Massa, densitet och hastighet

Storlek: px
Starta visningen från sidan:

Download "Massa, densitet och hastighet"

Transkript

1 Detta är en något omarbetad verion av Studiehandledningen om använde i tryckta kuren på SSVN. Sidhänviningar hänför ig till Quanta A 000, ISBN Där det har varit möjligt har motvarande aker angett för nyare boken Quanta A 003, ISBN i parenteer om dea: {} Det finn många nyframtagna interaktiva idor med imuleringar, filmer ov. i webbkuren om du bör kolla, i ynnerhet om boken inte ger dig en helt klar bild av ammanhangen. Nivå A gäller elever om bara iktar på Godkänd. Nivå B gäller de om iktar högre. {Uppgift urval för 003 utgåvan: I litan förekommer uppgiftnummer om kan vara följd av b = bedömd om vårare av lärare här, * = "vårare uppgift" enligt boken, och L = det finn en Ledtråd i boken på idorna Om man inte får till en L uppgift titta på Ledtrådar innan du kollar i facit! Om en uppgift är undertruken å finn det en tödida av något lag i webbkuren. Stödet kan vara t ex en utförligare förklaring, en interaktiv fråga eller en imulering med Java eller hockwave. 301; 304; 305; 307; 310*Lb; 311; 31b; 313; 314b; 315*L; 318; 319; 30; 31*Lb; 3; 34b; 36; 37; 38b; 39; 33*Lb ej m; 334; 337; 338; 338; 340b; 34b; 344Lb; 345; 349*b; 350*b; 351*b; 35; 354; 355; 356; 357a)b) 357c)*b; 358; 359b; 360*b; 361; 365; 366Lb; 367; 368b; 369L; 370b; 371Lb; 374; 405; 409; 411; 416; ; 41; 44L; 45; (435?) } Maa, denitet och hatighet Mål: Du ka efter momentet veta vad en grundenhet och ett prefix är och kunna använda dem Du ka ockå veta vad denitet och hatighet är och kunna beräkna dem. Att göra: Lä idorna 63 till 70 {76-84} i boken. Grundenheter och prefix är inget man behöver lära ig utantill men det är viktigt att veta vad om är vad, dv kunna kilja på grundenhet och prefix. Det är ändå bra att kunna EN denitet utantill: vatten har deniteten 1 kg/liter. Det kan man ha nytta av för att e om denitetvar är rimliga. Metall kulan har deniteten 0,78 kg/dm 3. Hmm, i å fall kulle det flyta på vatten. Antingen har jag räknat fel eller å är den ihålig. Då kan du alltid utnyttja formelamlingen om töd för att ta reda på vad de olika förkortningarna tår för. Exempel 1: Om du vill omvandla 5 km till enheten meter. Då är k ett prefix och betyder kilo=10 3 och m tår för grundenheten meter. Dv 5 km = 5000 m. Denitet och hatighet är två grundläggande fyikalika torheter om det är viktigt att du förtår och kan använda. Deniteten för olika ämnen är inte heller något du behöver lära dig utantill utan då utnyttjar du formelamlingen. Tänk på att gärna bekanta dig med formelamlingen redan nu å att den känn om ett välbekant komplement när det är dag för krivning. Nivå A: 04, 05, 07, 11, 13 Nivå B: 10, 1 File\OLK19\StudanvMekanikQuantaA.doc Sidan 3 av 9

2 Rörele Mål: Du ka efter momentet kunna avläa och rita grafer. Du ka förtå och kunna räkna med rörele med kontant hatighet, varierande hatighet och acceleration. Du ka förtå vad fritt fall innebär. Att göra: Lä idorna 71 till 81 i boken. {85-94} Det är viktigt att du kan rita och avläa grafer. Om man gör grafer ifrån en tabell med mätvärden kan man ofta SE amband man annar inte kulle märka. Man kan ockå lägga märke till om via värden verkar avvika. Det är viktigt att kolla dea: antingen å kan man ha mätt fel eller å händer det viktiga aker jut där. Om du är oäker på grafritning gå gärna tillbaka till matte A och repetera grunderna. Tänk på att torhet och enhet tår vid axlarna. gradera axlarna å att punkterna blir lätta att ätta ut. T.ex. 1 ruta = 1,, 5 eller 10 enheter På idorna {85-87}lär du dig vad rörele med kontant hatighet innebär och att grafen blir en rät linje. På idorna {93-95}berättar de med hitorikt perpektiv hur Galilei kom på det här med acceleration. Definitionen av acceleration är hatighetändring per tidenhet. m v v1 v D.v.. a = = och enheten blir = 1m t t t 1 Exempel: Om du tittar på diagrammen på idan 76 {91} å viar boken hur man kan räkna ut ett amband mellan träckan och accelerationen genom att beräkna triangeln under grafen. Man kan ockå beräkna accelerationen genom att avläa värden i en v-t graf och ätta in i ovantående formel. hatighet (m/) v t 1 a = = = = v t 1 (30 1) m (5 ) 18m 3 6m tid () Obervera att om kurvan lutar på andra hållet (en negativ kurva) är det en retardation, d v vi har en negativ acceleration. Hatigheten avtar. Beräkningar av retardation fungerar på preci amma ätt om för acceleration. Det finn även ett amband mellan träcka, tid och acceleration. Härledningen av detta hittar du på lutet av idan 76 och början av idan 77 {90}. Exempel: Rita en graf om viar accelerationen och retardationen för bollen i figuren på idan 78. {finn ej}(mannen om katar en boll.) Jag börjar med att göra en tabell för tid och hatighet. När bollen börjar falla neråt blir hatigheten negativ. File\OLK19\StudanvMekanikQuantaA.doc Sidan 4 av 9

3 t v Hatighet (m/) tid () Lä igenom idorna {ta inte upp i 003 boken}om fritt fall och katrörele. Prova gärna att göra miniprojekt 14 {id 94 miniprojekt}. Katrörele är något om kommer att ta upp mer ingående i fyik B, men lä igenom detta å att du kan e kopplingen mellan rörele med kontant hatighet, fritt fall och katrörele. Nivå A: 15, 16, 17, 0, 1a, 3, 5, 7 Nivå B: 18, 19,, 6, 8, 9, 89 Gravitation Mål: Du ka efter detta moment veta vad tröghetlagen innebär och vad friktion är. Du ka ha vi inikt om hur man kom fram till att det finn en gravitationkraft och kunna utföra beräkningar på denna kraft. Att göra: Lä idorna 8 till 91 { , } i boken. Det är viktigt att du förtår begreppen tröghet och friktion och killnaden på dem. (Sidorna 8-83) {99, 106?}. Newton förta lag, tröghetlagen är det ockå viktig att du förtår vad den innebär och vilka konekvener den medför. (Mitt på idan 83.) {104} Gör gärna miniprojekt 15 {id 104} här. Det kanke viktigate reultatet i detta moment kommer på idan 89 {100}, allmänna gravitationlagen; Förök att förtå principen för hur man kom fram till denna lag genom att läa { ?}. Men lär dig framförallt att kunna utföra beräkningar med hjälp av den. Nivå A: 35, 36, 38 Nivå B: 34, 37 File\OLK19\StudanvMekanikQuantaA.doc Sidan 5 av 9

