I situationer där det inte råder någon oklarhet om vilken funktion f som avses, nöjer vi oss med att skriva c n istället för c n Hf L.
|
|
- Max Ström
- för 7 år sedan
- Visningar:
Transkript
1 Fourierserien Fourierkoefficienter I avsnittet trigonometriska olynom har vi härlett en integralformel för koefficienterna i n c n  n W t när summan är lika med f HtL. Med integralformeln som utgångsunkt definieras nu begreen Fourierkoefficient, sektrum, sektraltransformen och Fourierserie. Betrakta ett ändligt intervall T samt en funktion f definierad å T. DEFINITION f :s Fourierkoefficienter c n Hf L, n œ Z definieras av c n Hf L = T f HtL T - n W t t, där W = T. I situationer där det inte råder någon oklarhet om vilken funktion f som avses, nöjer vi oss med att skriva c n istället för c n Hf L. c n Hf L är väldefinierad för alla funktioner f som gör att integralen existerar. I fortsättningen betraktar vi enbart f sådan att c n Hf L är väldefinierad. T.ex. är c n Hf L är väldefinierad om f är absolutintegrabel å T (dvs. Ÿ T f HtL t < ). Försök själv hitta ett f som gör c n Hf L odefinierad. Sektrum och sektraltransformen Antag att f reresenterar ljudet från någon ljudkälla. Storleken å Fourierkoefficienterna utgör då ett mått å tonstyrkorna hos de i ljudet ingående tonerna (grundton och övertoner). Funktionen n W # c n Hf L () beskriver därför ljudets frekvensinnehåll. Ifall f istället beskriver ett sammansatt ljus, utgör () en beskrivning av vilka färger som ingår (i ljuset) och hur starka de är. I fortsättningen kallar vi funktionen () för f :s sektrum eller sektrala bild oavsett om beskriver ljus, ljud eller något annat.
2 I fortsättningen kallar vi funktionen () för f :s sektrum eller sektrala bild oavsett om f beskriver ljus, ljud eller något annat. Och transformationen kallar vi för sektraltransformen. f # c n Hf L Från den signalteoretiska vokabulären kommer benämningarna tidsfunktionen för f och frekvensfunktion för f :s sektrum. Sektraltransformen avbildar alltså olika tidsfunktioner å deras resektive sektra. Fourierserien.nb f f :s sektrum Im Re 0 Eftersom integration är en lineär oeration är sektraltransformen detsamma. Således gäller c n Hl f + m gl l c n Hf L + m c n HgL Fourierserien Med hjäl av f :s sektrum, där f antas vara definierad å T, kan man bilda f :s s.k. Fourierserie c n  n W t, där W T = n Att bilda f :s Fourierserie motsvarar väsentligen att köra avbildningen f # c n baklänges, dvs. att återskaa f med hjäl av f :s sektrum. Den något försiktiga formuleringen kommer sig av att Fourierseriens
3 n något försiktiga formuleringen kommer sig av att Fourierseriens konvergens är ett delikat ämne. 3 Fourierserien.nb Notera att medan f bara behöver vara definierad å T, så blir Fourierserien en eriodisk funktion (med eriodlängd T ) definierad å hela R - om den konvergerar överallt. Och även om en Fourierserie inte är definierad å hela R.g.a. konvergensroblem, så är Fourierseriens artialsummor alltid definierade å hela R för varje funktion som har ett sektrum. Till sist, inget hindrar förstås att f från början är en eriodisk funktion med eriod T. Men även i detta fall så är det f :s uförande å intervallet T som bestämmer hur f :s Fourierserie kommer att se ut. Följande oulära notation f HtL ~ c n  n W t n används för att uttrycka att serien till höger om krumeluren "~" är Fourierserien för f, dvs. att seriens koefficienter är beräknade med hjäl av f :s värden. Observera däremot att notationen inte betyder att Fourierserien i högerledet konvergerar mot just f :s värden, eller ens konvergererar mot något överhuvudtaget. Se nedanför. EXEMPEL 5 Beräkna sektrum av cosh3 tl + sinh4 tl, t œ H-, L, samt resentera Fourierserien å exonentialform. Lösning Denna ugift är extremt lätt. Ty det givna uttrycket är redan en Fourierserie å trigonometrisk form, där alla Fourierkoefficienter utom två stycken är lika med 0. Låt oss med hjäl av Eulers formler omforma Fourierserien till exonentialform, som får blott fyra nollskilda termer. cosh3 tl + sinh4 tl 3  t + -3  t -  4  t +  -4  t Således är c -4 = - Â, c -3 =, c 3 =, c 4 =  övrigt. och c n = 0 för
