Tentamen i mekanik TFYA16

Storlek: px
Starta visningen från sidan:

Download "Tentamen i mekanik TFYA16"

Transkript

1 TEKNISKA HÖGSKOLAN I LINKÖPING Intitutionen för Fyik, Kei och Biologi Galia Pozina Tentaen i ekanik TFYA6 Tillåtna Hjälpedel: Phyic Handbook eller Tefya utan egna anteckningar, aprograerad räknedoa enligt IFM: regler. Forelalingen från heida utan egna anteckningar. Ordlita från heidan. Tentaen ofattar ex proble o ger axialt 4 poäng tyck. Följande betygkala gäller preliinärt: Betyg 3: -3,5 poäng Betyg 4: 4-8,5 poäng Betyg 5: 9-4 poäng Aniningar: Lö inte er än uppgift på aa blad! Skri enbart på ena idan a bladet! Skri AID kod på arje blad! Införda beteckningar kall definiera, gärna ed hjälp a figur, och upptällda ekationer otiera. Alla teg i löningarna åte kunna följa. Lö uppgifterna analytikt fört och toppa in eentuella nuerika ärden på lutet.

2 Uppgift En idrottan katar en boll ot en ägg ed tarthatighet 5 / och inkel θ4 (e bilden. Väggen ligger på atåndet från idrottannen. (a Betä hur högt bollen koer att träffa äggen. ( p. (b Betä horiontella och ertikala koponenter a hatigheten i punkten där bollen träffar äggen. ( p O Löningförlag: (a Vi har för en projektil: x ox t coθ t x t coθ For y-koordinaten öer läppunkten O: y oy t in 4 gt co4 9.8 inθ t gt 5co 4 inθ x coθ g öer punkten O. x co θ x y (b Horiontella och ertikala koponenter a hatigheten: coθ 5co 4 9. / inθ gt inθ gx 9.8 5in / coθ 5co 4 Uppgift En ålare klättrar uppför en tege. I tegen ena ändpunkt B itter ett litet hjul o kan rotera friktionfritt. Friktionkoefficienten i kontaktytan A ge a µ.. Stegen har längden l 4. och aan 5 kg, och de nedre ändpunkt befinner ig en träcka a. från en ertikal ägg. Målaren har aan M kg och han acentru ligger rakt oanför det trappteg på ilket han tår. Betä den träckan o ålaren kan klättra uppför tegen utan att tegen börjar glida ot arken. (4p

3 Löningförlag: Balanerade krafter och ridoent: F net, x µ N A N B ( Fnet, y N A Mg g ( l τ net, z N B l coθ Mg inθ g inθ (3 ( i ( ger: µ ( M g N B 3

4 Sätt in i (3: l µ ( M gl coθ Mg inθ g inθ Lö ut : µ ( M gl coθ l Mg inθ M ( M lh l µ Ma M. *5*8 3 5* * * Sar 3.5M. Uppgift 3 En partikel ed aan läpp från ila från A och glider utan friktion läng en cirkulär bana ed radien R. Vid banan lut B träffar den ett block ed aan M och fatnar i detta. Den kinetika friktionkoefficienten ellan blocket och underlaget är µ. Beräkna den träcka S o blocket ed partikeln glider på underlaget innan det tannar. (4 p. A R B Löningförlag: S För partikeln beara energin ellan A och B: gr gr Röreleängd beara efter töten: ( M gr M M 4

5 Arbete - kinetik energi teoreet för yte a partikeln och blocket: K W Friktionkraften utför arbetet: W f µ N µ ( M gs M K K gr ( M S µ g µ g µ ( M gs R µ ( M Uppgift 4 En kula ed aa M lägg på ett lutande plan ed inkeln φ. Betä förhållandet ellan tiden för att röra ig en i träcka L o friktionen är förubar (då rör ig kulan o en punktaa utan rotation och tiden för att röra ig aa träcka o friktionen är å tor att kulan rullar utan att glida. Kulan kan e o ett hoogent klot ed radien R (4 p. φ Löningförlag: x φ För en partikel o rör ig utan friktion Newton II lag: x : Mg inφ Ma a g inφ För en kontant acceleration kan i anända den här ekationen för att betäa tiden: 5