4 Kraft Mål: Du ka efter detta moment förtå och kunna räkna med olika krafter. Du ka ockå förtå killnaden mellan tyngd och maa. Att göra: Lä idorna 9 till 95 {97-101} i boken. De börjar med att titta på kraftekvationen, F = m a och definitionen och kraftenheten 1 Newton, 1N. Det är viktigt att du förtår detta avnitt. Som det edan tår på idorna 9-93 är det viktigt att förtå killnaden mellan maa och tyngd. Tänk på att tyngd = kraft = F = m g. På idan 95 { } förklarar de hur F = m a och F = m g hänger ihop. Nivå A: 4, 43, 45, 51, 90 Nivå B: 44, 46, 5 File\OLK19\StudanvMekanikQuantaA.doc Sidan 6 av 9

5 Fortättning på krafter Mål: Du ka efter detta moment kunna rita ut och beräkna krafter i olika ituationer. Du ka ockå känna till begreppen normalkraft, dragkraft, friktionkraft och kraftreultant och kunna beräkna dea. Att göra: Lä idorna 97 till 101 { } i boken. I detta avnitt börjar de prata om begrepp om normalkraft, kraftreultant, dragkraft, friktionkraft m fl. Deutom ritar de ut krafterna med torlek och riktning i figurerna. Om du har lät t.ex. Teknologi A tidigare är du antagligen bekant med detta ätt att rita och beräkna krafter. Men om du vill repetera eller aldrig har arbetat med detta tidigare å har jag gjort en liten introduktion till det här. Att rita krafter. Figuren här viar en peron om tår och håller i en reväka. Väkan (och peronen) rör ig inte men ändå är flera krafter verkamma här. Del har vi tyngdkraften om drar väkan neråt och å har vi mukelkraften från handen om håller väkan uppe. En kraft har både torlek och rikting vilket innebär att kraft är en vektor. (Vektor är en torhet om har både torlek och riktning.) Vektorer brukar åkådliggöra med hjälp av pilar. Pilen längd anger kraften torlek och pilen riktning anger alltå kraften riktning. Tyngdkraften väkan neråt mukelkraften är håller emot. Man krafter med en angriper i trävar att dra alla partiklar i om pilarna viar. Medan tyngdkraften motkraft om brukar erätta alla dea må enda kraftreultant om väkan tyngdpunkt. Lägg märke till att pilen uppåt är lika tor om pilen neråt. D.v.. det råder jämvikt och detta innebär att föremålet är tilla. Jag vill nu via ytterligare några exempel på hur man beräknar reultanten av två eller flera krafter. (I webbkuren finn flera aker om ammanättning av krafter eller vektorer. På internet e javaapplet: File\OLK19\StudanvMekanikQuantaA.doc Sidan 7 av 9

6 Exempel Det är viktigt att du lär dig avläa och rita ut krafter. På idan 100 {99}inför ytterligare en kraft, friktionkraften. Friktionkraften är det mottånd underlaget ger ett föremål. Därför är friktionkraften ockå beroende av underlaget friktiontal. Här inför jag ett begrepp om boken inte tar upp men om jag aner vara mycket viktigt att ha ett och räknat med för framtida tudier. Friktiontalet för ytan anger alltå hur träv eller glatt en yta är. Litet friktiontal, ca 0,05 för glatta ytor och tort friktiontal, t ex 0,3 för träva ytor. Friktiontalet benämn med µ. Och F = µ N. µ är oftat mellan 0 och 1. Exempel En kropp med maa 10 kg ligger på ett trävt, horiontellt underlag. För att ätta kroppen i rörele kräv en kraft på 30 N. Betäm friktiontalet. Löning Kroppen tyngd G = N = 10 9,8 = 98, N F 30N F = µ N µ = = 0,31 N 98,N Nu är det dag för övninguppgifter. Nivå A: 39, 54, 55 Nivå B: 41, 56, 57, 93 File\OLK19\StudanvMekanikQuantaA.doc Sidan 8 av 9

7 Lutande plan {kraft uppdelning} och kraftmoment Mål: Du ka efter detta moment veta hur man ätter ut krafter på en kropp om befinner ig på ett lutande plan amt kunna dela upp tyngd kraften i två kompoanter. Du ka ockå kunna tälla upp och beräkna kraftmoment. Att göra: Lä idorna 10 till 106 { }noga å att du förtår exemplen i texten. Om du har glömt inu och coinu måte du repetera dea (du hittar dem i matematik A kuren). Var noga med att lära dig dela upp gravitationkraften i en kompoant om är parallell med planet och en om är vinkelrät mot planet. { 003 boken tar inte upp lutande planet, men andra exempel där man kall dela upp en kraft i olika kompoanter.} Pröva gärna praktikt hur olika kraftmoment verkar genom att ätta dig på en gungbräda och pröva hur olika momentarmar verkar (enligt figuren på idan 104 {11} i boken). Nivå A: 58, 59, 61, 6, Nivå B: 60, 63, 64, 67 Tryck Mål: Du ka efter detta moment förtå innebörden av tryck och Arkimede princip. Du ka förtå och kunna göra beräkningar på vätketryck, tryck mellan fata kroppar, gatryck och lyftkraft. Att göra: Lä idorna 107 till 115 {117-17} i boken. På idorna 107 och 108 berättar de om tryck med ett hitorikt perpektiv. På idan 109 {10} kommer definitionen för tryck och även formeln p = ρ g h på idan 111 {1} är viktig att kunna. På idan {14-15} går de igenom Arkimede princip. För att behärka omvandling mellan olika enheter ka du lära dig använda tabellerna med omvandlingfaktorer om brukar finna i formelamlingen. Har du vårt att förtå den får du kontakta din lärare. Prova gärna att göra t ex miniprojekt 18 {id 13} nu. Nivå A: 70, 71, 75, 77, 78, 80 Nivå B: 76, 7, 79, 81, 8 Gör nu tudiearbete 1 om finn eparat och redovia det i webbtödet (Du kan även fundera på om du kall börja förbereda hemlabb) File\OLK19\StudanvMekanikQuantaA.doc Sidan 9 av 9