4 övrigt. Fourierserien.nb 4 f f : s sektrum f : s Fourierserie Im Re EXEMPEL 6 Visa att sektrum av deltafunktionens restriktion till intervallet J-, N är lika med, samt undersök Fourierserien. Lösning Kalkylen är här mycket enkel. Således gäller c n HdL dhtl -Â n t t -Â n 0 - dhtl ~ H*L = + coshn tl n n > H * L a n = ReHc n L, b n = - ImHc n L d d : s sektrum HHHÂ nl L L t n=- Re - Den här Fourierserien har en enkel form, men ett komlicerat uförande. Fastän artialsummorna onekligen ser ut att närma sig något som liknar deltafunktionen (se högra bilden ovanför), så divergerar artialsummorna i varje unkt (vilket kan förklaras
5 5 Fourierserien.nb sig något som liknar deltafunktionen (se högra bilden ovanför), så divergerar artialsummorna i varje unkt (vilket kan förklaras med att termerna inte går mot noll med växande index). I heltalsunkterna divergerar de mot. I varje annan unkt divergerar de å ett helt annat sätt: De vibrerar mellan två ytterlighetsvärden! HHHÂ L L nl t = n= sinch995 tl sinch tl HHHÂ L L nl t = n= sinch997 tl sinch tl HHHÂ L L nl t = n= sinch999 tl sinch tl EXEMPEL 7 Bestäm sektrum av funktionen som är lika med t å
6 Fourierserien.nb 6 intervallet J-, N, samt undersök Fourierserien. Lösning c n = t -  n t t - =  t -  n t n -  -  n t n t - - =  t -  n t n - 0 =  - n 4 n c 0 Ÿ - t t   n 4 n =  H-Ln 4 n +  H-Ln 4 n =  H-Ln n Fourierserien blir således  H-L n n  n t H*L = - H-Ln n n¹ 0 n > 0 H * L a n = ReHc n L, b n = - ImHc n L sinhn tl I detta fall konvergerar artialsummorna i varje unkt. Visserligen går det inte med någon större fart (då seriens termer är av storleksordning ), men ändå. Vidare kan man konstatera n att i unkten har varje artialsumma värdet 0. Varför då? Det betyder att artialsummorna konvergerar mot 0 i unkten. Partialsummorna lägger sig således mitt emellan vänster- och högergränsvärdena f u J -N och f uj +N, om f u betecknar f :s - eriodiska utvidgning.
7 7 Fourierserien.nb eriodiska utvidgning. 0 H-L f f : s sektrum n sinhhh L nl tl - n= n Im Konvergensresultat Låt f vara den T - eriodiska utvidgningen av en funktion definierad å ett intervall T. Konvergenssats: Om f är kontinuerlig, så konvergerar f :s Fourierserie unktvis mot f HtL överallt. Dirichlets konvergenssats 837: Om f är styckvis kontinuerlig, så konvergerar f :s Fourierserie mot medelvärdet Hf Ht -L + f Ht +LL överallt. ANM. Med uttrycket "en funktion är styckvis kontinuerlig" menar vi att funktionen är kontinuerlig överallt utom möjligen i ändligt många unkter inom en eriod, och att de ensidiga gränsvärdena existerar ändligt i diskontinuitetsunkter. Kolmogorovs sats 96: Det finns f vars Fourierserie divergerar överallt fastän f :s integral över en eriod existerar ändligt. Carlesons sats 966: Om f är kontinuerlig, så konvergerar f :s Fourierserie mot f överallt utom möjligen å en s.k. nollmängd. Vill du läsa mer om Fourierseriers konvergens? Integralformler för a n, b n Vi har sett hur reella funktioners Fourierserier
8 kan omformas till c n  n W t n a 0 + Ha n coshn W tl + b n sinhn W tll n där sambanden mellan c n, c -n och a n, b n är Fourierserien.nb 8 c n = Ha n -  b n L, a n = ReHc n L, c -n = Ha n +  b n L b n = - ImHc n L Koefficienterna och a n, b n kan också beräknas direkt (dvs. utan att gå vägen över c n ). Man kan nämligen visa att (för reella f ) är a n = T f HtL coshn W tl t T b n = T f HtL sinhn W tl t T Härledningarna av ovanstående integralformler är inte svåra. LEDNING: a n = ReHc n L = T Ÿ T f HtL ReI - n W t tm, och b n = - ImHc n L = T Ÿ T f HtL ImI - n W t tm. Udda eller jämnt Antag (recis som ovanför) att vi betraktar Fourierserien till en reellvärd funktion. Om den eriodiska utvidgning av funktionen är jämn, så är Fourierserien en cosinusserie. För en udda utvidgning är Fourierserien en sinusserie. Försök själv visa att det är så. I bägge fallen kan koefficienterna beräknas med integraler över en halv eriod.