6 at l t l t g inφ { } at g inφt (* För ett rullande klott Newton II lag för acentru: x : Mg inφ f Ma co ( Newton II lag för rotation: τ Iα fr Iα Iα Iaco f ( R R Så från ( och ( kan i betäa accelerationen för acentru: Iaco Mg inφ Ma co R Mg inφ Mg inφ 5g inφ aco I MR I 5 M M M 7 R 5 För acentru a klottet kan i betäa tiden t k : acotk 5g inφtk l 4 t k 4l 5g inφ Från (* och (** får i aret: t tk l / g inφ 4l 5g inφ 5 7 (** Uppgift 5 Tå ikter ed aa 3. kg och 5. kg hänger öer en alö tria enligt figur. Vikten hänger i tartögonblicket L4. oanför arken. Vilken axial höjd H når ikten? (OBS! Maa fortätter röra ig när aa når arken. (4 p. 6

7 7 Löningförlag: Syteet börjar röra på ig ed accelerationen a, o är aa för alla lådor (lådorna rör ig ed aa hatighet, o inte är kontant. Vi kan anända bearing a ekanik energi (E i E f för yteet då aor och rörde ig träckan L (innan töten ed arken för att betäa hatigheten: ( gl gl gl U U K K U U K K f f f f i i i i Efter töten beara ekanika energin för aan : ( ( ( L gl g h gh 5. 5 (3 34 (5 4 ( ( L L h L H Uppgift 6 En cylindrik tank ed en tor diaeter och djupet.3 är fylld ed atten (e figur. Ur ett hål ed tärnittarean 6.5 c i botten på tanken rinner det ut atten. Antag att attenytan i tanken är ycket törre än hålet tärnittarea. Ur detta antagande, gör läpliga approxiationer för att löa talet. Med ilken flödehatighet i 3 / (olyflödet flödar attnet ut (p och id ilket atånd L från botten a tanken är arean på attentrålen hälften a ad hålet är (p?

8 Löningförlag: (a Anänd Bernoulli ekation: p ρ ρgh p ρ ρ gh, h är höjden på attnet i tanken, p är trycket id ytan och är hatigheten på attnet; h är höjden där hålet finn, p är trycket id hålet, och är hatigheten på attnet id hålet. ρ är attnet denitet. Eftero ytan på tanken är ycket törre än ytan på hålet å är >>, d i kan förua. Bernoulli ekation blir då: ρgh ρ ρgh och ( ( ( g h h Flödehatigheten är: A (6.5 4 ( / (b Vattnet faller fritt och i ill eta hur långt det har fallit till arean på trålen har halerat. Hatigheten på attnet betä ur kontinuitetekationen: A A 3 3, där A3 A och 3 är attenhatigheten där arean på flödet är hälften a hålet area. Detta ger: 3 (A /A /. Eftero trycket är kontant kan i kria Bernoulli ekation o, Vi får: ρ ρgh ρ ρ gh. 3 3 L h ( 4.84 (.4 3 h3.9. g 9.8 ( Sar: Flödehatigheten är / och atåndet L.9 8

Tentamen i mekanik TFYA kl. 8-13

Tentamen i mekanik TFYA kl. 8-13 TEKNISK HÖGSKOLN I LINKÖPING Institutionen för Fysik, Kei och Biologi Galia Pozina Tentaen i ekanik TFY6 4-- kl. 8- Tillåtna Hjälpedel: Physics Handbook eller Tefya utan egna anteckningar, aprograerad

Läs mer

Tentamen i mekanik TFYA kl

Tentamen i mekanik TFYA kl TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen ör Fysik, Kemi och Biologi Galia Pozina Tentamen i mekanik TFYA16 014-04- kl. 14-19 Tillåtna Hjälpmedel: Physics Handbook eller Teyma utan egna anteckningar,

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen ör Fysik, Kei och Biologi Galia Pozina Tentaen i ekanik TFYA16 Tillåtna Hjälpedel: Physics Handbook utan egna anteckningar, aprograerad räknedosa enligt IFM:s

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNISK HÖGSKON I INKÖPING Institutionen ör Fysi, Kei och iologi Galia Pozina Tentaen i eani TFY6 Tillåtna Hjälpedel: Physics Handboo utan egna antecningar, avprograerad ränedosa enligt IFM:s regler. Forelsalingen