8 Begreppet energi amt mekanik energi Mål: Ha en uppfattning om begreppet energi. Kunna definiera och betämma utfört arbete. Kunna definiera och betämma lägeenergi. Kunna definiera och betämma röreleenergi. Känna till vad om mena med energiprincipen. Kunna definiera och betämma effekt. Att göra: Lä idorna 19 till 130 {14} övergripande. Lä idorna 131 till 136 { } ingående, var noga med att föröka förtå figurer och exempel. Detta moment blir tort, å ta den tid du behöver för att komma igenom det. Exempel: Du har följande förutättningar. En kidbacke med två liftytem. Ena liften är 900 meter och andra är 00 meter. Höjdkillnaden mellan tart och lut på liften är 91,6 meter. Det tar 15 minuter att åka den långa liften och 5 minuter att åka den korta liften. En kidåkare om väger 50 kg får en kraft på 50 N då han åker den långa liften och 5 N då han åker den korta liften. När kidåkaren åker ned för backen har han hatigheten 4,5 m/ då han når tartpunkten för liften. Beräkna det arbete om utför då han åker upp de olika vägarna. Vi antar att han åker friktionfritt uppför och nerför backen (tänk på att om vi tar med friktionen i beräkningarna får vi en lägre luthatighet). Figuren nedan viar hur kidbacken er ut. Här följer ett förlag på hur man löer uppgiften I det förta fallet är träcken 900 meter och kraften 50 N. Arbetet blir då kraft gånger vägen Arbetet = = Nm I det andra fallet får vi: Arbetet = 5 00 = Nm Vi er här att arbetet blir lika i de två fallen. Lägeenergin( W p ) blir mgh om med inatta värden blir 50 9,8 91, J ob vi har här att W p = 0 i början på backen. Det går att utföra beräkningarna med en annan nollnivå men då hade vi i tället ökt energiändringen mellan början och lutet. File\OLK19\StudanvMekanikQuantaA.doc Sidan 10 av 9

9 Obervera att vi även här får energin Nm Man kan ockå tänka på följande ätt: Kraften i det fall att man åker rakt upp blir kontant och lika med mg ( 50 9,8 m/ = 491 N). Sträckan blir 91,6 m Arbetet = kraft träcka = , Nm Obervera att Nm och J tår för amma ak. Då vi vet att den kinetika energin (W k) = (mv )/ Samt att den kinetika energin ockå ka vara Lika med J, kan vi betämma hatigheten v: (mv )/ = ätt in m = 50 kg v = /50 = 1800 v 4,5 m/ alltå tämmer även detta vad om var givet i uppgiften. Effekten om liftmotorn uträttar blir med ambandet Effekt = arbete/tid = /(0 60) = 37,5 watt Obervera att vi måte multiplicera tiden med 60 enheten för effekt. Genom de gjorda beräkningarna er vi att energiprincipen tämmer. för att få enheten Joule/ekund om är Detta exempel ka närmat e om ett ätt att lära ig omvandla energi i olika former. Nivå A: 30, 305, 306, 308, 310, 315, 316 Nivå B: 304, 307, 309, 33, 39 Ob bilden till 3 feltryckt File\OLK19\StudanvMekanikQuantaA.doc Sidan 11 av 9

Läs i vågläraboken om interferens (sid 59-71), dopplereffekt (sid 81-84), elektromagnetiska vågor (sid 177-181) och dikroism (sid 413-415).

Läs i vågläraboken om interferens (sid 59-71), dopplereffekt (sid 81-84), elektromagnetiska vågor (sid 177-181) och dikroism (sid 413-415). Dopplerradar Förberedeler Lä i vågläraboken om interferen (id 59-71), dopplereffekt (id 81-84), elektromagnetika vågor (id 177-181) och dikroim (id 413-415). Lä igenom hela laborationintruktionen. Gör

Läs mer

Läs i vågläraboken om interferens (sid 59-71), dopplereffekt (sid 81-84), elektromagnetiska vågor (sid 177-181) och dikroism (sid 413-415).

Läs i vågläraboken om interferens (sid 59-71), dopplereffekt (sid 81-84), elektromagnetiska vågor (sid 177-181) och dikroism (sid 413-415). Dopplerradar Förberedeler Lä i vågläraboken om interferen (id 59-71), dopplereffekt (id 81-84), elektromagnetika vågor (id 177-181) och dikroim (id 413-415). Lä igenom hela laborationintruktionen. Gör

Läs mer

Studieanvisning i Optik, Fysik A enligt boken Quanta A

Studieanvisning i Optik, Fysik A enligt boken Quanta A Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande

Läs mer

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt i fysik åk 9, VT03 och kompletterande teorimateriel Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt, VT 03 Antal lektioner: fem st. (9 jan, 16 jan, 3 jan, 6 feb,

Läs mer

Geometri. Kapitel 3 Geometri. Borggården sidan 68 Diagnos sidan 82 Rustkammaren sidan 84 Tornet sidan 90 Sammanfattning sidan 94 Utmaningen sidan 96

Geometri. Kapitel 3 Geometri. Borggården sidan 68 Diagnos sidan 82 Rustkammaren sidan 84 Tornet sidan 90 Sammanfattning sidan 94 Utmaningen sidan 96 Geometri Kapitel 3 Geometri Eleverna har tidigare arbetat med omkret och area. I kapitlet repetera fört begreppet area och hur man beräknar rektangeln area. Enheten kvadratdecimeter, dm 2, för area introdu

Läs mer

ökar arbetslösheten i alla länder, men i USA sker tilbakagången snabbare

ökar arbetslösheten i alla länder, men i USA sker tilbakagången snabbare Europeik arbetlöhet numera generellt högre än i USA. Vid lågkonjunktur ökar arbetlöheten i alla länder, men i USA ker tilbakagången nabbare än i typikt Europeikt land. Från att ha legat på en tabil, internationellt

Läs mer

Att göra en presentation

Att göra en presentation Verion 2.6, maj -03 Att göra en preentation Sammantälld av Maria Björklund och Ulf Paulon BAKGRUND TILL DENNA SKRIFT Denna krift har tillkommit för att vara en inpirationkälla och ett töd för tudenter

Läs mer

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2 Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π

Läs mer

Arbete Energi Effekt

Arbete Energi Effekt Arbete Energi Effekt Mekaniskt arbete Du använder en kraft som gör att föremålet förflyttas i kraftens riktning Mekaniskt arbete Friktionskraft En kraft som försöker hindra rörelsen, t.ex. när du släpar

Läs mer

ARBETE VAD ÄR DET? - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

ARBETE VAD ÄR DET? - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. Inledning ARBETE VAD ÄR DET? När vi till vardags pratar om arbete är det en helt annan sak än begreppet arbete i fysikens värld. Ett lönearbete är t ex att arbeta som vaktpost utanför Buckingham Palace.