9 9 Fourierserien.nb Jämn utvidgning f HtL ~ a 0 + a n coshn W tl och a n 4 T T f HtL coshn W tl t 0 n () Udda utvidgning f HtL ~ b n sinhn W tl och b n 4 T T f HtL sinhn W tl t 0 n (3) Lägg särskilt märke till att Fourierseriens konstanta term i det udda fallet är lika med 0. () härleds nedanför, medan (3) lämnas som övning till läsaren. Härledning av (): Betrakta en jämn T -eriodisk utvidgning f. Vi ska visa att T 4 T Ÿ 0 f HtL coshn W tl t. Det är ingen inskränkning att antaga att T ligger symmetriskt runt origo. (Integralen av en eriodisk funktion över ett intervall vars längd är lika med eriodlängden är oberoende av intervallets lacering.) För ett jämnt f är rodukten f HtL sinhn W tl udda, eftersom sinus är udda. Och integralen av en udda funktion över ett symmetriskt intervall runt origo är noll. Det följer att T b n = f HtL sinhn W tl t = 0 T Ÿ - T vilket visar att f HtL ~ a 0 + n= a n coshn W tl. Vidare är
10 Vidare är T a k = T Ÿ - T f HtL coshk W tl t integrandd = 4 T T Ÿ 0 f HtL coshk W tl t. Fourierserien.nb 0 EXEMPEL 8 Beräkna sektrum och Fourierserien för den funktion å H-ê, êl som är lika med - å H-ê, 0L och lika med å H0, êl. Härled sedan med seriens hjäl 4 = Lösning Vi har här att göra med ett udda f. Därmed är Fourierserien en sinusserie. Låt oss beräkna sinuskoefficienterna direkt. b n 4 sinh n tl t 0 cosh n tl 4 - n 0 H - cosh nll n H - H-Ln L n 4 Således är b n = n, n udda, och därmed är 0, n jämn c n = - Â n, n udda 0, n jämn Det följer att 4 sinh H k + L tl f HtL ~ H k + L k 0 = 4 sinh tl + 4 sinh6 tl sinh0 tl sinh4 tl 7 +
11 Fourierserien.nb 7 4 Hsin HHH L H k+ll tll f f : s sektrum k=0 H k+l Im - - Nu återstår att härleda 4 = f :s Fourierserie uvisar viss släktska med ovanstående alternerande serie. Kunde vi bara få Fourierseriens termer att växla tecken, så skulle släktskaet bli ännu större. Få se, sinus växlar tecken då dess argumentet löer genom ê, 3 ê, 5 ê, 7 ê,. Det gäller således att välja t så att sinustermerna i 4 sinh tl + 4 sinh6 tl sinh0 tl sinh4 tl 7 +. får nämnda argument. För t = ê4 får vi 4 sinhêl + 4 sinh3 êl 4 sinh5 êl 4 sinh7 êl Voila!
