Självstudieövning 1: Grundläggande PID-reglering

Storlek: px
Starta visningen från sidan:

Download "Självstudieövning 1: Grundläggande PID-reglering"

Transkript

1 Självstudieövning 1: Grundläggande PID-reglering Mikael Johansson och Magnus Gäfvert Institutionen för Reglerteknik Lunds Tekniska Högskola Målsättning och förkunskaper Målsättningen med den här övningen är att ge en enkel och överskådlig introduktion till ämnet reglerteknik. Några grundläggande frågeställningar illustreras med ett problem där vi justerar vätsketillflödet till ett system av två tankar, så att vätskenivån i den ena tanken hålls konstant, även då tanksystemet utsätts för störningar. Vi visar på fördelarna med att låta regulatorn använda återkopplad mätinformation. Steg för steg ger vi en intuitiv motivering till den så kallade PID-regulatorn. Vi visar hur man med enkel matematik kan förklara många av de fenomen som uppstår. Övningen kräver inga speciella förkunskaper. Däremot har den många likheter med den första laborationen i Reglerteknik AK. Om du redan har genomfört den laborationen kan det vara bra att ha laborationshäftet tillgängligt så att du kan jämföra de slutsatser du drar av den här övningen med dina observationer från labben. Du kan också ha nytta av anteckningar från första föreläsningen, samt introduktionskapitlet i kursboken av Glad/Ljung.

2 Programvara Till övningen hör ett specialskrivet program som illustrerar PID-reglering av nivån i en vätsketank. Om du arbetar på EFD:s Unix-system måste du skriva initregler innan du startar matlab. Övningsprogrammet startas i Matlab-5 med kommandot >> ictools Programmet gör det möjligt att betrakta reglersystemet från två olika vyer: processvyn och regulatorvyn. Du kan byta vy via menyn View. Processvyn: illustration av fysikaliska förlopp Processvyn visar en animering av tanksystemet. I schematisk form visas även hur nivågivare, pump och regulator är sammankopplade med tanksystemet. Genom menyvalet Adjust Controller kan du välja om du vill att regulatorn skall ha tillgång till mätningar av tanknivån ( Closed Loop,) eller inte ( Open loop ). Genom menyvalet Adjust Process kan du välja att utsätta processen för laststörningar samt variationer i tankgeometrierna. Till höger i bild visas tidsplottar av nivån i den undre tanken samt av vätskeflödet till den övre tanken. Den streckade vertikala linjen i plottarna är en tidsmarkör. Tankbilden illustrerar tankens tillstånd vid den tid som markerats med tidsmarkören. Genom att gripa tag i tidsmarkören och svepa över tidsaxeln fås en animering av hur tankens tillstånd förändras under ett experiment. Detta ger en koppling mellan plottar och förlopp i tanken. tidsmarkör referensmarkör Figur 1 Processvyn: animering av tanken samt tidsplottar.

3 Regulatorvyn: schematisk illustration av reglersystemet Regulatorvyn visar en abstrakt vy av reglersystemet. Till vänster i bild visas ett blockschema av reglersystemet. Under kursens gång kommer vi ofta att analysera reglersystem genom att manipulera blockscheman. Det är därför viktigt att du förstår kopplingen mellan blockschemat och det verkliga systemet. Byt gärna mellan de två vyerna, och verifiera att de illustrerar samma system. Om du har valt Adjust Controller Closed Loop visas samma blockschema som i bilden nedan. Du kan byta struktur på regulatorn med popup-menyn Controller Structure. Med hjälp av reglagen nederst i bild kan du sedan ställa in regulatorns parametrar. Plottarna visar verklig tanknivå, reglerfel (skillnad mellan önskad och uppmätt tanknivå) samt styrsignal. Styrsignalen är summan av tre signaler, (P, I och D-delarna), vilka samtliga visas i den nedersta plotten. Färgerna överrensstämmer med de färger som använts i blockschemat. Figur 2 Regulatorvyn: blockschema, regulatorval samt tidsplottar.

4 1. Dubbeltankprocessen Processen vi vill reglera består av två vätsketankar. En övre tank till vilken vi direkt kan styra tillflödet av vätska, och en nedre tank, till vilken vätska rinner ifrån den övre tanken. Den övre tanken har tvärsnittsarean A 1 och utloppshålsarea a 1. Vätskenivån i den övre tanken betecknas med h 1. För den undre tanken är motsvarande beteckningar A 2, a 2 och h 2. Inflödet av vätska till den övre tanken betecknas med u, som är styrsignalen till systemet. Vår uppgift är att reglera nivån h 2 med styrsignalen u. I räkneövning 1.4 härledde vi följande dynamiska modell för dubbeltanksystemet: h 1 (t) k c u(t) a 1 2gh1 (t) A 1 A 1 h 2 (t) a 1 2gh1 (t) a 2 2gh2 (t) A 2 A 2 Modellen består av en ekvation för övre tanken, där variationer i h 1 (t) beror av inflödet till tanken och utflödet från tanken, vilket beskrivs av de två respektive termerna i högerledet. Motsvarande gäller för den nedre tankens nivå h 2 (t), där inflödet är lika med utflödet från den övre tanken. Konstanten k c är en omvandlingskonstant som beskriver pumpens förstärkning från spänning till alstrat vätskeflöde. 2. Öppen styrning Den enklaste formen av styrning är att utnyttja en förberäknad styrsignal. Med detta menas att vi utnyttjar den matematiska modell vi har av processen vi ska styra, för att bestämma den styrsignal som ger den önskade utsignalen. Däremot utnyttjar vi inte möjligheten att använda uppmätta processignaler för att beräkna styrsignalen. UPPGIFT 2.1 BERÄKNING AV EN ÖPPEN STYRNING FÖR TANKNIVÅN Hur stor styrsignal behövs för att få tanknivån h 2 (t) r 0 idennedretankeni stationäritet? Använd modellen ovan. UPPGIFT 2.2 ÖPPEN STYRNING UNDER IDEALA VILLKOR För tanken i programmet gäller a 1 a , A 1 A , samt k c Bestäm utifrån dessa parametervärden vilken styrsignal som behövs för att uppnå tanknivån h 2 (t) 0.1 i stationäritet. Välj Adjust Process Nominal Conditions samt Adjust Controller Open Loop. Skriv in det värde du tagit fram i fältet under Manual Control i processvyn. Simulera styrningens inverkan på tanken genom att välja Evaluate Simulate. Öppen styrning verkar fungera relativt bra. Varför bryr man då sig om att göra mer än detta? Som svar på den frågan skall vi göra två enkla experiment. Båda belyser situationer där den ideala tankmodellen blir ogiltig. I den första övningen skall vi låta vatten från en annan källa läcka in i den övre tanken. UPPGIFT 2.3 ÖPPEN STYRNING VID LASTSTÖRNINGAR Gör menyvalet Adjust Process Load Disturbance. Simulera åter din förberäknade styrning genom att välja Evaluate Simulate.