Läs mer

Kapitel 4 Arbete, energi och effekt

Kapitel 4 Arbete, energi och effekt Arbete När en kraft F verkar på ett föremål och föremålet flyttar sig sträckan s i kraftens riktning säger vi att kraften utför ett arbete på föremålet. W = F s Enheten blir W = F s = Nm = J (joule) (enheten

Läs mer

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss.

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Repetition, del II Lufttryck Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Med samma resonemang som för vätskor kommer vi fram till att lufttrycket på en viss yta ges av tyngden

Läs mer

2. Optimering Linjär programmering

2. Optimering Linjär programmering . Optimering Linjär programmering Ett optimeringprolem etår av: En målfunktion, f(), var maimum, eller minimum ka öka. En eller flera -varialer (elutvarialer om man tr över). Normalt okå ett antal ivillkor

Läs mer

FRÅN MASSA TILL TYNGD

FRÅN MASSA TILL TYNGD FRÅN MASSA TILL TYNGD Inledning När vi till vardags pratar om vad något väger använder vi orden vikt och tyngd på likartat sätt. Tyngd associerar vi med tung och söker vi på ordet tyngd i en synonymordbok

Läs mer

Basåret, Fysik 2 25 februari 2014 Lars Bergström

Basåret, Fysik 2 25 februari 2014 Lars Bergström Basåret, Fysik 2 25 februari 2014 Lars Bergström Alla bilder finns på kursens hemsida www.physto.se/~lbe/bas_fysik_2_lbe.html (nås via Mondo - Fysik 2) Del 1 byte byte Kursens innehåll, från hemsidan:

Läs mer

Webbhandel med Matsäljarna.

Webbhandel med Matsäljarna. Webbhandel med Matäljarna. E t t f ö r e ta g i e r v e r a g r u p p e n Logga in Gå in på www.mataljarna.e Klicka på Webbhandel Logga in Skriv in ditt användarnamn (kundnummer) och ditt löenord om du

Läs mer

Så här beställer du varor från Serveras webbutik.

Så här beställer du varor från Serveras webbutik. Så här betäller du varor från Servera webbutik. Logga in Gå in på www.ervera.e Klicka på Webbhandel Eller klicka på Våra Tjänter Och välj Betällning. Logga in Skriv in ditt användarnamn (kundnummer) och

Läs mer

1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter.

1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter. FACIT Instuderingsfrågor 1 Energi sid. 144-149 1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter. Utan solen skulle det bli flera hundra minusgrader kallt på jorden

Läs mer

Inlämningsuppgift 1. 1/ Figuren visar ett energischema för Ulla som går uppför en trappa. I detta fall sker en omvandling av energi i Ullas muskler.

Inlämningsuppgift 1. 1/ Figuren visar ett energischema för Ulla som går uppför en trappa. I detta fall sker en omvandling av energi i Ullas muskler. Inlämningsuppgift 1 1/ Figuren visar ett energischema för Ulla som går uppför en trappa. I detta fall sker en omvandling av energi i Ullas muskler. Oftast använder vi apparater och motorer till att omvandla

Läs mer

Det finns olika typer av krafter och alla mäts med enheten newton. Enheten newton förkortas med stort N.

Det finns olika typer av krafter och alla mäts med enheten newton. Enheten newton förkortas med stort N. Ugglans NO Fysik - Mekanik Mekanik är en av fysikens äldsta vetenskaper. Den handlar om rörelse och jämvikt och vad som händer när föremål utsätts för krafter. Kunskap om mekanik är nödvändig och grundläggande

Läs mer

Hårdmagnetiska material / permanent magnet materials

Hårdmagnetiska material / permanent magnet materials 1 Hårdmagnetika material / permanent magnet material agnetiera fört med tort magnetfält H 1 (ofta pulat), när det yttre fältet är bortaget finn fortfarande det avmagnetierande fältet H d och materialet

Läs mer

Krafter. Jordens dragningskraft, tyngdkraften. Fallrörelse

Krafter. Jordens dragningskraft, tyngdkraften. Fallrörelse Krafter 1 Krafter...2 Jordens dragningskraft, tyngdkraften...2 Fallrörelse...2 Repetera lutande plan...3 Friktion...4 Tröghet...5 Tröghet och massa...6 Tyngdpunkt...6 Ta reda på tyngdpunkten för en oregelbunden

Läs mer

DOM. 2014-10- 0 B Meddelad i Göteborg. KLAGANDE Stadsområdesnämnd Söder i Malmö kommun Box 31065. Ombud:!Vfoharnmed Hourani

DOM. 2014-10- 0 B Meddelad i Göteborg. KLAGANDE Stadsområdesnämnd Söder i Malmö kommun Box 31065. Ombud:!Vfoharnmed Hourani KAMMARRÄTTEN I Avdelning 2 2014-10- 0 B Meddelad i Göteborg Sida 1 (5) Mål m 7419-13 KLAGANDE Stadområdenämnd Söder i Malmö kommun Box 31065 200 49 Malmö MOTPART Ombud:!Vfoharnmed Hourani Juritfirman New

Läs mer

Repetitionsuppgifter i Fysik 1

Repetitionsuppgifter i Fysik 1 Repetitionsuppgifter i Fysik 1 Uppgifterna i detta häfte syftar till att kort repetera några begrepp från fysiklektionerna i höstas. Det är inte på något sätt ett komplett repetionsmaterial, utan tanken

Läs mer

DOM. ?n13-02- 1 9. rtleaoelad i Göteborg. Ombud: Jur.kand. Jenny Dunberg ATS Assistans Trygghet Service AB Stortorget 4

DOM. ?n13-02- 1 9. rtleaoelad i Göteborg. Ombud: Jur.kand. Jenny Dunberg ATS Assistans Trygghet Service AB Stortorget 4 ?n13-02- 1 9 rtleaoelad i Göteborg Sida 1 (3) Mål nr 2524-12 KLAGANDE Omorgnämnden i Kritiantad kommun 291 80 Kritiantad MOTPART Ombud: Jur.kand. Jenny Dunberg ATS Aitan Trygghet Service AB Stortorget