Läs mer

Tentamen i mekanik TFYA kl

Tentamen i mekanik TFYA kl TEKISKA ÖGSKOA I IKÖPIG Institutionen för ysi, Kei och Biologi Galia Pozina Tentaen i eani TYA6 -- l. 4-9 Tillåtna jälpedel: Physics andboo eller Tefya utan egna antecningar, avprograerad ränedosa enligt

Läs mer

PTG 2015 Övning 5. Problem 1

PTG 2015 Övning 5. Problem 1 PTG 05 Övning 5 Problem En tvättvamp om tillverkat av ett polymermaterial med deniteten ρ p = 800 kg/m 3 har deniteten ρ p = 640 kg/m 3, då poroiteten (öppna ytan) är 0 %. Svampenärenkubmedmåtten0cm 0cm

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNSKA HÖGSKOLAN LNKÖPNG nsttutonen ör Fysk, Kem och Bolog Gala Pozna Tentamen mekank TFYA6 Tllåtna Hjälpmedel: Physcs Handbook utan egna antecknngar, aprogrammerad räknedosa enlgt F:s regler. Formelsamlngen

Läs mer

Tentamen i Mekanik för D, TFYY68

Tentamen i Mekanik för D, TFYY68 TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Carl Hemmingsson/Magnus Johansson Tentamen i Mekanik för D, TFYY68 Fredag 2018-08-23 kl. 8.00-13.00 Tillåtna Hjälpmedel: Physics

Läs mer

SG1140, Mekanik del II, för P2 och CL3MAFY. Omtentamen

SG1140, Mekanik del II, för P2 och CL3MAFY. Omtentamen Otentaen 110610 Lcka till! Tillåtna hjälpedel är penna och suddgui. Rita tdliga figurer, skriv grundekvationer och glö inte att sätta ut vektorstreck. Definiera införda beteckningar och otivera uppställda

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid:

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid: Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 16-6- Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

SG1140, Mekanik del II, för P2 och CL3MAFY

SG1140, Mekanik del II, för P2 och CL3MAFY Tentaen 101218 Lcka till! Tillåtna hjälpedel är penna och suddgui. Rita tdliga figurer, skriv grundekvationer och glö inte att sätta ut vektorstreck. Definiera införda beteckningar och otivera uppställda

Läs mer

Tentamen i Mekanik för D, TFYA93/TFYY68

Tentamen i Mekanik för D, TFYA93/TFYY68 TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Magnus Johansson Tentamen i Mekanik för D, TFYA93/TFYY68 Måndag 019-01-14 kl. 14.00-19.00 Tillåtna Hjälpmedel: Physics Handbook

Läs mer

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning). STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 006-08-8 Tentaen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen Ett glatt hoogent klot ed assan vilar ot två plana, hårda och glatta

Läs mer

Fluidparametrar för luft (1 atm) vid filmtemperaturen (75+15)/2 C är (Tab. A-15) ANALYS. Reynolds tal

Fluidparametrar för luft (1 atm) vid filmtemperaturen (75+15)/2 C är (Tab. A-15) ANALYS. Reynolds tal RÖ probe tentaen 0-01-15 En cyindrik vattentank är utatt för ett kontant uftföde ed teperaturen 15º och hatigheten / vinkerät ot de anteyta. Tanken diaeter är 0,5 och de ängd är 1. O vattenteperaturen

Läs mer

.4-6, 8, , 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse

.4-6, 8, , 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse .4-6, 8, 12.5-6, 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse Exempel på roterande koordinatsystem planpolära eller cylindriska koordinater Storhet Beteckning Enhet Fysikalisk

Läs mer

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen 007-08-30 Tentaen i Mekanik SG1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen En hoogen stång ed assan är fäst i ena änden i en fritt vridbar led.