12 Fourierserien.nb Av Dirichlets konvergenssats följer att Härav, f Hê4L = = EXEMPEL 9 Bestäm Fourierserien för funktionen som å H-, 0L är lika med, och å H0, L är lika med t. Beräkna sedan med dess hjäl Lösning På H-, 0L är f lika med, och å H0, L är f lika med t. Eftersom funktionen varken är jämn eller udda, kommer c n att bli ickereell. c n 0 - n t t + t - n t t - 0  n + H-Ln - n c 0 0 t + t t Fourierserien blir n¹ 0 H-L n - n +  n  n t H*L = n>0 H-L n - n coshn tl - n sinhn tl. H * L a n = ReHc n L, b n = - ImHc n L
13 3 Fourierserien.nb f f : s sektrum 5 n = H-L n - H L n + Â n HÂ nl t Im Re Till sist skall vi beräkna En titt å Fourierserien n>0 HH-L n - L coshn tl n - sinhn tl n visar att om vi evaluerar den i en unkt t där sinhn tl = 0 för alla n > 0, så får vi en serie med rätt storleksordning å termerna. Låt oss välja t = 0. Fourierseriens värde blir därvid H-L n - n n> ,3,5, n. Av Dirichlets konvergenssats följer att f H0 -L + f H0 +L = Medelvärdet i vänsterledet är lika med ê. Det följer att,3,5, n
14 Det följer att Fourierserien.nb 4 = 3 4 -,3,5, n 4 = 3 8 -,3,5, n,3,5, n 3
PROV I MATEMATIK Transformmetoder 1MA dec 2010
UPPSALA UNIVERSITET Matematiska institutionen Södergren, Salling PROV I MATEMATIK Transformmetoder MA0 dec 00 SKRIVTID: -9 HJÄLPMEDEL: Formelsamling (delas ut) och miniräknare. MOTIVERA alla lösningar
Läs merPROV I MATEMATIK Transformmetoder 1MA april 2011
UPPSALA UNIVERSITET Matematiska institutionen Salling (7-65753) PROV I MATEMATIK Transformmetoder MA34 8 april SKRIVTID: 8-3 HJÄLPMEDEL: Formelsamling (delas ut) och miniräknare. MOTIVERA alla lösningar
Läs merFourierserier: att bryta ner periodiska förlopp
Analys 36 En webbaserad analyskurs Funktionsutvecklingar Fourierserier: att bryta ner periodiska förlopp Anders Källén MatematikCentrum LTH anderskallen@gmail.com Fourierserier: att bryta ner periodiska
Läs merInstuderingsfrågor i Funktionsteori
Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du
Läs merLösningar till tentamen i Transformmetoder okt 2007
Lösningar till tentamen i Transformmetoder okt 7. Låt Y (s beteckna Laplacetransformen till funktionen y. Laplacetransformering av den givna ekvationen ger: varav följer att. (a För s > a är Y (s + s Y
Läs merFourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL
Fourierserie fortsättig Ortogoalitetsrelatioera och Parsevals formel Med hjälp av ortogoalitetsrelatioera Y Â m W t, Â W t ] =, m ¹, m = () där Xf, g\ = Ÿ T f HtL g HtL, där W ã p, ka ma bevisa följade
Läs mer0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.
Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.
Läs merEuler-Mac Laurins summationsformel och Bernoulliska polynom
46 Euler-Mac Laurins summationsformel och Bernoulliska polynom Lars Hörmander Lunds Universitet Datorer gör det möjligt att genomföra räkningar som tidigare varit otänkbara, exempelvis att beräkna summan
Läs merLösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I. Tisdagen den 7 januari 2014, kl
Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I Tisdagen den 7 januari 14, kl 8-13 Del 1 Modul 1 Befolkningen i en liten stad växer med en hastighet som är proportionell mot befolkningsmängden
Läs merInstitutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall
Läs merSerier. egentligen är ett gränsvärde, inte en summa: s n, där s n =
Serier Serier eller oändliga summor har flyktigt behandlats redan i tidigare kurser. Vi ska nu gå igenom teorin på ett lite mer systematiskt sätt. I många fall spelar det ingen roll om termerna a k är
Läs merApproximation av funktioner
Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner
Läs merPartiella differentialekvationer och randvärdesproblem Separabla PDE Klassiska ekvationer och randvärdesproblem
Partiella differentialekvationer och randvärdesroblem. 12.1. Searabla PDE 12.2. Klassiska ekvationer och randvärdesroblem. 12.3. Värmeledningsekvationen. 12.4. Vågekvationen. 12.5. alace ekvation. Variabelsearation.