Läs mer

Processbeskrivning Kvalitetsstyrning

Processbeskrivning Kvalitetsstyrning ProcIT-P-002 Procebekrivning Kvalitettyrning Ledning- och kvalitetytem Fattälld av Sven Arvidon 2012-06-20 Procebekrivning Kvalitettyrning Procebekrivning ProcIT-P-002 2.0 Innehållförteckning 1 Inledning

Läs mer

# o,too 26L 36o vq. Fy 1-mekaniken i sammandrag. 1 Rörelsebeskrivning (linjebunden rörelse) )-'f* 1.1 Hastighet och acceleration, allmänt

# o,too 26L 36o vq. Fy 1-mekaniken i sammandrag. 1 Rörelsebeskrivning (linjebunden rörelse) )-'f* 1.1 Hastighet och acceleration, allmänt Fy 1-mekaniken i sammandrag version 0.3 [140820] Christian Karlsson En del saker nedan tas inte upp i Fy 1-kursen, men är bra att med sig inför Fy 2. Dessa saker är markerade med [NYTT!]. 1 Rörelsebeskrivning

Läs mer

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1013 2013-06-03

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1013 2013-06-03 Tentamen del 2 i kuren Elintallation, begränad behörighet ET1013 2013-06-03 Tentamen omfattar 60 poäng. För godkänd tentamen kräv 30 poäng. Tillåtna hjälpmedel är räknedoa amt bifogad formelamling Beräkningar

Läs mer

MEKANIKENS GYLLENE REGEL

MEKANIKENS GYLLENE REGEL MEKANIKENS GYLLENE REGEL Inledning Det finns olika sätt att förflytta föremål och om du ska flytta en låda försöker du säkert komma på det enklaste sättet, det som är minst jobbigt för dig. Newton funderade

Läs mer

NEWTONS 3 LAGAR för partiklar

NEWTONS 3 LAGAR för partiklar wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir

Läs mer

Kalibrering. Dagens föreläsning. När behöver man inte kalibrera? Varför kalibrera? Ex på kalibrering. Linjär regression (komp 5)

Kalibrering. Dagens föreläsning. När behöver man inte kalibrera? Varför kalibrera? Ex på kalibrering. Linjär regression (komp 5) Dagen föreläning Kalibrering Kemik mätteknik CSL Analytik kemi Inledning. Linjär regreion Olika typer av tandarder. Vilken typ av kalibrering till vilken analymetod? Något om pårbarhet. Varför kalibrera?

Läs mer

Kraft, tryck och rörelse

Kraft, tryck och rörelse Kraft, tryck och rörelse Kraft En kraft kan ändra form, fart och rörelseriktning hos föremål. Kraft mäts i Newton, N. Enheten är uppkallad efter fysikern Isaac Newton som levde på 1600- talet. 1 N är ungefär

Läs mer

Så här beställer du varor från bunkra.se

Så här beställer du varor från bunkra.se Så här betäller du varor från bunkra.e Logga in Gå in på www.bunkra.e Klicka på Till butiken Eller klicka på Välkommen till butiken. Skriv in ditt användarnamn (kundnummer) och ditt löenord om du har fått

Läs mer

Uppgifter till KRAFTER

Uppgifter till KRAFTER Uppgifter till KRAFTER Peter Gustavsson Per-Erik Austrell 1 Innehåll 1 Introduktion till statiken... 3 A-uppgifter...3 2 Krafter... 5 A-uppgifter...5 B-uppgifter...5 3 Moment... 7 A-uppgifter...7 B-uppgifter...9

Läs mer

Karlstads universitet Tel 202 Elkraftteknik och kraftelektronik Bilaga 3 Avd. för elektroteknik Asynkronmotorn 1(12) Asynkronmotorn

Karlstads universitet Tel 202 Elkraftteknik och kraftelektronik Bilaga 3 Avd. för elektroteknik Asynkronmotorn 1(12) Asynkronmotorn Karltad univeritet Tel 0 Elraftteni och rafteletroni Bilaga Avd. för eletroteni Aynronmotorn 1(1) Aynronmotorn Namn: Godänd laboration: Syfte Du all underöa egenaperna ho en trefa aynronmotor. Underöningen

Läs mer

Kraft och rörelse åk 6

Kraft och rörelse åk 6 Kraft och rörelse åk 6 Kraft En kraft kan ändra farten eller formen hos ett föremål. Krafter kan mätas med en dynamometer. Den består av en fjäder och en skala. Enhet för kraft är Newton, N. Dynamometer

Läs mer

Repetition Mekanik, grundkurs

Repetition Mekanik, grundkurs Repetition Mekanik, grundkurs Kraft är en vektor och beskrivs med storlek riktning och angreppspunkt F= Fe + F e + Fe x x y y z z Kraften kan flytta längs sin verkninglinje Addera krafter Moment i planet

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

Processbeskrivning Driftsättning

Processbeskrivning Driftsättning ProcIT-P-007 Procebekrivning Driftättning Ledning- och kvalitetytem Fattällt av Sven Arvidon 2012-06-20 Innehållförteckning 1 Inledning 2 1.1 Symboler i procebekrivningarna 2 2 Driftättning 3 2.1 Samband

Läs mer

Basåret, Fysik A 19 november 2012 Lars Bergström. Alla bilder finns på kursens hemsida www.physto.se/~lbe/basareta.html

Basåret, Fysik A 19 november 2012 Lars Bergström. Alla bilder finns på kursens hemsida www.physto.se/~lbe/basareta.html Basåret, Fysik A 19 november 2012 Lars Bergström Alla bilder finns på kursens hemsida www.physto.se/~lbe/basareta.html Kraftpilar En kraft bestäms av dess storlek och riktning: vektor Massa och tyngd Massa

Läs mer

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft.

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. Kraft Allmänt om kraft * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. * Det finns olika krafter t ex; tyngdkraft, friktionskraft, motkraft. * Krafter kan

Läs mer

Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61.

Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61. Föreläning 8 Problem hämtade från boken idan 15 A 510 a) Rätvinklig triangel med vinkel och katet given. Mottående katet efterfråga. tan4 = x 5 x = 5tan 4 Svar:.6 cm x.6 A 510 b) Vinkel och hypotenuan

Läs mer

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning). STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när

Läs mer

LEKTION PÅ GRÖNA LUND GRUPP A (GY)

LEKTION PÅ GRÖNA LUND GRUPP A (GY) LEKTION PÅ GRÖNA LUND GRUPP A (GY) t(s) FRITT FALL Hur långt är det till horisonten om man är 80 m.ö.h.? Titta på en karta i förväg och försök räkna ut hur långt man borde kunna se åt olika håll när man

Läs mer

Hur kan en fallskärm flyga?