Läs mer

Uppgifter på värme och elektricitet Fysik 1-15, höst -09

Uppgifter på värme och elektricitet Fysik 1-15, höst -09 Uppgifter på äre o eektriitet Fyik 1-15, öt -09 1. n auiniukopp ar aan 10 g o teperaturen. I koppen ä 150 art atten ed teperaturen 85. Vad koer attnet teperatur att i id jäikt ed koppen? Borte från oginingen

Läs mer

Tentamen i Mekanik I del 1 Statik och partikeldynamik

Tentamen i Mekanik I del 1 Statik och partikeldynamik Tentaen i Mekanik I del Statik och partikeldynaik TMME7 0-0-, kl 4.00-9.00 Tentaenskod: TEN Tentasal: TER, TER, TERC, TERD Eainator: Peter Schidt Tentajour: Peter Schidt, Tel. 8 7 43, (Besöker salarna

Läs mer

Stelkroppsmekanik partiklar med fixa positioner relativt varandra

Stelkroppsmekanik partiklar med fixa positioner relativt varandra Stelkroppsmekanik partiklar med fixa positioner relativt varandra Rörelse relativt mass centrum Allmänt partikelsystem Stel kropp translation + rotation (cirkelrörelse) För att kunna beskriva och förstå

Läs mer

Tentamen i Mekanik - partikeldynamik

Tentamen i Mekanik - partikeldynamik Tentaen i Mekanik - partikeldynaik TMME08 011-01-14, kl 8.00-1.00 Tentaenskod: TEN1 Tentasal: Exainator: Peter Schidt Tentajour: Peter Schidt, Tel. 8 7 43, (Besöker salarna ca 9.00 och 11.00) Kursadinistratör:

Läs mer

45 o. Mekanik mk, SG1102, Lösningar till problemtentamen, KTH Mekanik

45 o. Mekanik mk, SG1102, Lösningar till problemtentamen, KTH Mekanik KTH Meani 2013 05 23 Meani, SG1102, Lösningar till probletentaen, 2013 05 23 Uppgift 1: Längre slag i golf påeras raftigt a luften. För ortare chippar är däreot luftotståndet försubart. En golfspelare

Läs mer

Möjliga lösningar till tentamen , TFYY97

Möjliga lösningar till tentamen , TFYY97 Tal Se kurslitteraturen. Möjliga lösningar till tentamen 069, TFYY97 Tal Det finns oändligt många lösningar till detta tal. En möjlig lösning skulle vara följand. Börja med att titta i -led. Masscentrum

Läs mer

Ordinarie tentamen i Mekanik 2 (FFM521)

Ordinarie tentamen i Mekanik 2 (FFM521) Ordinarie tentamen i Mekanik 2 (FFM521) Tid och plats: Fredagen den 1 juni 2018 klockan 08.30-12.30 Johanneberg. Hjälpmedel: Matte Beta och miniräknare. Examinator: Stellan Östlund Jour: Stellan Östlund,

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi

Läs mer

Massa, densitet och hastighet

Massa, densitet och hastighet Detta är en något omarbetad verion av Studiehandledningen om använde i tryckta kuren på SSVN. Sidhänviningar hänför ig till Quanta A 000, ISBN 91-7-60500-0 Där det har varit möjligt har motvarande aker

Läs mer

TFYA16/TEN2. Tentamen Mekanik. 12 januari :00 13:00. Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa ng.

TFYA16/TEN2. Tentamen Mekanik. 12 januari :00 13:00. Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa ng. Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Tentamen Mekanik 12 januari 2015 8:00 13:00 Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Löningförlag Fredag 8 juni 8 8:-3: SF74 Flervariabelanaly Inga hjälpmedel är tillåtna Ma: 4 poäng (4 poäng Rita följande mängder i R : (a A {(, y R ma(, y } (b B {(, y R + y 4 4 4y y } (c C {(,

Läs mer

Lösningar till problemtentamen

Lösningar till problemtentamen KTH Mekanik 2007 05 09 Mekanik bk och I, 5C03-30, för I och BD, 2007 05 09, kl 08.00-2.00 Lösningar till probletentaen Uppgift : En partikel i A ed assa hänger i två lika långa trådar fästa i punkterna

Läs mer

Tentamen Mekanik F del 2 (FFM521 och 520)

Tentamen Mekanik F del 2 (FFM521 och 520) Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 1. Systemets masscentrum G ligger hela tiden vid axeln. Kraftekvationen för hela systemet: F = ma

LEDNINGAR TILL PROBLEM I KAPITEL 1. Systemets masscentrum G ligger hela tiden vid axeln. Kraftekvationen för hela systemet: F = ma LEDNINAR TILL PROBLEM I KAPITEL Obs! Till en fullstänig lösning kräs en figur! LP. Systeets asscentru ligger hela tien i axeln. Kraftekationen för hela systeet: F = a P = M+ x LP. Anän efinitionen a kinetisk

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 170418 TFYA16 1 TFYA16: Tenta 170418 Svar och anvisningar Uppgift 1 a) Vi är intresserade av största värdet på funktionen x(t). Läget fås genom att integrera hastigheten, med bivillkoret att x(0) = 0.