5 Eftersom störningen inte finns med i den matematiska modellen, kommer vår förberäknade styrning att ge en felaktig tanknivå. Ett annat fall då vår förberäknade styrsignal inte stämmer är då parametrarna i modellen inte stämmer överens med det verkliga systemet. Vi skall nu se hur den öppna styrningen påverkas då den verkliga utloppsarean i den nedre tanken är hälften så stor som den area man antagit i modellen. UPPGIFT 2.4 ÖPPEN STYRNING VID PROCESSVARIATIONER Välj Adjust Process Process Variations. Simulera din förberäknade styrsignal genom menyvalet Evaluate Simulate. Öppen styrning är uppenbarligen inte lämpligt i de fall då vår processmodell stämmer dåligt överrens med processens verkliga uppförande. Det är viktigt att poängtera att det i allmänhet är svårt och tidskrävande att ta fram dynamiska modeller med hög noggrannhet. Även om en ytterst noggrann modell av processen är tillgänglig, kan det vara intressant att kunna tillåta variationer i processparametrar. Om vi kan använda komponenter med stora individuella variationer i en serietillverkning (av t.ex. CD-spelare) kan vi pressa tillverkningskostnaderna. Vidare ändras det dynamiska beteendet hos många komponenter över tiden på grund av åldrande eller slitage. De flesta processer utsätts för laststörningar. Att kompensera för dessa är ett av de viktigaste målen för ett styrsystem. 3. Reglering baserad på återkoppling Karaktäristiskt för den öppna styrningen är att regulatorn inte utnyttjar någon som helst information om mätbara processvariabler. Genom att mäta viktiga processvariabler och använda denna information i beräkningen av styråtgärd kommer vi att i många fall kunna minska inverkan av laststörningar och processvariationer. Vi kommer också se hur vi kan förändra det dynamiska beteendet för processen genom att återkoppla mätningar av processvariabler till beräkningen av styråtgärder. Genom att låta inflödet till tanksystemet bero på mätningar av nivån kommer vi att kunna göra insvängningen mot en ny nivå snabb och väldämpad. Återkoppling är en enkel och kraftfull princip. Med dubbeltanksystemet som exempel kan vi förklara återkopplingsparadgimen. Lägg märke till att dubbeltanken har egenskapen att en ökning av styrsignalen medför att utsignalen ökar, i stationäritet. Följande reglerstrategi är då naturlig att använda: Öka styrsignalen då utsignalen är mindre än referensvärdet, och minska styrsignalen då utsignalen är större än referensvärdet. Denna typ av återkoppling kallas negativ återkoppling, eftersom styrsignalen rör sig i motsatt riktning till utsignalen. Det verkar naturligt att basera beräkningen av styråtgärd på skillnaden mellan referensvärde och utsignal. Vi får då en regulatorstruktur enligt figur 3. Vi betecknar referensvärdet med r(t), och det uppmätta verkliga värdet på utsignalen h 2 (t) med y(t). Reglerfelet e(t) är skillnaden mellan de båda, e(t) r(t) y(t) Vi kommer i den här övningen undersöka ett antal olika sätt att utnyttja reglerfelet för beräkning av styråtgärd.

6 referens + r reglerfel e=r-y Regulator styrsignal u Process utsignal y -1 Figur 3 Reglering baserad på skillnaden mellan önskad och uppmätt utsignal. 4. Enkel återkoppling: P-reglering En enkel första ansats är att låta styrsignalen vara proportionell mot reglerfelet u(t) Ke(t) (1) Denna styrstrategi kallas P-reglering. Som vi kommer att se ger denna enkla återkopplade styrlag drastiskt förbättrade prestanda i jämförelse med den öppna styrningen. UPPGIFT 4.1 P-REGLERING Återgå till normala arbetsvillkor genom menyvalet Adjust Process Nominal Conditions. Välj återkopplad styrning genom menyvalet Adjust Controller Closed Loop. Undersök hur det reglerade systemet svarar på ändringar i önskad tanknivå genom att välja Evaluate Simulate. Öka förstärkningen K succesivt, och undersök hur insvängningsförloppet förändras. Notera hur snabbare tidssvar kräver allt större styråtgärder. Finns det någon inställning av förstärkningen K så att reglerfelet försvinner i stationäritet? Vad händer med det stationära reglerfelet då du ökar K? UPPGIFT 4.2 P-REGLERING: UNDERTRYCKNING AV LASTSTÖRNINGAR Inför en laststörning med menyvalet Adjust Process Load Disturbance. Simulera P-regulatorn genom att välja Evaluate Simulate. Hur klarar P-regulatorn av laststörningar? Jämför med den öppna styrningen. UPPGIFT 4.3 P-REGLERING: ÖKAD ROBUSTHET MOT PROCESSVARIATIONER Låt tanksystemets geometri skilja sig från den som vi antagit i vår processmodell genom menyvalet Adjust Process Process Variations. Simulera P-regulatorn och jämför det kvarstående reglerfelet med det fel som uppstår vid öppen styrning med processvariationer. Vi kan observera hur vi får ett kvarstående fel vid reglering med en P-regulator. Denna observation kan förklaras genom att analysera tanksystemet i stationäritet. UPPGIFT 4.4 STATISK ANALYS AV P-REGLERING Använd styrlagen u(t) K(r(t) h 2 (t)) där r(t) r 0 är en konstant referenssignal. Verifiera att det alltid blir ett kvarstående reglerfel, men att detta minskar då vi ökar K.