Hur kan en fallskärm flyga? Umeå Universitet Institutionen för fysik Hur kan en fallskärm flyga? Vardagsmysterier förklarade 5p Sommarkurs 2006 Elin Bergström Inledning En fallskärm finns till för att rädda livet på den som kastar

Läs mer

handbok i Kungsbackas kommungemensamma

handbok i Kungsbackas kommungemensamma handbok i Kungbacka kommungemenamma Kungbacka 2010 Projektledare: Lia Håkanon Projektgrupp: Anneli Skoglund, Annette Fredrikon, Catarina Nyberg, Eliabeth Ziga, Eva Djervbrant Jacobon, Eva Hanje, Ewa Grunnér,

Läs mer

Lösningar till övningar Arbete och Energi

Lösningar till övningar Arbete och Energi Lösningar till övningar Arbete och Energi G1. Lägesenergin E p = mgh = 1. 9,8. 1,3 J = 153 J Svar: 150 J G10. Arbetet F s = ändringen i rörelseenergi E k Vi får E k = 15,4 J = 36 J Svar: 36 J G6. Vi kan

Läs mer

SÄKERHETSAVSTÅND I BILKÖER

SÄKERHETSAVSTÅND I BILKÖER ÄKERHETAVTÅND I BILKÖER En studie i bilars stoppavstånd Foad aliba Bassam Ruwaida Hassan hafai Hajer Mohsen Ali Mekanik G118 den 7 februari 8 AMMANFATTNING Projektet utgångspunkt har varit att svara på

Läs mer

Föreningen ska ha ett bankgirokonto eller postgirokonto registrerat i föreningens namn.

Föreningen ska ha ett bankgirokonto eller postgirokonto registrerat i föreningens namn. SOCIALFÖRVALTNINGEN Riktlinjer för bidrag till ideella föreningar RIKTLINJER SID 1 (8) 1. Bakgrund Socialnämnden töd till ideella föreningar 1 yftar till att tärka den ideella ektorn förutättningar att

Läs mer

vx DOM 2013-1Z-T2 Meddelad i Göteborg KLAGANDE Försäkringskassan Processjuridiska enheten/ Malmö Box 14069 200 24 Malmö

vx DOM 2013-1Z-T2 Meddelad i Göteborg KLAGANDE Försäkringskassan Processjuridiska enheten/ Malmö Box 14069 200 24 Malmö Avdelning 3 vx DOM 2013-1Z-T2 Meddelad i Göteborg Mål nr 286-1 3 Sida 1 (8) KLAGANDE Föräkringkaan Procejuridika enheten/ Malmö Box 14069 200 24 Malmö MOTPART God man: Ombud: Jur.kand. Finn Kronporre Aitanjuriterna

Läs mer

Mina videos Jag har satt samman en snabbkurs för er som behöver repetera grundskolans matematik:

Mina videos Jag har satt samman en snabbkurs för er som behöver repetera grundskolans matematik: Behov av förkunskaper i matematik För att du ska kunna följa med i undervisningen i rörelselära (IB4) krävs förkunskaper i grundskolans matematik, samt lite trigonometri. Jag medsänder därför ett förkunskapstest

Läs mer

DOM 2014-12- 17. Meddelad i Göteborg. ÖVERKLAGAT AVGÖRANDE Förvaltningsrätten i Göteborgs dom den 8 november 2013 i mål nr 7848-13, se bilaga A

DOM 2014-12- 17. Meddelad i Göteborg. ÖVERKLAGAT AVGÖRANDE Förvaltningsrätten i Göteborgs dom den 8 november 2013 i mål nr 7848-13, se bilaga A KAMMARRÄTTEN I GÖTEBORG Avdelning 3 2014-12- 17. Meddelad i Göteborg Mål nr 7038-13 Sida 1 (6) KLAGANDE Socialnämnden i Halmtad kommun Box 230 301 06 }Ialmtad MOTPART Ombud: Emilia Liedbeck Nordtröm aitan

Läs mer

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2 Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen

Läs mer

Laboration 1 Mekanik baskurs

Laboration 1 Mekanik baskurs Laboration 1 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 11 27 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med planet,

Läs mer

ROCKJET GRUPP A (GY) FRITT FALL

ROCKJET GRUPP A (GY) FRITT FALL GRUPP A (GY) FRITT FALL a) Hur långt är det till horisonten om man är 80 m.ö.h.? Titta på en karta i förväg och försök räkna ut hur långt man borde kunna se åt olika håll när man sitter högst upp. b) Titta

Läs mer

Biomekanik, 5 poäng Moment

Biomekanik, 5 poäng Moment (kraftmoment) En resulterande (obalanserad kraft) strävar efter att ändra en kropps rörelsetillstånd. Den kan också sträva efter att vrida en kropp. Måttet på kraftens förmåga att vrida kroppen runt en

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1

Läs mer

Processbeskrivning Övervakning inom Operation Center

Processbeskrivning Övervakning inom Operation Center ProcIT-P-016 Procebekrivning Övervakning inom Operation Center Ledning- och kvalitetytem Fattälld av Sven Arvidon 2012-09-10 Innehållförteckning 1 Inledning 3 1.1 Symboler i procebekrivningarna 3 2 Övervakning

Läs mer

M12 Mekanikens grunder Steg 2 Krafter och moment

M12 Mekanikens grunder Steg 2 Krafter och moment M12 Mekanikens grunder Steg 2 Krafter och moment Namn: Kurs: Datum: Lektion 1: 2 Mekanikens grunder Kraft Exempel 1 Ex. 1 Rymdfärjan Columbus har just placerat ut den sista satelliten för denna gång och

Läs mer

KRAFTER. Peter Gustavsson Per-Erik Austrell

KRAFTER. Peter Gustavsson Per-Erik Austrell KRATER Peter Gustavsson Per-Erik Austrell örord Denna skrift har tagits fram för att utgöra kurslitteratur i kursen Mekanik för Industri Design vid Lunds Tekniska Högskola. Skriften börjar med en introduktion

Läs mer

Laborationsanvisning laboration 2

Laborationsanvisning laboration 2 Lab / Ljud i byggnad och ahälle / VTAF01 Laborationanvining laboration Mätning av ljudiolering, aborption, traniion och kalibrering av app Introduktion Probleet ed ljudtraniion har uppkoit delvi på grund

Läs mer

Mer Friktion jämviktsvillkor

Mer Friktion jämviktsvillkor KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning

Läs mer

Digital signalbehandling Sampling och vikning

Digital signalbehandling Sampling och vikning Intitutionen ör data- och elektroteknik Digital ignalbehandling --9 Sampling Då vi tuderar en vanlig analog ignal, t ex med hjälp av ett (analogt) ocillokop, å kan vi vid varje tidpunkt regitrera hur ignalen

Läs mer

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

9 Rörelse och krafter 2

9 Rörelse och krafter 2 9 Rörelse och krafter 2 Tvådimensionell rörelse Kaströrelse 1 Ett horisontellt hållet gevär avfyras mot en måltavla som befinner sig 150 m bort. Måltavlans centrum ligger på samma höjd som geväret. Skottet

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

Tjänsteexporten allt viktigare för Sverige

Tjänsteexporten allt viktigare för Sverige Tjänteexporten allt viktigare för Sverige Kent Eliaon, Pär Hanon och Marku Lindvert Kent Eliaon har diputerat i nationalekonomi och är verkam vid Umeå univeritet och Tillväxtanaly. Han forkning kretar

Läs mer

Rapport från utvärdering av Hermods vuxenutbildning 19-23 september 2011

Rapport från utvärdering av Hermods vuxenutbildning 19-23 september 2011 TILLHANDAHÅLLARAVDEL NINGEN UPPFÖLJNING SENHETEN SID 1 (21) 2011-11-29XX UTBILDNINGSINSPEKTÖR LENA KAE V 08-508 33 977 MEDBEDÖMARE ANITA SIMAK REKTOR KOMMUNAL VUXENUTBILDNING, UPPLANDS VÄSBY Rapport från

Läs mer

Grekernas världsbild. Gravitation & Newtons lagar. Aristoteles definition av rörelse. Aristoteles och de fyra elementen

Grekernas världsbild. Gravitation & Newtons lagar. Aristoteles definition av rörelse. Aristoteles och de fyra elementen Grekernas världsbild Gravitation & Newtons lagar En snabbkurs i klassisk mekanik 3/2-2010 Aristoteles 384 322 f.kr Grekisk filosof Student till Platon Lärare till Alexander den store Porträtt av Aristoteles.

Läs mer

Krafter och Newtons lagar

Krafter och Newtons lagar Mekanik I, Laboration 2 Krafter och Newtons lagar Fysiska föremål, kroppar, kan påverka varandra ömsesidigt, de kan växelverka. För att förklara hur denna växelverkan går till har fysikvetenskapen uppfunnit

Läs mer

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13. Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Tänk dig ett biljardklot på ett biljardbord. Om du knuffar till klotet, så att det sätts i rörelse, vad kallas knuffen då?...

Tänk dig ett biljardklot på ett biljardbord. Om du knuffar till klotet, så att det sätts i rörelse, vad kallas knuffen då?... MÅL med arbetsområdet När du har arbetat med det här ska du kunna: förklara vad som menas med en rörelse genom att ge exempel på hastighet, acceleration och fritt fall. ge exempel på krafter som påverkar

Läs mer

Vi ger våra barn trygghet och är observanta på barnens lek som är en viktig del i det livslånga lärandet.

Vi ger våra barn trygghet och är observanta på barnens lek som är en viktig del i det livslånga lärandet. SPÅNGA-TENSTA STADSDELSFÖRVALTNING SID 1 (5) DNR 400-444/07 GILTIG FR.O.M. 2007-09-20 GILTIG T.O.M. 2008-09-19 KVALITETSGARANTI Förkolan Harpåret Vi ger våra barn trygghet och är obervanta på barnen lek

Läs mer

För positiva tal x och y gäller: Peta P LOGARITMLAGAR PREFIX. tera T giga G mega M kilo k hekto h 10 2.

För positiva tal x och y gäller: Peta P LOGARITMLAGAR PREFIX. tera T giga G mega M kilo k hekto h 10 2. Formelamling i Fyik PREFIX Peta P 10 15 tera T 10 1 giga G 10 9 mega M 10 6 kilo k 10 3 hekto h 10 deka da 10 1 deci d 10 1 centi c 10 milli m 10 3 mikro μ 10 6 nano n 10 9 piko p 10 1 LOGARITMLAGAR För

Läs mer

Före du sätter igång behöver du, förutom en videokamera och en dator, följande:

Före du sätter igång behöver du, förutom en videokamera och en dator, följande: En introduktion till att filma och analysera rörelse i mekanik En stor del av den inledande kursen i mekanik är ägnad åt att studera och kvantifiera rörelse. Detta viktiga område, som kallas kinematik,

Läs mer

När jag har arbetat klart med det här området ska jag:

När jag har arbetat klart med det här området ska jag: Kraft och rörelse När jag har arbetat klart med det här området ska jag: kunna ge exempel på olika krafter och kunna använda mina kunskaper om dessa när jag förklarar olika fysikaliska fenomen, veta vad

Läs mer

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna. Fysik 1 övningsprov 1-13 facit Besvara 6 frågor. Återlämna uppgiftspappret! 1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna..

Läs mer

AKTIVITETER VID POWERPARK/HÄRMÄ

AKTIVITETER VID POWERPARK/HÄRMÄ AKTIVITETER VID POWERPARK/HÄRMÄ Acceleration Mega Drop Fritt fall Piovra Typhoon Svängningsrörelse Planetrörelse La Paloma Cirkelrörelse FRITT FALL (Mega Drop) Gradskiva och måttband Räknemaskin Tidtagarur

Läs mer

MEKANIK LÄRARHANDLEDNING

MEKANIK LÄRARHANDLEDNING MEKANIK LÄRARHANDLEDNING Eftersom antalet sensorer är begränsat rekommenderas att fler laborationer görs parallellt enligt ett stationssystem. I laboration 1-4 och 9-10 används kraftsensorn och i 5-8 används

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

2 NEWTONS LAGAR. 2.1 Inledning. Newtons lagar 2 1

2 NEWTONS LAGAR. 2.1 Inledning. Newtons lagar 2 1 Newtons lagar 2 1 2 NEWTONS LAGAR 2.1 Inledning Ordet kinetik används ofta för att beteckna läranom kroppars rörelse under inflytande av krafter. Med dynamik betcknar vi ett vidare område där även kinematiken

Läs mer

Lärarhandledning. Kraftshow. Annie Gjers & Felix Falk 2013-10-22

Lärarhandledning. Kraftshow. Annie Gjers & Felix Falk 2013-10-22 Lärarhandledning Kraftshow Annie Gjers & Felix Falk 2013-10-22 Innehållsförteckning 1 Inledning... 3 2 Experiment med förklaringar... 4 2.1 Månen och gravitationen... 4 2.2 Blyplankan... 4 2.3 Dubbelkon

Läs mer

Allmän information... sid 3. Dimensioneringsanvisning - allmän... sid 4. Enkel eller dubbelarmerad betongplatta... sid 5

Allmän information... sid 3. Dimensioneringsanvisning - allmän... sid 4. Enkel eller dubbelarmerad betongplatta... sid 5 Plattor på mark Innehållförteckning Allmän information... id 3 Tunna plattor för tunga later med minimal prickbildning Tät betong toppar radon Tunna plattor kortar torktiden Dimenioneringanvining - allmän...