Läs mer

Bestäm den sida som är markerad med x.

Bestäm den sida som är markerad med x. 7 trigonometri Trigonometri handlar om sidor och inklar i trianglar. Ordet kommer från grekiskans trigonon (tre inklar) och métron (mått). Trigonometri har anänts under de senaste 2000 åren inom astronomi,

Läs mer

Tentamensskrivning i Mekanik - Dynamik, för M.

Tentamensskrivning i Mekanik - Dynamik, för M. Mekanik, LTH Tentamensskrivning i Mekanik - Dynamik, för M. Fredagen den 20 decemer 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Skrivningen estår av 5 uppgifter. Kontrollera att alla uppgifterna

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket

Läs mer

Tentamen i Mekanik - Partikeldynamik TMME08

Tentamen i Mekanik - Partikeldynamik TMME08 Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

1. För en partikel som utför en harmonisk svängningsrörelse gäller att dess. acceleration a beror av dess läge x enligt diagrammet nedan.

1. För en partikel som utför en harmonisk svängningsrörelse gäller att dess. acceleration a beror av dess läge x enligt diagrammet nedan. 1 Uniersitetet i Linköping Institutionen för Fysik och Mätteknik Arno Platau Lösningsförslag Tentaen för "BFL 110, Tekniskt Basår, Fysik el 3" Tisagen en 27 Maj 2003, kl. 8:00-12:00 1. För en partikel

Läs mer

Miniräknare, passare, gradskiva och linjal. 50 poäng

Miniräknare, passare, gradskiva och linjal. 50 poäng Textil mek. & hållfasthetslära romoment: Tentamen i textil mekanik & hållfasthetslära Ladokkod: 5MH Tentamen ges för: TI3 TentamensKod: 7,5 högskolepoäng Tentamensdatum: 6--5 Tid: 9:-3: Hjälpmedel: Miniräknare,

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

Mekanik FK2002m. Repetition

Mekanik FK2002m. Repetition Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r

Läs mer

Introhäfte Fysik II. för. Teknisk bastermin ht 2018

Introhäfte Fysik II. för. Teknisk bastermin ht 2018 Introhäfte Fysik II för Teknisk bastermin ht 2018 Innehåll Krafter sid. 2 Resultant och komposanter sid. 5 Kraft och acceleration sid. 12 Interna krafter, friläggning sid. 15 1 Kraftövningar De föremål

Läs mer

Tillämpad Matematik I Övning 3

Tillämpad Matematik I Övning 3 HH/ITE/BN Tillämpad Matematik I, Övning 3 1 Tillämpad Matematik I Övning 3 Allmänt Övningsuppgifterna, speciellt Typuppgifter i första hand, är eempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper.

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper. KTH Mekanik Fredrik Lundell Mekanik mindre kurs för E1 och Open1 Läsåret 05/06 Tentamen i 5C110 Mekanik mk, kurs E1 och Open 1 006-03-15 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer

Läs mer

Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik

Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Fredagen den 25 oktober 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 19/4 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag

Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag Tentaensskrining i Mekanik Del Dynaik för M 7 ösningsförslag. a) tötnoralen n i. Rörelseängdens earande i stötnoralled ( ): + + + () 0 där etecknar kulornas hastighetskoponenter efter stöt. tudstalet:

Läs mer

KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi

KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,

Läs mer

Lösning till TENTAMEN 071229

Lösning till TENTAMEN 071229 sid av 8 Lösning till TENTAMEN 079 KURSNAMN Mekanik och hållfasthetslära, del B - hållfasthetslära PROGRAM: nan Sjöingenjörsprograet åk / läsperiod //januariperioden KURSBETECKNING LNB80 006 EXAMINATOR

Läs mer

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från

Läs mer

4.2 Sant: Utfört arbete är lika stort som den energi som omvandlas p.g.a. arbetet. Svar: Sant

4.2 Sant: Utfört arbete är lika stort som den energi som omvandlas p.g.a. arbetet. Svar: Sant LÖSNINGSFÖRSLAG Fysik: Fysik och Kapiel 4 4 nergi nergiprincipen 4. nergin bearas. Allså är före efer,9,, ilke ger,9,,j, 6 J Sar:,6 J 3 3 Arbee, effek och erkningsgrad 4. San: Uför arbee är lika sor so