Läs merPolynom över! Till varje polynom hör en funktion DEFINITION. Grafen till en polynomfunktion
Polynom över Under baskursen bekantade du dig med polynomen över de komplexa talen. Nedanstående material är till stora delar en repetition av detta stoff. DEFINITION Ett polynom över är ett uttryck av
Läs merLösningsförslag till Tentamen: Matematiska metoder för ekonomer
Matematiska Institutionen Tentamensskrivning STOKHOLMS UNIVERSITET kurskod: MM Eaminator: Åsa Ericsson 5-- Lösningsförslag till Tentamen: Matematiska metoder för ekonomer aril 5, kl 9:-: (a) Vi använder
Läs merKontinuitet och gränsvärden
Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika
Läs merLösningar till tentamen TEN1 i Envariabelanalys I (TNIU 22)
Krzysztof Marciniak, ITN Linköings universitet tfn 0-6 0 krzma@itn.liu.se Lösningar till tentamen TEN i Envariabelanalys I (TNIU ) för BI 0-04- kl. 08.00.00. a) Gränsvärdet är av ty 0 0 så enligt faktorsatsen
Läs merMer om Fourierserier. Fouriertransform LCB vt 2012
Mer om Fourierserier. Fouriertransform LCB vt 22. Exponentiella Fourierserier Vi ska i detta avsnitt se hur periodiska funktioner kan framställas i serieform med användning av den komplexa exponentialfunktionen.
Läs merModul 1 Mål och Sammanfattning
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation
Läs mer5. Förklara varför sannolikheten att en slumpvis vald lottorad har 7 rätt är x + x 2 innehåller termen 14x. Bestäm
VECKANS UPPGIFTER MENY FÖR HELA MOMENT 3 5B3 Amelia fr P och T ht 004 Uppgifter till Vecka 4. Förklara hur ett induktionsbevis fungerar.. Bevisa att 4 n är jämnt delbart med 3 för n =,, 3,... 3. Bevisa
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation
Läs merDatorövning 2. - Tag med lärobok och övningshäfte till övningen. - Fyll före övningenen i svaren på frågorna på sidan 5 i denna handledning.
Kontinuerliga system vt 2015 Datorövning 2 Inledning Syftet med denna datorövning är att du med hjälp av Maple skall få ökad förståelse av vissa begrepp presenterade i kapitel H. Exempelvis behandlas skalärprodukt,
Läs merInledande kurs i matematik, avsnitt P.4
Inledande kurs i matematik, avsnitt P.4 P.4. Bestäm definitionsmängd och värdemängd till funktionen f() = +. så ser vi att den har värdemängden [0, ). Eftersom funktionen G har utseendet någonting där
Läs merTrigonometriska polynom
Trigoometriska polyom Itroduktio Iga strägistrumet eller blåsistrumet ka producera estaka siustoer, blott lieära kombiatioer av dem, där de med lägsta frekvese kallas för grudtoe, och de övriga för övertoer.
Läs merOm konvergens av serier
Om konvergens av serier Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln diskuteras några av de grundläggande satserna som hjälper oss att avgöra om en serie
Läs merKap Inversfunktion, arcusfunktioner.
Kap 3. 3.5. Inversfunktion, arcusfunktioner. 30. (A) Förenkla uttrycken så långt som möjligt a. ln 8 ln + ln 8 ln + ln b. ln 3 log 0 3 log 0 e + 3 ln 3 log 3 e 30. (A) Lös ekvationerna a. e x = e x b.
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Läs merSAMMANFATTNING TATA41 ENVARIABELANALYS 1
SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3
Läs merFunktionsserier och potensserier. som gränsvärdet av partialsummorna s n (x) =
Funktionsserier och potensserier Viktiga exempel på funktionsföljder är funktionsserier. Summan s(x) av f k (x) definieras som gränsvärdet av partialsummorna s n (x) = n f k (x) för varje fixt x I. Serien
Läs merMVE465. Innehållsförteckning
Lösningar på övningsuppgifter Detta dokument innehåller mina renskrivna lösningar på övningsuppgifter i kursen Linjär algebra och analys fortsättning (). Jag kan inte lova att samtliga lösningar är välformulerade
Läs mer+, C = e4. y = 3 4 e4 e -2 x +
ösningsförslag till tentamensskrivning i Diff & Trans I, 5B och Diff & Trans I för V, 5B Fredagen den augusti 3, kl -9 Hjälmedel: BETA, Mathematics Handbook Redovisa lösningarna å ett sådant sätt att beräkningar
Läs merTATA42: Föreläsning 10 Serier ( generaliserade summor )
TATA42: Föreläsning 0 Serier ( generaliserade summor ) Johan Thim 5 maj 205 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal
Läs merTATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar
TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 9 januari 27 Entydighet Om vi har ett polynom som approximerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Läs mergränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n
TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 5 mars 208 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal
Läs merLåt vara en reell funktion av en reell variabel med definitionsmängden som är symmetrisk i origo.
