemannsummor. Låt vara en begränsad funktion,, reella tal och. lim.
RIEMANNSUMMOR Låt vara en begränsad funktion,, reella tal och. Den bestämda integralen definieras med hjälp av ä ä, ; lim. Om funktionen har en elementär primitivfunktion då är insättningsformeln (Newton-
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen 015-01-1 DEL A 1. Låt f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
Kontrollskrivning KS1T
Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger
Texten är en omarbetning av en text skriven av Rikard Bögvad för kursen Matematik I (30 hp).
Introduktion Med hjälp av dator kan man utföra omfattande matematiska beräkningar, men också få datorn att producera lösningar på icke-triviala uppgifter. I det här momentet av kursen ska vi bekanta oss
3.3. Symboliska matematikprogram
3.3. Symboliska matematikprogram Vi skall nu övergå till att behandla de vanligaste matematikprogrammen, och börja med de symboliska. Av dessa kan både Mathematica och Maple användas på flere UNIX-datorer.
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Linjärisering och Newtons metod
CTH/GU STUDIO 5 TMV36a - 214/215 Matematiska vetenskaper 1 Inledning Linjärisering och Newtons metod Vi skall fortsätta med att lösa ekvationer. I förra studioövningen såg vi på intervallhalveringsmetoden.
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper
CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2
x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx
TM-Matematik Mikael Forsberg XXX-XXX DistansAnalys Envariabelanalys Distans ma034a ot-nummer 3 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
Lösningar till MVE016 Matematisk analys i en variabel för I yy 1 + y 2 = x.
Lösningar till MVE6 Matematisk analys i en variabel för I 7-4-. a Division ger yy + y x. Ekvationen är alltså separabel. Integration av vänstra ledet ger y + y dy ln + y Efter integration blir det alltså
MMA127 Differential och integralkalkyl II
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).
x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.
. Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig
Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A
Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm
NATIONELLT KURSPROV I MATEMATIK KURS E VÅREN Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1998. Anvisningar
Föreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018
Föreläsning 7 SF1625 Envariabelanalys 13 november 2018 SF1625 CDEPR1, CENMI1, CLGYM TEMI2 HT18 F7 1 / 23 Dagens teman: exponentialfunktioner och logaritmer standardgränsvärden tillväxtproblem SF1625 CDEPR1,
SAMMANFATTNING TATA41 ENVARIABELANALYS 1
SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3
Gruppuppgifter 1 MMA132, Numeriska metoder, distans
Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003