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen)

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen) Joakim Malm Teknisk Vattenresurslära LTH DELPROV /TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR0 4 OKTOBER 003, 08:00-:00 (Delprov), 08:00-3:00 (Tentamen) Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Rättning:

Läs mer

Textil mekanik och hållfasthetslära

Textil mekanik och hållfasthetslära Textil mekanik och hållfasthetslära 7,5 högskolepoäng romoment: tentamen Ladokkod: ATMH och 5MH Tentamen ges för: Textilingenjörer årskurs Tentamensdatum: 7--3 Tid: 9.-3. Hjälpmedel: Hjälpmedel id tentamen

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

Figur 5.1. En triangel där nedre högra hörnet har en rät vinkel (90 ).

Figur 5.1. En triangel där nedre högra hörnet har en rät vinkel (90 ). STUDIEAVSNITT 5 TRIGONOMETRI I det här asnittet kommer i att studera hur man beräknar inklar och sträckor för gina figurer. Ordet trigonometri innebär läran om förhållandet mellan inklar och sträckor i

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Tentamen Fysikaliska principer

Tentamen Fysikaliska principer Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2016 8:00 12:00 Tentamen består

Läs mer

Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.

Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål. 1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2

Läs mer

Svar och anvisningar

Svar och anvisningar 160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:

Läs mer

Övningar Arbete, Energi, Effekt och vridmoment

Övningar Arbete, Energi, Effekt och vridmoment Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

Lärobok, föreläsningsanteckningar, miniräknare. Redovisa tydligt beräkningar, förutsättningar, antaganden och beteckningar!

Lärobok, föreläsningsanteckningar, miniräknare. Redovisa tydligt beräkningar, förutsättningar, antaganden och beteckningar! Magnus Persson Teknisk Vattenresurslära LTH DUGGA 1 Vatten VVR145 4 mars 2016, 10:30-13:00 Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Rättning: Betyg: Lärobok, föreläsningsanteckningar, miniräknare

Läs mer

Tentamen i Modern fysik, TFYA11, TENA

Tentamen i Modern fysik, TFYA11, TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Fredagen den 13/4 2012 kl. 08.00-12.00 i TER2 Tentamen består av 1 A4-blad (detta) med 6 stycken

Läs mer

= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O

= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O 1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 160819 TFYA16 1 TFYA16: Tenta 160819 Svar och anvsnngar Uppgft 1 a) Svar: A(1 Bt)e Bt v = dx dt = d dt (Ate Bt ) = Ae Bt ABte Bt = A(1 Bt)e Bt b) Då partkeln byter rktnng har v v = 0, dvs (1 t) = 0. Svar:

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13.

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13. Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 15-6-4 Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Tentamen i dynamik augusti 14. 5kg. 3kg

Tentamen i dynamik augusti 14. 5kg. 3kg Tentamen i dynamik auusti 14 Uppift. Två massor, en på 5k och en på 3k, är sammankopplade av en tråd med konstant länd. Massorna lider friktionsfritt läns stänerna. Massorna är uppträdda på stänerna. En

Läs mer

Om den lagen (N2) är sann så är det också sant att: r " p = r " F (1)

Om den lagen (N2) är sann så är det också sant att: r  p = r  F (1) 1 KOMIHÅG 12: --------------------------------- Den mekaniska energin, arbetet ---------------------------------- Föreläsning 13: FLER LAGAR-härledning ur N2 Momentlag Hur påverkas rörelsen av ett kraftmoment??