UDDA FUNKTIONER OCH DUBBELINTEGRALER. Från en variabelanalys vet vi att integral över ett symetrisk intervall, av en udda funktion är lika med 0. 0 om är udda. T ex 0 Här upprepar vi def. av udda ( och
Läs merRita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,
Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan
Läs merANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29
Numeriska serier Andreas Rejbrand, april 2014 1/29 1 Inledning Författarens erfarenhet säger att momentet med numeriska serier är ganska svårt för många studenter i inledande matematikkurser på högskolenivå.
Läs merTATA42: Föreläsning 5 Serier ( generaliserade summor )
TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 0 januari 207 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje
Läs merTATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar
TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 24 mars 29 Entydighet Om vi har ett polynom som approimerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna i
Läs meruhx, 0L f HxL, u t Hx, 0L ghxl, 0 < x < a
Vågekvaionen Vågekvaionen beskriver vågors ubredning vare sig de gäller ljudvågor, elekromagneiska vågor eller vibraioner i en sräng. Lå oss för enkelhes skull änka oss en horisonell uppspänd sräng som
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Läs merKTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar
Läs merHarmoniska funktioner
Harmoniska funktioner Lars Hörmander vt 98 Definitioner och grundläggande egenskaper Enligt definitionen är en analytisk funktion f i Ω C en C lösning till Cauchy-Riemanns differentialekvation f z =. Enligt
Läs merTMV225 Kapitel 3. Övning 3.1
TMV225 Kapitel 3 Övning 3. Bestäm gränsvärdet och bestäm δ som funktion av ε. a) lim 3 [ 2 3 + 5] Vi har givet att 3, och då funktionen är kontinuerlig får vi gränsvärdet ȳ 5 genom att stoppa in. Per definition
Läs merLösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.
Läs merMöbiusavbildningar. 1 Inledning. Låt a, b, c och d vara komplexa tal och antag att ad bc = 0. Då kallas. Definition 1.
Möbiusavbildningar Lars-Åke Lindahl 1 Inledning Definition 11 avbildningen en Möbiusavbildning Låt a, b, c och d vara komplexa tal och antag att ad bc = 0 Då kallas Tz = az + b cz + d (Om ad bc = 0 är
Läs mer11 Dubbelintegraler: itererad integration och variabelsubstitution
Nr, april -5, Amelia ubbelintegraler: itererad integration och variabelsubstitution. Itererad integration tterligare eempel Eempel (97k) Beräkna ( ) och ( ). ( 8) dd om begränsas av, 5 3.75.5.5.5.5 3.75
Läs merTATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer
TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa
Läs merk=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) =
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Funktionsteori 5 9 kl 4 9 Hjälpmedel: Bifogat formelblad. Lösningarna skall vara försedda med ordentliga motiveringar. Skriv fullständiga meningar och
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:
Läs merTATA 57/TATA80 18 augusti Lösningar 1) Lösning 1: Z-transformering av ekvationen (med hänsyn tagen till begynnelsevillkoren) ger.
TATA 57/TATA8 8 augusti 26. Lösningar ) Lösning : Z-transformering av ekvationen (med hänsyn tagen till begynnelsevillkoren) ger [ z + z ] Y (z) = z + z z 3 z 2 som i sin tur ger (efter ommöblering) Av
Läs merSF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att
SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w
Läs merLMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
Läs merAvsnitt 3, introduktion.
KTHs Sommarmatematik Introduktion 3:1 3:1 Avsnitt 3, introduktion. Teckenstudium Här tränas teckenstudium av polynom och rationella funktioner (som är kvoter av polynom). Metoden går ut på att man faktoriserar
Läs mer= x 2 - x, x (0) = x dt. dx dt = 1. x 0 - (x 0-1)e t och för t 0 = ln x 0
Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B och Diff & Trans I, LV, 5B Tisdagen den 3 januari 4, kl 4-9 Hjälmedel: BETA, Mathematics Handbook Redovisa lösningarna å ett sådant sätt att
Läs mer5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004
KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje
Läs mer29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana
Läs merBEGREPPSMÄSSIGA PROBLEM
BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med
Läs merFunktionsteori Datorlaboration 2
Funktionsteori Datorlaboration 2 Funktionsteori vt1 2012 Fourierserier Inledning Största delen av denna laboration handlar om Fourierserier, men vi startar med seriesummation. Hela laborationen, utom uppgift
Läs mer1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +
Läs merInstitutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T.