7 5. Integralverkan eliminerar stationära fel: PI-reglering Vi har sett hur P-reglering i allmänhet inte förmår att få systemets utsignal att överrensstämma med referensvärdet. Det blir ett kvarstående reglerfel såväl vid referensändningar som då systemet utsätts för laststörningar. En naturlig sätt att hantera detta problem är att tillföra en term som automatiskt justerar den styrsignal som behövs för att eliminera reglerfelet i stationäritet. Låt därför styrsignalen vara u(t) Ke(t)+u I (t). En enkel injusteringsregel är att öka u I (t) då utsignalen är för liten samt minska u I (t) då utsignalen är för stor. Vi låter därför injusteringen av u I ges av d dt u I(t) k i e(t). I vanliga fall skriver vi detta samband som t u I (t) k i e(τ)dτ K t e(τ)dτ, (2) T i så att styrsignalen ges av sambandet t ) u(t) K (e(t)+ 1Ti e(τ)dτ. 0 En PI-regulator beräknar alltså en styråtgärd proportionell mot reglerfelet och dess integral. Effekterna av PI-reglering kan illustreras med nivåreglering av tanksystemet. UPPGIFT 5.1 PI-REGLERING: ELIMINERING AV STATIONÄRA FEL Återgå till det nominella systemet genom att välja Adjust Process Nominal Conditions. Välj PI i regulatormenyn. Simulera en referensvärdesändring och verifiera att integralverkan i regulatorn eliminerar stationära fel via automatisk injustering av u I. (välj ett litet K och ett stort T i för bästa resultat). En enkel stationär analys av tanksystemet reglerat med en PI-regulator kan förklara varför det kvarstående reglerfelet elimineras. UPPGIFT 5.2 PI-REGLERING: STATISK ANALYS AV INTEGRALVERKAN Betrakta dubbeltanksystemet reglerat med en PI-regulator, och med en konstant referenssignal r(t) r 0. Visa att det stationära reglerfelet e(t) r(t) h 2 (t) elimineras (om en stationär lösning existerar). (Ledning: derivera styrsignalen u.) 0 0 UPPGIFT 5.3 AVVÄGANDE MELLAN REFERENSSVAR OCH LASTUNDERTRYCKNING Den regulatorinställning du tagit fram ovan är framtagen för att ge ett bra svar på ändringar i referensvärde. Utvärdera hur regulatorn klarar av laststörningar genom att välja Adjust Controller Load Disturbance och simulera. Verifiera att andra parametrar kan ge bättre undertryckning av laststörningen, men att dessa parametrar tenderar till att ge ett svängigt svar vid referensändringar.

8 UPPGIFT 5.4 PI-REGLERING: INVERKAN AV PROCESSVARIATIONER Behåll de parametrar du tog fram i föregående övning. Introducera en parametervariation genom att välja Process Variations i menyn Process. Är din regulator robust mot modellfel? I vår statiska analys av integralverkan har vi dragit slutsatser om vad som måste gälla i stationäritet. Däremot har vi inte visat att systemet når stationäritet. Ett fundamentalt problem med återkoppling är att vi kan göra ett stabilt system instabilt. Med vissa parameterval kan PI-reglering av undre tanken ge ett instabilt system. UPPGIFT 5.5 INSTABILITET OCH BEHOVET AV DYNAMISK ANALYS Återgå till nominella arbetsvillkor. Välj parametrarna K 10, T i 100. Simulera. Verifiera att systemet blir instabilt för T i mindre än 29. Uppenbarligen kan vissa val av förstärkningar (vissa val av parametrarna K och T i ) ge ett instabilt system. I dessa fall gör minsta påverkan av systemet att utsignalen börjar svänga med allt större amplitud. En intuitiv förståelse för instabilitet i reglersystem kan fås genom följande resonemang. På grund av processens dynamiska natur kommer det ta en tid innan förändringar i styrsignalen märks i utsignalen. De styråtgärder vi vidtagit kan visserligen vara korrekta, men det tar en viss tid innan deras gynsamma effekt på utsignalen är fullt märkbar. Om vi fortsätter att basera styrsignalen på reglerfelet blir effekten lätt att vi överkompenserar för felet. När signalen så småningom slår helt igenom i utsignalen blir reglerfelet ännu större, fast med ombytt tecken, och en svängning med växande amplitud erhålls. 6. Deriverande verkan och prediktion: PID-reglering Ett sätt att dämpa det svängiga beteende som kan erhållas med en PI-regulator med hög förstärkning, är att införa en term som är proportionell mot reglerfelets derivata i styrsignalen. Genom att införa deriverande verkan i PI-regulatorn får vi en PID-regulator, vars styrsignal ges av sambandet u(t) K ( e(t)+t d d dt e(t)+ 1 T i t 0 ) e(τ)dτ Kombinationen av proportionell och deriverande reglering kan tolkas som en styråtgärd proportionell mot reglerfelets predikterade värde. En enkel prediktion av felets framtida värde kan baseras på en linjär extrapolation av felet T d tidsenheter framåt, se figur 4. En Taylorutveckling av reglerfelet vid t + T d ger d e(t + T d ) e(t)+t d e(t) (3) dt vilket är precis de två första termerna i PID-regulatorn ovan. En intuitiv förståelse för varför det kan vara bra att basera styrsignalen på det predikterade framtida reglerfelet ges av resonemanget om instabilitet ovan. Instabilitet kan enligt resonemanget sägas uppstå då vi baserar regleringen på mätsignaler, som först efter en stund avspeglar våra regleråtgärder. Genom det predikterade reglerfelet ser vi snabbare effekten av våra regleråtgärder.

9 reglerfel, e e(t) e(t+td) tid, t Figur 4 PD-reglering tolkat som reglering baserad på predikterat reglerfel. UPPGIFT 6.1 PID-REGLERING: MÖJLIGHETER TILL ÖKAD PRESTANDA Den prestanda vi kunde åstadkomma med en PI-regulator för reglering av nivån i undre tanken var starkt begränsad. Genom att introducera derivataverkan kan vi få ett snabbt och väldämpat stegsvar. Verifiera detta med simuleringar. Ovan har vi sett hur proportionell-deriverande verkan kan tolkas som en reglering baserad på det predikterade reglerfelet. För att få ett gott resultat är det viktigt att prediktionshorisonten är lämpligt vald. Detta illustreras av följande övning. UPPGIFT 6.2 PID-REGLERING: INVERKAN AV DERIVATATID Välj K 10, T i 60 och T d 2. Verifiera att prestandan hos reglersystemet blir bättre då T d är kring 10, för att sedan åter försämras då prediktionshorisonten är för lång. 7. PID-regulatorn i sammanfattning I den här övningen har vi, steg för steg, kommit fram till en regulator vars styrsignal ges av t ) u(t) K (e(t)+ 1Ti d e(τ)dτ +T d dt e(t) 0 Styrsignalen består alltså summan av tre termer: P-delen (som är proportionell mot reglerfelet), I-delen (som är proportionell mot integralen av reglerfelet) samt D-delen (som är proportionell mot derivatan av reglerfelet). Parametrar i regleralgoritmen är förstärkningen K, integraltiden T i, samt derivatatiden T d. Vi har analyserat och diskuterat de olika delarna av PID-regulatorn. Först visade vi att en proportionell återkoppling av reglerfelet gör systemet robustare mot modellfel och störningar, än vad som är fallet med öppen styrning. Högre återkopplingsförstärkning gör systemet snabbare, men kan leda till instabilitet. Dessutom ger P-regulatorn ett stationärt reglerfel. För att eliminera detta införes integrerande verkan i regulatorn, och vi får en PI-regulator. Integralverkan inverkar dock negativt på systemets stabilitet, och för att motverka detta införde vi även en deriverande verkan i regulatorn, och erhöll på så sett en PID-regulator. Vi har också sett följande tumregler för hur parametrarna för en PID-regulator inverkar på det reglerade systemets egenskaper.