Läs mer

Kursinformation Mekanik f.k. TMMI39

Kursinformation Mekanik f.k. TMMI39 Kursinformation Mekanik f.k. TMMI39 Uppdaterad 202--26 Linköpings universitet tekniska högskolan IEI/mekanik Joakim Holmberg Omfång 30 h föreläsningar och 24 h lektioner i period HT2, hösten 202. Kursansvarig,

Läs mer

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Kod: Program: Tentamen i ELEKTROMAGNETISM I, 2016-03-19 för W2 och ES2 (1FA514) Kan även skrivas av studenter på andra program där 1FA514 ingår

Läs mer

MV0192. Deltentamen i markfysik

MV0192. Deltentamen i markfysik MV0192. Deltentamen i markfysik 2013-01-11 Skrivningen ger maximalt 21 poäng. För godkänt fordras 10.5 poäng. Skrivtid kl. 13.00-16.00 Varje lärare rättar sin del av skrivningen. Besvara uppgift 6 på ett

Läs mer

Permanentmagnetiserad synkronmotor. Olof Samuelsson Industriell Elektroteknik och Automation

Permanentmagnetiserad synkronmotor. Olof Samuelsson Industriell Elektroteknik och Automation Peranentagnetierad ynkronotor Olof Sauelon Indutriell Elektroteknik och Autoation Överikt Peranentagnetierad ynkronakin Vridoent Spänningekvation Vektorrepreentation Spänningvektorn tyr Växelriktaren pänningvektorer

Läs mer

Lösningsförslat ordinarie tentamen i Mekanik 2 (FFM521)

Lösningsförslat ordinarie tentamen i Mekanik 2 (FFM521) Lösningsförslat ordinarie tentamen i Mekanik (FFM5) 08-06-0. Baserat på Klassiker Ett bowlingklot med radie r släpps iväg med hastighet v 0 utan rotation. Initialt glider den mot banan, och friktionen

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Onsdagen 30/3 06, kl 08:00-:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

MEKANIK II 1FA102. VIK detta blad om bladen med dina lösningar. Se till så att tentamensvakterna INTE häftar samman lösningsbladen.

MEKANIK II 1FA102. VIK detta blad om bladen med dina lösningar. Se till så att tentamensvakterna INTE häftar samman lösningsbladen. UPPSALA UNIVERSITET Inst för fysik och astronomi Allan Hallgren TENTAMEN 08-08 -29 MEKANIK II 1FA102 SKRIVTID: 5 timmar, kl 8.00-13.00 Hjälpmedel: Nordling-Österman: Physics Handbook Råde-Westergren: Mathematics

Läs mer

Laboration 2 Mekanik baskurs

Laboration 2 Mekanik baskurs Laboration 2 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Friktionskraft är en förutsättning för att våra liv ska fungera på ett mindre omständigt sätt. Om friktionskraften

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar

Läs mer

UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Arnaud Ferrari, Glenn Wouda och Lennart Selander

UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Arnaud Ferrari, Glenn Wouda och Lennart Selander UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Arnaud Ferrari, Glenn Wouda och Lennart Selander TENTAMEN 11-06-03 MEKANIK II 1FA102 SKRIVTID: 5 timmar,

Läs mer

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar.

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Mekanik KF, Moment 1 Datum: 2012-08-25 Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Del 1 (Lämna in denna del med dina

Läs mer

Tentamen i Modern fysik, TFYA11, TENA

Tentamen i Modern fysik, TFYA11, TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Tisdagen den 26/4 2011 kl. 08.00-12.00 i TER3 Tentamen består av 4 sidor (inklusive denna sida)

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Fredagen 1/1 018, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Lösningar och svar till uppgifter för Fysik 1-15 hösten -09

Lösningar och svar till uppgifter för Fysik 1-15 hösten -09 Lösninga och sa till uppgifte fö ysik -5 hösten -09 Röelse. a) -t-diaga 0 5 0 (/s) 5 0 5 0 0 0 0 0 0 50 t (s) b) Bosstäckan ges a 0 + s t 5 /s + 0 /s 5.0 s 6.5 < 00 Rådjuet klaa sig, efteso bosstäckan

Läs mer

2015-12-03. Skruvar: skruvens mekanik. Skillnad skruv - bult - Skruv: har gänga - Bult: saknar gänga

2015-12-03. Skruvar: skruvens mekanik. Skillnad skruv - bult - Skruv: har gänga - Bult: saknar gänga Skruvar: skruvens ekanik 1 En liten flicka åstadko en gång följande definition av vad hon ansåg vara en skruv och en utter: En skruv är ett slags pinne av hård etall, so t ex järn, ed en kantig klup i

Läs mer

Svar och anvisningar

Svar och anvisningar 170317 BFL10 1 Tenta 170317 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Den enda kraft som verkar på stenen är tyngdkraften, och den är riktad nedåt. Alltså är accelerationen riktad nedåt. b) Vid kaströrelse