Institutionen för matematik KTH Tentamensskrivning, 3-5-6, kl. 14. 19.. 5B1/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan för betyg
Läs mer+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n
Repetition, Matematik I.. Bestäm koefficienten vid 2 i utvecklingen av ( + 2 2 ) 5. 2. Bestäm koefficienten vid 2 i utvecklingen av ( + ) n för n =, 2,,.. Beräkna a 5 5a 2b + 5a 2b 2 5a 2 b + 5a 6b 2b
Läs merLösningsskisser för TATA
Lösningsskisser för TATA4 7-3-7. Funktionen f() 5 arctan + 4 arctan(/), med den föreskrivna definitionsmängden D f { R : > }, ar derivatan f () 5 + () + 4 ( / ) + (/) + 4 4 + + (4 + 6 ) ( + )( + 4 ) Detta
Läs merTisdag v. 2. Speglingar, translationer och skalningar
1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger
Läs merExempel. Komplexkonjugerade rotpar
TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck
Läs merMaclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning
Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
Läs merAllmänna Tredjegradsekvationen - version 1.4.0
Allmänna Tredjegradsekvationen - version 1.4.0 Lars Johansson 0 april 017 Vi vet hur man med rotutdragning löser en andragradsekvation med reella koecienter: x + px + 0 1) Men hur gör man för att göra
Läs merKRAMERS-KRONIGS DISPERSIONSRELATIONER
Bo E. Sernelius Kramers-Kronigs Dispersionsrelationer 33 KRAMERS-KRONIGS DISPERSIONSRELATIONER I detta kapitel diskuterar vi vad som händer om en pol finns på integrationskonturen och vi härleder Kramers-Kronigs
Läs merLäsanvisningar till kapitel 4
Kapitel 4 Läsanvisningar till kapitel 4 Taylors sats samt Cauchyuppskattningar och några konsekvenser Taylorserier är något ni är bekannt med sedan era reellanalyskurser. Höjdpunkten i detta avsnitt säger
Läs merRita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),
Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan
Läs merKapitel 4. Funktioner. 4.1 Definitioner
Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet
Läs merDatorlaboration 2. 1 Serier (kan göras från mitten av läsvecka 4)
Datorlaboration 2 ht 2016 Funktionsteori, vt 2016 Inledning Denna laboration handlar om serier och likformig konvergens. Hela laborationen, utom uppgift 3.9 där Maple är att föredra, bygger på Matlab.
Läs merhar ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)
Läs mer(4 2) vilket ger t f. dy och X = 1 =
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I. Torsdagen den 3 maj, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och
Läs mer1 dy. vilken kan skrivas (y + 3)(y 3) dx =1. Partialbråksuppdelning ger y y 3
Lösningsförslag till tentamensskrivning i Differentialekvationer och transformer III, SF137 Tisdagen den 11 januari 211, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant
Läs merMälardalens högskola Akademin för utbildning, kultur och kommunikation
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.06.5 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:
Läs merLösningsförslag till Tentamen: Matematiska metoder för ekonomer
Matematiska Institutionen Tentamensskrivning STOCKHOLMS UNIVERSITET kurskod: MM Eaminator: Åsa Ericsson 4-5-7 Lösningsförslag till Tentamen: Matematiska metoder för ekonomer 7 maj 4, kl. 9:-4:. (a) Integralen
Läs merMATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Christo er Standar, Tel.:
MATEMATIK Datum: 0-0- Tid: förmiddag Chalmers Hjälmedel: inga A.Heintz Telefonvakt: Christo er Standar, Tel.: 070-0880 Lösningar till tenta i TMV06/TMV0 Analys och linjär algebra K/Bt/Kf, del A.. Sats.