10 Parameter Snabbhet Stabilitet K ökar ökar minskar T i ökar minskar ökar T d ökar ökar ökar 8. En blick framåt: Behovet av kvantitativa metoder Övningen har visat att det reglerade systemets egenskaper varierar med regulatorparametrarna. Att manuellt ställa in en regulator så att ett önskat beteende uppnås hos det reglerade systemet kan vara både tidsödande och svårt. Det vore förstås värdefullt att med hjälp av processmodellen, kunna beräkna de regulatorparametrar som ger det önskade beteendet. Vi kommer under kursens gång att presentera ett antal metoder för detta. Gemensamt för dessa metoder är att de baseras på linjära modeller av processen som skall regleras. Som vi har sett i övningen kan vissa val av regulatorparametrar leda till instabilitet. En mycket viktig del av analysen av reglersystem är att undersöka huruvida system är stabila. Matematiska verktyg för sådan analys kommer också senare i kursen. Vi har också sett hur modellfel och processvariationer påverkar det reglerade systemets uppförande. Det finns formella kvantitativa metoder för att beskriva hur mycket ett systems beteende varierar i dessa fall. Detta är viktigt för att kunna avgöra om en given regulator ger ett tillräckligt robust system. Om så inte är fallet blir reglerprestanda snabbt dåliga även för små processvariationer, och systemet kan till och med bli instabilt. Varkanjagläsamer? Materialet är baserat på boken PID Control av K.J. Åström och T. Hägglund samt kurslitteraturen Reglerteknik, grundläggande teori av T. Glad och L. Ljung.

11 Lösningar till räkneuppgifter LÖSNING 8.1 I stationäritet är h 1 (t) h 2 (t) 0. Detta ger u(t) a 2 k c 2gr0 LÖSNING 8.2 I stationäritet är utflödet från den övre tanken lika med utflödet från den undre tanken. Om vi kombinerar detta med ekvationen för övre tanken i stationäritet, får vi k c A 1 u(t) a 2 A 1 2gh2 (t) Då styrlagen ges av u(t) K(r 0 h 2 )får vi Vi skriver detta som K(r 0 h 2 ) a 2 k c 2gh2 e r 0 h 2 1 K a 2 k c 2gh2 Reglerfelet ges av högerledet, som minskar med ökande K. LÖSNING 8.3 Den deriverade styrsignalen blir i stationäritet u(t) K ( ė(t)+ 1 ) e(t), T i dvs. 0 K ( ) e(t), T i vilket ger e(t) 0.

Lunds Tekniska Högskola Avdelningen för industriell elektroteknik och automation

Lunds Tekniska Högskola Avdelningen för industriell elektroteknik och automation Lunds Universitet LTH Ingenjörshögskolan i Helsingborg Lunds Tekniska Högskola Avdelningen för industriell elektroteknik och automation REGLERTEKNIK Laboration 2 Empirisk undersökning av PID-regulator

Läs mer

Systemteknik/Processreglering F2

Systemteknik/Processreglering F2 Systemteknik/Processreglering F2 Processmodeller Stegsvarsmodeller PID-regulatorn Läsanvisning: Process Control: 1.4, 2.1 2.5 Processmodeller I den här kursen kommer vi att huvudsakligen att jobba med

Läs mer

Industriella styrsystem, TSIU06. Föreläsning 1

Industriella styrsystem, TSIU06. Föreläsning 1 Industriella styrsystem, TSIU06 Föreläsning 1 Reglerteknik, ISY, Linköpings Universitet Kursöversikt 2(34) Detta är en laborations- och projektkurs. Praktiken kommer före teorin (kursen Reglerteknik) Tre

Läs mer

Regulator. G (s) Figur 1: Blockdiagram för ett typiskt reglersystem

Regulator. G (s) Figur 1: Blockdiagram för ett typiskt reglersystem Rs) + Σ Es) Regulator G s) R Us) Process G s) P Ys) Figur : Blockdiagram för ett typiskt reglersystem Något om PID-reglering PID-regulatorn består av proportionell del, integrerande del och deriverande

Läs mer

Läran om återkopplade automatiska system och handlar om hur mätningar från givare kan användas för att automatisk göra förändringar i processen.

Läran om återkopplade automatiska system och handlar om hur mätningar från givare kan användas för att automatisk göra förändringar i processen. Reglering Läran om återkopplade automatiska system och handlar om hur mätningar från givare kan användas för att automatisk göra förändringar i processen. Regulator eller reglerenhet används för att optimera

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 3. Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula

Välkomna till TSRT19 Reglerteknik Föreläsning 3. Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula Välkomna till TSRT19 Reglerteknik Föreläsning 3 Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula Sammanfattning av förra föreläsningen 2 Vi modellerar system

Läs mer

PID-regulatorer och öppen styrning

PID-regulatorer och öppen styrning Reglerteknik grk Lab 1 PID-regulatorer och öppen styrning Denna version: Oktober 2011 P I D REGLERTEKNIK Namn: Personnr: AUTOMATIC LINKÖPING CONTROL Datum: Godkänd: 1 Inledning Syftet med den här laborationen

Läs mer

TSIU61: Reglerteknik. Sammanfattning från föreläsning 3 (2/4) ˆ PID-reglering. ˆ Specifikationer. ˆ Sammanfattning av föreläsning 3.

TSIU61: Reglerteknik. Sammanfattning från föreläsning 3 (2/4) ˆ PID-reglering. ˆ Specifikationer. ˆ Sammanfattning av föreläsning 3. TSIU6 Föreläsning 4 Gustaf Hendeby HT 207 / 22 Innehåll föreläsning 4 TSIU6: Reglerteknik Föreläsning 4 PID-reglering Specifikationer Gustaf Hendeby gustaf.hendeby@liu.se ˆ Sammanfattning av föreläsning

Läs mer

TSIU61: Reglerteknik. PID-reglering Specifikationer. Gustaf Hendeby.