Läs mer

Denna vattenmängd passerar också de 18 hålen med hastigheten v

Denna vattenmängd passerar också de 18 hålen med hastigheten v FYSIKTÄVLINGEN KVLIFICERINGS- OCH LGTÄVLING 3 februari 000 LÖSNINGSFÖRSLG SVENSK FYSIKERSMFUNDET 1. a) Den vattenängd so passerar slangen per sekund åste också passera något av de 18 hålen. Den vattenängd

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 13. Systemets masscentrum G ligger hela tiden vid axeln. Kraftekvationen för hela systemet:

LEDNINGAR TILL PROBLEM I KAPITEL 13. Systemets masscentrum G ligger hela tiden vid axeln. Kraftekvationen för hela systemet: LEDNINAR TILL PROBLEM I KAPITEL 3 LP 3. Systeets asscentru ligger hela tiden id aeln. Krafteationen för hela systeet: F = a P = M+ LP 3. Anänd definitionen a inetis energi. Varje ula har en cirelrörelse.

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)

Läs mer

Laborationsinstruktion för Elektromagnetiska sensorer

Laborationsinstruktion för Elektromagnetiska sensorer Laborationintruktion för Elektroagnetika enorer Tadeuz Stepinki januari 2003 Nan Handledaren koentarer Årkur/nkrivningår Godkänd den 1 1 ntroduktion 1.1 Fältplatta Reitanen ho en platta av indiuantionid

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 EKNISK HÖGSKOLN I LINKÖPING Institutionen för Fysik, Kei och ioloi Gli Pozin enten i eknik FY6 illåtn Hjälpedel: Physics Hndbook eller efy utn en nteckninr, vprorerd räknedos enlit IFM:s reler. Forelslinen

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

För positiva tal x och y gäller: Peta P LOGARITMLAGAR PREFIX. tera T giga G mega M kilo k hekto h 10 2.

För positiva tal x och y gäller: Peta P LOGARITMLAGAR PREFIX. tera T giga G mega M kilo k hekto h 10 2. Formelamling i Fyik PREFIX Peta P 10 15 tera T 10 1 giga G 10 9 mega M 10 6 kilo k 10 3 hekto h 10 deka da 10 1 deci d 10 1 centi c 10 milli m 10 3 mikro μ 10 6 nano n 10 9 piko p 10 1 LOGARITMLAGAR För

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

10 Relativitetsteori och partikelfysik

10 Relativitetsteori och partikelfysik 0 Relatiitetsteori och artikelfysik 00. a) b) c) 00. a) (0,c) 0,0 0,99,005 (0,8c) 0,64 0,36 0,6,667 =,000000000556 0000 (3,0 0 8 ) 0,0c 0,64c Sar: a),005 b),667 c),000000000556 0 0 0 b) 3 4 c 3 4 0,9999999989

Läs mer

Problemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,"3,4)P, r 2

Problemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,3,4)P, r 2 2015-MM-DD Övningstentamen i Mekanik SG1130, grundkurs B1. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Ett kraftsystem består av tre krafter som angriper

Läs mer

TFYA16/TEN :00 13:00

TFYA16/TEN :00 13:00 Link opings Universitet Institutionen f or fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Ovningstentamen Mekanik 2015 8:00 13:00 Tentamen best ar av 6 uppgifter som vardera kan ge upp till 4 po ang.

Läs mer

Harmonisk oscillator Ulf Torkelsson

Harmonisk oscillator Ulf Torkelsson 1 Haronisk rörelse Föreläsning 13/9 Haronisk oscillator Ulf Torkelsson Betrakta en potentiell energi, V (x), so har ett iniu vid x, och studera rörelsen i närheten av detta iniu. O vi släpper en partikel

Läs mer

Tentamen i EJ1200 Eleffektsystem, 6 hp

Tentamen i EJ1200 Eleffektsystem, 6 hp Elekro- och yeeknik Elekrika akiner och effekelekronik Sefan Ölund 7745 Tenaen i EJ00 Eleffekye, 6 hp Den 5:e augui 008, 4.00-9.00 i al K5, K5 och K53 Räknedoa och aeaik handbok (Bea) får använda. Tenaen

Läs mer