Läs mer1.1 Den komplexa exponentialfunktionen
TATM79: Föreläsning 8 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim augusti 07 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa
Läs merFör att uttrycka den primitiva funktionen i den ursprungliga variabeln sätter vi in θ = arcsin 2x. Lektion 14, Envariabelanalys den 23 november 1999
Lektion 4, Envariabelanalys den november 999 6.. Beräkna d 4. Det första vi observerar i integralen är uttrycket i nämnaren, 4. När ett uttryck av den här typen förekommer i en rationell integrand kan
Läs merP03. (A) Visa, att om en aritmetisk serie med differensen d har a som första och b som sista term, så är seriens summa b + a 2.
Kap P. P0. (A) Rita följande kurvor a. = + = c. = [ + ], där [a] betecknar heltalsdelen av talet a d. sgn( ), där sgn(a) betecknar tecknet av talet a. P0. (B) För vilka reella gäller + + + 4? P0. (A) Visa,
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder Tentamen ENVARIABELANALYS M 204-2-08 SVAR OCH ANVISNINGAR UPPGIFTER. e 3x2 lim = e x2 ( 3x 2 +...) = lim ( x 2 +...) = lim
Läs merP(X nk 1 = j k 1,..., X n0 = j 0 ) = j 1, X n0 = j 0 ) P(X n0 = j 0 ) = etc... P(X n0 = j 0 ) ... P(X n 1
Kaitel 1 Mer Markovkedjor Med att secificera en Markovkedja menar vi att man bestämmer övergångsmatrisen P. Detta säger ju allt om dynamiken för rocessen. Om vi dessutom vet hur kedjan startar, dvs startfördelningen
Läs merLösningar till tentamen TEN1 i Envariabelanalys I (TNIU 22)
Krzysztof Marciniak, ITN Linköings universitet tfn 0-36 33 0 krzma@itn.liu.se Lösningar till tentamen TEN i Envariabelanalys I (TNIU ) för BI 0--4 kl. 08.00 3.00. Enligt den geometriska betydelsen av derivatan
Läs mer1 Konvexa optimeringsproblem grundläggande egenskaper
Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska
Läs merKvalificeringstävling den 30 september 2008
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre
Läs merRepetitionsfrågor i Flervariabelanalys, Ht 2009
Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.
Läs merKTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att
Läs merBASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson
Matematikcentrum Matematik BASPROBLEM I ENDIMENSIONELL ANALYS Jan Gustavsson. Algebraiska förenklingar.. Reella andragradsekvationer.. Enkla rotekvationer - eventuellt med falsk rot.. Enkla absolutbeloppsproblem.
Läs merTentamensskrivning i Differentialekvationer I, SF1633(5B1206).
Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
Läs merMVE500, TKSAM Avgör om talserierna är konvergenta eller divergenta (fullständig motivering krävs). (6p) 2 n. n n (a) n 2.
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 07-08-4 kl. 4.00 8.00 Tentamen MVE500, TKSAM- Telefonvakt: Anders Hildeman 03 77 535 Tentan rättas och bedöms anonymt. Skriv tentamenskoden
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 10 hp STS, X 010-10-7 Genomgånget på föreläsningarna 11-15. Föreläsning 11, 4/11 010: Här kommer vi in i kapitel 4, som handlar om
Läs merSubtraktion. Räkneregler
Matriser En matris är en rektangulär tabell av tal, 1 3 17 4 3 2 14 4 0 6 100 2 Om matrisen har m rader och n kolumner så säger vi att matrisen har storlek m n Index Vi indexerar elementen i matrisen genom
Läs meren primitiv funktion till 3x + 1. Vi får Integralen blir
Avsnitt, Integraler 6b Beräkna integralen 4 + 3 Integranden är en rationell funktion som vi kan skriva som 4 + 3. 4 3 + 3 + 3. Vi delar upp integralen i två delar och integrerar delarna var för sig, 4
Läs merTentamensuppgifter, Matematik 1 α
Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,
Läs merLösningsförslag TATA
Lösningsförslag TATA 0-0-0 (a) Summan är geometrisk med kvoten q =/ och termer Alltså X0 k= k = X0 k+ k= k = (b) Från definitionen av binomialkoe n n = = n där endast n =är en lösning t (c) Låt z = a +
Läs merLäsanvisningar till kapitel
Läsanvisningar till kapitel 5. 5.8 5. Följder och serier Detta avsnitt är repetition, och jag hoppas att ni snart kan snappa upp det som står däri. Speciellt viktigt är det att komma ihåg vad en geometrisk
Läs mer