TSIU61: Reglerteknik. PID-reglering Specifikationer. Gustaf Hendeby. TSIU61: Reglerteknik Föreläsning 4 PID-reglering Specifikationer Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 4 Gustaf Hendeby HT1 2017 1 / 22 Innehåll föreläsning 4 ˆ Sammanfattning av föreläsning

Läs mer

För att få ett effektiv driftsätt kan det ibland behövas avancerad styrning.

För att få ett effektiv driftsätt kan det ibland behövas avancerad styrning. För att få ett effektiv driftsätt kan det ibland behövas avancerad styrning. Används för att reglera en process. T.ex. om man vill ha en bestämd nivå, eller ett speciellt tryck i en rörledning kanske.

Läs mer

Föreläsning 2. Reglerteknik AK. c Bo Wahlberg. 3 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik

Föreläsning 2. Reglerteknik AK. c Bo Wahlberg. 3 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik Föreläsning 2 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 3 september 2013 Introduktion Förra gången: Dynamiska system = Differentialekvationer Återkoppling

Läs mer

Signaler och reglersystem Kapitel 1-4. Föreläsning 1, Inledning Reglerteknik

Signaler och reglersystem Kapitel 1-4. Föreläsning 1, Inledning Reglerteknik Signaler och reglersystem Kapitel 1-4 Föreläsning 1, Inledning Reglerteknik 1 Lärare Leif Lindbäck leifl@kth.se Tel 08 790 44 25 Jan Andersson janande@kth.se Tel i Kista 08 790 444 9 Tel i Flemingsberg

Läs mer

Exempel: reglering av en plattreaktor. Varför systemteknik/processreglering? Blockdiagram. Blockdiagram för en (del)process. Exempel: tankprocess

Exempel: reglering av en plattreaktor. Varför systemteknik/processreglering? Blockdiagram. Blockdiagram för en (del)process. Exempel: tankprocess Systemteknik/reglering Föreläsning Vad är systemteknik oc reglerteknik? Blockdiagram Styrstrategier Öppen styrning, framkoppling Sluten styrning, återkoppling PID-reglering Läsanvisning: Control:..3 Vad

Läs mer

Modellering av en Tankprocess

Modellering av en Tankprocess UPPSALA UNIVERSITET SYSTEMTEKNIK EKL och PSA 2002, AR 2004, BC2009 Modellering av dynamiska system Modellering av en Tankprocess Sammanfattning En tankprocess modelleras utifrån kända fysikaliska relationer.

Läs mer

G(s) = 5s + 1 s(10s + 1)

G(s) = 5s + 1 s(10s + 1) Projektuppgift 1: Integratoruppvridning I kursen behandlas ett antal olika typer av olinjäriteter som är mer eller mindre vanligt förekommande i reglersystem. En olinjäritet som dock alltid förekommer

Läs mer

Industriella styrsystem, TSIU06. Föreläsning 1

Industriella styrsystem, TSIU06. Föreläsning 1 Industriella styrsystem, TSIU06 Föreläsning 1 Reglerteknik, ISY, Linköpings Universitet Utgångspunkter Vad? Varför? Hur? Vad? Reglerteknik - Konsten att styra system automatiskt Vad? System - Ett objekt

Läs mer

REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN

REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN Automatisk styra processer. Generell metodik Bengt Carlsson Huvudantagande: Processen kan påverkas med en styrsignal (insignal). Normalt behöver man kunna mäta

Läs mer

REGLERTEKNIK Laboration 3

REGLERTEKNIK Laboration 3 Lunds Tekniska Högskola Avdelningen för Industriell Elektroteknik och Automation LTH Ingenjörshögskolan vid Campus Helsingborg REGLERTEKNIK Laboration 3 Modellbygge och beräkning av PID-regulator Inledning

Läs mer

2. Reglertekniska grunder

2. Reglertekniska grunder 2.1 Signaler och system 2.1 Signaler och system Ett system växelverkar med sin omgivning via insignaler, som påverkar systemets beteende utsignaler, som beskriver dess beteende Beroende på sammanhanget

Läs mer

Simulering och reglerteknik för kemister

Simulering och reglerteknik för kemister Simulering och reglerteknik för kemister Gå till http://techteach.no/kybsim/index_eng.htm och gå igenom några av följande exempel. http://techteach.no/kybsim/index_eng.htm Följ gärna de beskrivningarna

Läs mer

Reglerteknik I: F3. Tidssvar, återkoppling och PID-regulatorn. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik

Reglerteknik I: F3. Tidssvar, återkoppling och PID-regulatorn. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik Reglerteknik I: F3 Tidssvar, återkoppling och PID-regulatorn Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 12 Poler och tidssvar Stegsvar u(t) G y(t) Modell Y (s) = G(s)U(s) med överföringsfunktion

Läs mer

A

A Lunds Universitet LTH Ingenjorshogskolan i Helsingborg Tentamen i Reglerteknik 2008{05{29. Ett system beskrivs av foljande in-utsignalsamband: dar u(t) ar insignal och y(t) utsignal. d 2 y dt 2 + dy du

Läs mer

Systemteknik/Processreglering F6

Systemteknik/Processreglering F6 Systemteknik/Processreglering F6 Linjärisering Återkopplade system ett exempel Läsanvisning: Process Control: 5.5, 6.1 Jämviktspunkter Olinjär process på tillståndsform: dx = f (x, u) dt y = (x, u) Processens

Läs mer

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 2. Här är

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 2. Här är Martin Enqvist Återkoppling, PID-reglering, specifikationer Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(21) Exempel: Farthållare i en bil 4(21) Välj

Läs mer

F13: Regulatorstrukturer och implementering

F13: Regulatorstrukturer och implementering Föreläsning 2 PID-reglering Förra föreläsningen F3: Regulatorstrukturer och implementering 25 Februari, 209 Lunds Universitet, Inst för Reglerteknik. Bodediagram för PID-regulator 2. Metoder för empirisk

Läs mer

TENTAMEN I REGLERTEKNIK

TENTAMEN I REGLERTEKNIK TENTAMEN I REGLERTEKNIK TID: 29-6-4, kl 4.-9. KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, tel 7-339 BESÖKER SALEN: 5., 7.3 KURSADMINISTRATÖR: Ninna Stensgård,

Läs mer

REGLERTEKNIK Laboration 5

REGLERTEKNIK Laboration 5 6 SAMPLADE SYSTEM 6. Sampling av signaler När man använder en dator som regulator, kan man endast behandla signaler i diskreta tidpunkter. T.ex. mäts systemets utsignal i tidpunkter med visst mellanrum,

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 216-8-19 Sal (1) (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som

Läs mer

Reglerteknik AK Laboration 1 PID-reglering

Reglerteknik AK Laboration 1 PID-reglering Reglerteknik AK Laboration 1 PID-reglering Institutionen för reglerteknik Lunds tekniska högskola Senast uppdaterad juni 2015 Praktiska saker Ni loggar in med användarnamnet lab_tanka. Lämna lösenordsfältet

Läs mer

TSRT91 Reglerteknik: Föreläsning 2

TSRT91 Reglerteknik: Föreläsning 2 Föreläsningar / TSRT9 Reglerteknik: Föreläsning 2 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.