Läs mer

Rapport från utvärdering av grundläggande vuxenutbildning i Botkyrka kommun 5-9 september 2011

Rapport från utvärdering av grundläggande vuxenutbildning i Botkyrka kommun 5-9 september 2011 TILLHANDAHÅLLARAVDELNINGEN UPPFÖLJNINGSENHETEN SID 1 (19) 2011-11-01XX Borttaget: 2011-10-31 UTBILDNINGSINSPEKTÖR LENA KAEV 08-508 33 977 MEDBEDÖMARE; ERIK HAMNER REKTOR KOMMUNAL VUXENUTBILDNING, TYRESÖ

Läs mer

Yrkesutbildningar. Gymnasiekurser. Webbaserade kurser KOMVUX VÄSTERÅS

Yrkesutbildningar. Gymnasiekurser. Webbaserade kurser KOMVUX VÄSTERÅS Yrkeutbildningar Gymnaiekurer KOMVUX Webbaerade kurer VÄSTERÅS Kurer Utbildningar 2015 ABF Komvux Väterå www.abfvux.nu Välkommen till ABF Komvux Ho o får du möjlighet utveckla individ. Vi kan erbjuda utbildning

Läs mer

Fysik A 08-02-18. Jonn Lantz Din kanelbulle i fysikens ugn jonn.lantz@lme.nu 031-825218

Fysik A 08-02-18. Jonn Lantz Din kanelbulle i fysikens ugn jonn.lantz@lme.nu 031-825218 1. Elmotorn En bensinmotor har sällan en verkningsgrad över 25%, men elmotorer är ofta bättre! (Det är bla. därför vi antagligen får se fler elbilar i framtiden). Ert uppdrag är att bestämma elmotorns

Läs mer

Edutainmentdag på Gröna Lund, Grupp A (Gy)

Edutainmentdag på Gröna Lund, Grupp A (Gy) Edutainmentdag på Gröna Lund, Grupp A (Gy) Fritt Fall Hur långt är det till horisonten om man är 80 m.ö.h.? Titta på en karta i förväg och försök räkna ut hur långt man borde kunna se åt olika håll när

Läs mer

Trycket är beroende av kraft och area

Trycket är beroende av kraft och area Vad är tryck? Trycket är beroende av kraft och area Om du klämmer med tummen på din arm känner du ett tryck från tummen. Om du i stället lägger en träbit över armen och trycker med tummen kommer du inte

Läs mer

Kritiskt tänkande HTXF04:3 FTEB05. Deduktiv argumentation

Kritiskt tänkande HTXF04:3 FTEB05. Deduktiv argumentation Kritikt tänkande HTXF04:3 FTEB05 Deduktiv argumentation Lite upprepning Ett deduktivt argument hävdar eller utger ig ör att vara ett argument av tarkate graden, dv. ett argument var lutat är en logik konekven

Läs mer

yz dx + x 2 ydy+ x 2 dz, (0, 0, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (1, 1, 0) (0, 0, 0) (1, 1, 1) z = xy y = x 2 x(t) =y(t) =z(t) =t, 0 t 1

yz dx + x 2 ydy+ x 2 dz, (0, 0, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (1, 1, 0) (0, 0, 0) (1, 1, 1) z = xy y = x 2 x(t) =y(t) =z(t) =t, 0 t 1 γ z d d dz, γ,,,,,,,,,,,,,,,, z t t zt t, t P z t Q t R t P tq trz t dt t t t t dt t t r t,,, t P t Qt, Rt t P tq trz t dt,,,, r,t,, t P t, Qt t, Rt dt P tq trz t dt,,,, tdt r,,t, t P t t, Qt Rt P tq trz

Läs mer

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5

Läs mer

gamla sopor värmer gott Förbränning i kraftvärmeverk bra för både miljö och klimat

gamla sopor värmer gott Förbränning i kraftvärmeverk bra för både miljö och klimat gamla opor värmer gott Förbränning i kraftvärmeverk bra för både miljö och klimat retavfall blir ny energi Så omvandla dina opor till miljönytta Itakt med att vi konumerar allt mer ökar ockå mängden avfall

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper.

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper. KTH Mekanik Fredrik Lundell Mekanik mindre kurs för E1 och Open1 Läsåret 05/06 Tentamen i 5C110 Mekanik mk, kurs E1 och Open 1 006-03-15 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer

Läs mer

Krafter och moment. mm F G (1.1)

Krafter och moment. mm F G (1.1) 1 Krafter och moment 1.1 Inledning örståelsen för hur olika typer av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom byggnadskonsten. Gravitationskraften är en

Läs mer

Bestäm den sida som är markerad med x.

Bestäm den sida som är markerad med x. 7 trigonometri Trigonometri handlar om sidor och inklar i trianglar. Ordet kommer från grekiskans trigonon (tre inklar) och métron (mått). Trigonometri har anänts under de senaste 2000 åren inom astronomi,

Läs mer

3-8 Proportionalitet Namn:

3-8 Proportionalitet Namn: 3-8 Proportionalitet Namn: Inledning Det här kapitlet handlar om samband mellan olika storheter och formler. När du är klar är du mästare på att arbeta med proportionalitet, det vill säga du klarar enkelt

Läs mer

Kapitel 4.1. 4101, 4102, 4103, 4104 Exempel som löses i boken. = = = = 1. 4105 a) n a1 + a a a = = = = a a a

Kapitel 4.1. 4101, 4102, 4103, 4104 Exempel som löses i boken. = = = = 1. 4105 a) n a1 + a a a = = = = a a a Kompletterde löigförlg och ledigr, Mtemtik 000 kur C, kpitel Kpitel. 0, 0, 0, 0 Exempel om löe i boke. 0 ) 7 0 + + + 6 + 8 + 06 ) +, + 6 6 + + + 69 69 + +, + + 6 6+ 9 8+ + 07 Se boke ledig. Kotkt di lärre

Läs mer