Läs mer

Reglerteknik I: F1. Introduktion. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik

Reglerteknik I: F1. Introduktion. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik Reglerteknik I: F1 Introduktion Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 14 Vad är reglerteknik? Läran om dynamiska system och deras styrning. System = Process = Ett objekt vars

Läs mer

Industriella styrsystem, TSIU06. Föreläsning 2

Industriella styrsystem, TSIU06. Föreläsning 2 Industriella styrsystem, TSIU06 Föreläsning 2 Reglerteknik, ISY, Linköpings Universitet Sammanfattning av Föreläsning 1 2(24) Det finns en stor mängd system och processer som behöver styras. Återkopplingsprincipen:

Läs mer

Välkomna till TSRT19 Reglerteknik M Föreläsning 9

Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning av förra föreläsningen H(s) W(s) 2 R(s)

Läs mer

Systemteknik/Processreglering Laboration 1 Empirisk PID-reglering. Praktiska saker. 1. Inledning

Systemteknik/Processreglering Laboration 1 Empirisk PID-reglering. Praktiska saker. 1. Inledning Systemteknik/Processreglering Laboration 1 Empirisk PID-reglering Institutionen för reglerteknik Lunds tekniska högskola Senast uppdaterad januari 2011 Praktiska saker Ni loggar in med användarnamnet lab_tanka.

Läs mer

Föreläsning 1 Reglerteknik AK

Föreläsning 1 Reglerteknik AK Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en

Läs mer

Välkomna till TSRT15 Reglerteknik Föreläsning 2

Välkomna till TSRT15 Reglerteknik Föreläsning 2 Välkomna till TSRT15 Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer

Läs mer

TENTAMEN I REGLERTEKNIK Y/D

TENTAMEN I REGLERTEKNIK Y/D TENTAMEN I REGLERTEKNIK Y/D SAL: TER3 TID: 8 augusti 8, klockan 8-3 KURS: TSRT, Reglerteknik Y/D PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD): 6 ANSVARIG

Läs mer

Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13

Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13 Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

TENTAMEN I TSRT07 INDUSTRIELL REGLERTEKNIK

TENTAMEN I TSRT07 INDUSTRIELL REGLERTEKNIK TENTAMEN I TSRT07 INDUSTRIELL REGLERTEKNIK SAL: ISY:s datorsalar (Asgård) TID: 2016-08-17 kl. 8:00 12:00 KURS: TSRT07 Industriell reglerteknik PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG

Läs mer

Industriell reglerteknik: Föreläsning 6

Industriell reglerteknik: Föreläsning 6 Föreläsningar 1 / 15 Industriell reglerteknik: Föreläsning 6 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet 1 Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande

Läs mer

Lösningar till tentamen i styr- och reglerteknik (Med fet stil!)

Lösningar till tentamen i styr- och reglerteknik (Med fet stil!) Lösningar till tentamen i styr- och reglerteknik (Med fet stil!) Uppgift 1 (4p) Figuren nedan visar ett reglersystem för nivån i en tank.utflödet från tanken styrs av en pump och har storleken V (m 3 /s).

Läs mer

Tentamen i Systemteknik/Processreglering

Tentamen i Systemteknik/Processreglering Institutionen för REGLERTEKNIK Tentamen i Systemteknik/Processreglering 27 maj 2 kl 4 9 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar

Läs mer

Modellering av en Tankprocess

Modellering av en Tankprocess UPPSL UNIVERSITET SYSTEMTEKNIK EKL och PS 2002, R 2004, BC 2009, 2013 Modellering av dynamiska system Modellering av en Tankprocess Sammanfattning En tankprocess modelleras utifrån kända fysikaliska relationer.

Läs mer

Lösningsförslag till tentamen i Reglerteknik (TSRT19)

Lösningsförslag till tentamen i Reglerteknik (TSRT19) Lösningsförslag till tentamen i Reglerteknik (TSRT9) 26-3-6. (a) Systemet är stabilt och linjärt. Därmed kan principen sinus in, sinus ut tillämpas. Givet insignalen u(t) sin (t) sin ( t) har vi G(i )

Läs mer

Välkomna till Reglerteknik Föreläsning 2

Välkomna till Reglerteknik Föreläsning 2 Välkomna till Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer

Läs mer

TENTAMEN I REGLERTEKNIK Y/D

TENTAMEN I REGLERTEKNIK Y/D TENTAMEN I REGLERTEKNIK Y/D SAL: T1, KÅRA TID: 9 juni 2017, klockan 14-19 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):

Läs mer

2. Reglertekniska grunder

2. Reglertekniska grunder 2. Reglertekniska grunder 2.1 Signaler oc system Ett system växelverkar med sin omgivning via insignaler, som åverkar systemets beteende, oc utsignaler, som beskriver dess beteende. Beroende å sammananget

Läs mer

Föreläsning 3. Reglerteknik AK. c Bo Wahlberg. 9 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik

Föreläsning 3. Reglerteknik AK. c Bo Wahlberg. 9 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik Föreläsning 3 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 9 september 2013 Introduktion Förra gången: PID-reglering Dagens program: Stabilitet Rotort

Läs mer

Lösningar till tentamen i Industriell reglerteknik TSRT07 Tentamensdatum: Martin Enqvist

Lösningar till tentamen i Industriell reglerteknik TSRT07 Tentamensdatum: Martin Enqvist ösningar till tentamen i Industriell reglerteknik TSRT7 Tentamensdatum: 28-3-2 Martin Enqvist a) Z-transformering av sambanden som beskriver den tidsdiskreta regulatorn ger Iz) = KT Sz T i z ) Ez) = Kz

Läs mer

Reglerteknik AK, FRT010

Reglerteknik AK, FRT010 Institutionen för REGLERTEKNIK Reglerteknik AK, FRT Tentamen januari 27 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

Reglerteknik AK, FRTF05

Reglerteknik AK, FRTF05 Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 3 april 208 kl 4 9 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar

Läs mer

Välkomna till TSRT19 Reglerteknik M Föreläsning 7. Framkoppling Koppling mellan öppna systemets Bodediagram och slutna systemets stabilitet

Välkomna till TSRT19 Reglerteknik M Föreläsning 7. Framkoppling Koppling mellan öppna systemets Bodediagram och slutna systemets stabilitet Välkomna till TSRT19 Reglerteknik M Föreläsning 7 Framkoppling Koppling mellan öppna systemets Bodediagram och slutna systemets stabilitet Framkoppling 2 Anledningen till att vi pratar om framkoppling

Läs mer

TENTAMEN I REGLERTEKNIK TSRT03, TSRT19

TENTAMEN I REGLERTEKNIK TSRT03, TSRT19 TENTAMEN I REGLERTEKNIK TSRT3, TSRT9 TID: 23 april 29, klockan 4-9 KURS: TSRT3, TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5.3, 7.3 KURSADMINISTRATÖR:

Läs mer

TSIU61: Reglerteknik. Matematiska modeller Laplacetransformen. Gustaf Hendeby.

TSIU61: Reglerteknik. Matematiska modeller Laplacetransformen. Gustaf Hendeby. TSIU61: Reglerteknik Föreläsning 2 Matematiska modeller Laplacetransformen Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 2 Gustaf Hendeby HT1 2017 1 / 21 Innehåll föreläsning 2 ˆ Sammanfattning

Läs mer

Välkomna till TSRT19 Reglerteknik M Föreläsning 9

Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning föreläsning 8 2 F(s) Lead-lag design:

Läs mer

TENTAMEN Reglerteknik 3p, X3

TENTAMEN Reglerteknik 3p, X3 OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 3p. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med

Läs mer

TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 1!

TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 1! TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 1! Johan Löfberg Avdelningen för Reglerteknik Institutionen för systemteknik Johan.lofberg@liu.se Kontor: B-huset, mellan ingång 23 och 25

Läs mer

Styr- och Reglerteknik för U3/EI2

Styr- och Reglerteknik för U3/EI2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 071111/ Thomas Munther LABORATION 3 i Styr- och Reglerteknik för U3/EI2 Målsättning: Bekanta sig med olika processer.

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden!

Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Välkomna till TSRT19 Reglerteknik Föreläsning 8 Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Sammanfattning föreläsning 8 2 Σ F(s) Lead-lag design: Givet ett Bode-diagram för ett öppet

Läs mer

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING TID: 13 mars 2018, klockan 8-12 KURS: TSRT21 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Johan Löfberg, 070-3113019 BESÖKER SALEN: 09.30,

Läs mer

Laplacetransform, poler och nollställen

Laplacetransform, poler och nollställen Innehåll föreläsning 2 2 Reglerteknik, föreläsning 2 Laplacetransform, poler och nollställen Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)

Läs mer

TENTAMEN I TSRT91 REGLERTEKNIK

TENTAMEN I TSRT91 REGLERTEKNIK SAL: TER3 TENTAMEN I TSRT9 REGLERTEKNIK TID: 28-4-3 kl. 4: 9: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 7-69294 BESÖKER SALEN: cirka

Läs mer

TSRT91 Reglerteknik: Föreläsning 1

TSRT91 Reglerteknik: Föreläsning 1 TSRT91 Reglerteknik: Föreläsning 1 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Diverse 1 / 27 Föreläsare och examinator: Martin Enqvist Lektionsassistent: Angela Fontan

Läs mer

REGLERTEKNIK, KTH. REGLERTEKNIK AK EL1000, EL1110 och EL1120

REGLERTEKNIK, KTH. REGLERTEKNIK AK EL1000, EL1110 och EL1120 REGLERTEKNIK, KTH REGLERTEKNIK AK EL1000, EL1110 och EL1120 Tentamen 20111017, kl 14:00 19:00 Hjälpmedel: Observandum: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande), räknetabeller,

Läs mer

Reglerteknik 1. Kapitel 1, 2, 3, 4. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist william@kth.se

Reglerteknik 1. Kapitel 1, 2, 3, 4. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist william@kth.se Reglerteknik 1 Kapitel 1, 2, 3, 4 Köp bok och övningshäfte på kårbokhandeln Reglerteknik 1. Givare för yttertemperatur 2, 3. Givare för inomhustemperaturer Behaglig innetemperatur med hjälp av reglerteknik!

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-03-17 Sal (1) TER2,TER3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken

Läs mer

Välkomna till TSRT19 Reglerteknik M Föreläsning 8

Välkomna till TSRT19 Reglerteknik M Föreläsning 8 Välkomna till TSRT19 Reglerteknik M Föreläsning 8 Sammanfattning av föreläsning 7 Kretsformning Lead-lag design Instabila nollställen och tidsfördröjning (tolkning i frekvensplanet) Sammanfattning av förra

Läs mer

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING SAL: G32 TID: 8 juni 217, klockan 8-12 KURS: TSRT21 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Johan Löfberg, 7-311319 BESÖKER SALEN: 9.3,

Läs mer

Teori Se din kursbok under avsnitt PID-reglering, Ziegler-Nichols metod och olinjära system (avsnitt 7.7 i Modern Reglerteknik av Bertil Thomas).

Teori Se din kursbok under avsnitt PID-reglering, Ziegler-Nichols metod och olinjära system (avsnitt 7.7 i Modern Reglerteknik av Bertil Thomas). 03-10-14/TFE CJ, BT, BaE, SG Laboration i kurs Tillämpad reglerteknik Institutionen för tillämpad fysik och elektronik Umeå universitet PID - NIVÅREGLERING AV TANK Målsättning Målet med denna laboration

Läs mer

Kort introduktion till Reglerteknik I

Kort introduktion till Reglerteknik I Kort introduktion till Reglerteknik I Vad är reglerteknik? Läran om dynamiska system och deras styrning. System = Process = Ett objekt vars egenskaper vi vill studera/styra. Vi betraktar system som har

Läs mer

En översikt av Kap 7. Tillbakablick, återkoppling Informationsteknologi Reglering av vätskenivån i en tank. Framkoppling. Informationsteknologi

En översikt av Kap 7. Tillbakablick, återkoppling Informationsteknologi Reglering av vätskenivån i en tank. Framkoppling. Informationsteknologi Bengt Carlsson Avd f... och även i reningsverk En översikt av Kap 7 Tekniken i Kap 7 är vanlig i många industriella tillämpningar (t ex kärnkraftver och för klimatreglering i byggnader llbakablick, återkoppling

Läs mer

Reglerteknik Z / Bt/I/Kf/F

Reglerteknik Z / Bt/I/Kf/F Reglerteknik Z / Bt/I/Kf/F Kurskod: SSY 050, ERE 080, ERE 091 Tentamen 2007-05-29 Tid: 8:30-12:30, Lokal: M-huset Lärare: Knut Åkesson tel 3717, 0701-74 95 25 Tentamen omfattar 25 poäng, där betyg tre

Läs mer

TENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till!

TENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till! TENTAMEN I REGLERTEKNIK Y TSRT2 för Y3 och D3 TID: 7 mars 25, klockan 4-9. ANSVARIGA LÄRARE: Mikael Norrlöf, tel 28 27 4, Anna Hagenblad, tel 28 44 74 TILLÅTNA HJÄLPMEDEL: Läroboken Glad-Ljung: Reglerteknik,

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2015-06-08 Sal (1) TER 2, TER 3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in

Läs mer

TSRT91 Reglerteknik: Föreläsning 1

TSRT91 Reglerteknik: Föreläsning 1 1 / 27 Diverse TSRT91 Reglerteknik: Föreläsning 1 Föreläsare och examinator: Martin Enqvist Martin Enqvist Lektionsassistent: Yuxin Zhao Kursrum i Lisam Reglerteknik Institutionen för systemteknik Linköpings

Läs mer

TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 10

TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 10 TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 10 Johan Löfberg Avdelningen för Reglerteknik Institutionen för systemteknik johan.lofberg@liu.se Kontor: B-huset, mellan ingång 27 och 29

Läs mer

Överföringsfunktioner, blockscheman och analys av reglersystem

Överföringsfunktioner, blockscheman och analys av reglersystem Övning 3 i Mät- & Reglerteknik 2 (M112602, 3sp), MT-3, 2013. Överföringsfunktioner, blockscheman och analys av reglersystem Som ett led i att utveckla en autopilot för ett flygplan har man bestämt följande

Läs mer

2. Reglertekniska grunder. 2.1 Signaler och system

2. Reglertekniska grunder. 2.1 Signaler och system 2.1 Signaler och system 2. Reglertekniska grunder Föreläsning 10.10.2005 Ett system växelverkar med sin omgivning via insignaler, som påverkar systemets beteende utsignaler, som beskriver dess beteende

Läs mer

TSIU06 - Lektion 1. Johan Dahlin [johan.dahlin(at)isy.liu.se] 14 mars Mycket viktigt att ni ställer frågor om ni inte förstår!!

TSIU06 - Lektion 1. Johan Dahlin [johan.dahlin(at)isy.liu.se] 14 mars Mycket viktigt att ni ställer frågor om ni inte förstår!! TSIU06 - Lektion 1 Johan Dahlin [johan.dahlin(at)isy.liu.se] 14 mars 2012 1 Allmän kursinformation Vem är jag? Johan Dahlin, doktorand, osv. Kontaktuppgifter! johan.dahlin@isy.liu.se, finns i A-korridoren

Läs mer

EL1000/1120/1110 Reglerteknik AK

EL1000/1120/1110 Reglerteknik AK KTH ROYAL INSTITUTE OF TECHNOLOGY EL1000/1120/1110 Reglerteknik AK Föreläsning 12: Sammanfattning Kursinfo: Resterande räknestugor 141208, 10-12 Q24 141210, 10-12 L21 141215, 10-12 Q34 141215, 13-15 Q11

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl REGLERTEKNIK KTH REGLERTEKNIK AK EL/EL/EL2 Tentamen 2 2 4, kl. 4. 9. Hjälpmedel: Kursboken i glerteknik AK (Glad, Ljung: glerteknik eller motsvarande) räknetabeller, formelsamlingar och räknedosa. Observeraattövningsmaterial

Läs mer

TENTAMEN I TSRT91 REGLERTEKNIK

TENTAMEN I TSRT91 REGLERTEKNIK SAL: TER2 TENTAMEN I TSRT9 REGLERTEKNIK TID: 29--7 kl. 8: 3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 3-28393 BESÖKER SALEN: cirka

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 6. Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden!

Välkomna till TSRT19 Reglerteknik Föreläsning 6. Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden! Välkomna till TSRT19 Reglerteknik Föreläsning 6 Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden! Sammanfattning av förra föreläsningen 2 G(s) Sinus in (i stabilt system) ger sinus

Läs mer

Kort introduktion till Reglerteknik I

Kort introduktion till Reglerteknik I Kort introduktion till Reglerteknik I Vad är reglerteknik? Läran om dynamiska system och deras styrning. 1 / 12 alexander.medvedev@it.uu.se Intro Kort introduktion till Reglerteknik I Vad är reglerteknik?

Läs mer

PID-regulatorn. Föreläsning 9. Frekvenstolkning av PID-regulatorn. PID-regulatorns Bodediagram

PID-regulatorn. Föreläsning 9. Frekvenstolkning av PID-regulatorn. PID-regulatorns Bodediagram PID-regulatorn Frekvenstolkning Inställningsmetoder Manuell inställning Ziegler Nichols metoder Modellbaserad inställning Praktiska modifieringar Standardkretsar Föreläsning 9 Rekommenderad läsning: Process

Läs mer

Flervariabel reglering av tanksystem

Flervariabel reglering av tanksystem Flervariabel reglering av tanksystem Datorövningar i Reglerteknik fortsättningskurs M, TSRT06 Denna version: 12 februari 2015 REGLERTEKNIK KOMMUNIKATIONSSYSTEM LINKÖPINGS TEKNISKA HÖGSKOLA 1 Inledning

Läs mer

övningstentamen I DYNAMISKA SYSTEM OCH REGLERING

övningstentamen I DYNAMISKA SYSTEM OCH REGLERING övningstentamen I DYNAMISKA SYSTEM OCH REGLERING SAL: - TID: mars 27, klockan 8-2 KURS: TSRT2 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Inger Erlander Klein, 73-9699 BESÖKER SALEN:

Läs mer

Institutionen för Tillämpad Fysik och elektronik Umeå Universitet BE. Introduktion till verktyget SIMULINK. Grunderna...2

Institutionen för Tillämpad Fysik och elektronik Umeå Universitet BE. Introduktion till verktyget SIMULINK. Grunderna...2 Institutionen för Tillämpad Fysik och elektronik Umeå Universitet BE Version: 09-0-23 StyrRegM,E Introduktion till verktyget SIMULINK Grunderna.....2 Tidskontinuerliga Reglersystem.... 7 Övningsuppgift...9

Läs mer