IE1205 Digital Design. F2 : Logiska Grindar och Kretsar, Boolesk Algebra. Fredrik Jonsson KTH/ICT/ES

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "IE1205 Digital Design. F2 : Logiska Grindar och Kretsar, Boolesk Algebra. Fredrik Jonsson KTH/ICT/ES"

Transkript

1 IE1205 Digital Design F2 : Logiska Grindar och Kretsar, oolesk Algebra Fredrik Jonsson KTH/ICT/ES

2 Switch En switch har två lägen Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten Öppen x = 1 x = 0 Symbol S x IE1205 Digital Design 2

3 Implementering av logiska funktioner Switchen kan användas för att implentera logiska funktioner Power supply S x Light L(x) är en logisk funktion x är en logisk variabel L(x) 0 Light Off 1 Light On IE1205 Digital Design 3

4 Operation AND (OCH) AND-operationen ( ) uppnås genom switchar som kopplas i serie S S Power supply x 1 Light L(x) x 1 IE1205 Digital Design 4

5 Operation OR (ELLER) OR-operationen (+) uppnås genom switchar som kopplas parallellt S x 1 Power supply S Light L(x) x 1 IE1205 Digital Design 5

6 Operation NOT (ICKE) NOT-funktionen inverterar det logiska värdet R Power supply x S Light L(x) x IE1205 Digital Design 6

7 Sanningstabell En logisk funktion kan också beskrivas genom en sanningstabell (truth table) 1 står för sann (true) 0 står för falsk (false) IE1205 Digital Design 7

8 Logiska grindar AND-grinden (OCH) IEC Symbol (International Electrotechnical Commission) A Y A & Y Traditional (American) Symbol Y A A Y IE1205 Digital Design 8

9 Logiska grindar OR-grinden (ELLER) IEC Symbol (International Electrotechnical Commission) A Y A 1 Y Traditional (American) Symbol Y A A Y IE1205 Digital Design 9

10 Logiska grindar Inverterare (NOT-grinden (ICKE)) Inverterare (Inverter) IEC Symbol (International Electrotechnical Commission) A 1 Y A Y 0 1 Traditional (American) Symbol 1 0 Y A A Y IE1205 Digital Design 10

11 Vad är grindnätets funktion? x 1 f IE1205 Digital Design 11

12 Tidsdiagram x 1 A f x A f 1 0 Time IE1205 Digital Design 12

13 Sanningstabell x 1 A f x f ( x, ) x A IE1205 Digital Design 13

14 Flera grindnät kan implementera samma funktion! a) x 1 f f x 1 x 1 b) x 1 g g x 1 IE1205 Digital Design 14

15 oolesk algebra Eftersom flera grindnät kan implementera samma funktion, så vill man hitta den mest kostnadseffektiva implementeringen Grindnäten kan bli mycket stora En matematisk bas behövs så att automatiseringen av grindnätsoptimering kan genomföras med datorer IE1205 Digital Design 15

16 oolesk algebra Axiom IE1205 Digital Design 16

17 Venn-Diagram Venn-diagrammet kan användas för att illustrera logiska operationer x x x y x z y x x y x y z IE1205 Digital Design 17

18 oolesk algebra 1+A=1 0A=0 A +A=1 AA =0 A+A=A AA=A IE1205 Digital Design 18

19 oolesk algebra Enkla räknelagar Med axiomerna som bas kan man formulera nya lagar (teorem) IE1205 Digital Design 19

20 Dualitetsprincip Har man ett giltigt booleskt samband så får man ett annat giltigt samband om man samtidigt byter alla 0:or mot 1:or och alla 1:or mot 0:or alla AND mot OR och alla OR mot AND IE1205 Digital Design 20

21 oolesk algebra Räknelagar med flera variabler IE1205 Digital Design 21

22 Exempel Konsensuslagen (17a) med Venn-diagram med algebraisk manipulation IE1205 Digital Design 22

23 Prov att en av konsensuslagarna håller x y y z x z x y x 17a. z x y y z x z (vänster led) x y (z z ) (x x ) y z x (y y ) z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y (z z ) x z (y y ) x y x z ( höger led) IE1205 Digital Design 23

24 Notationsalternativ Olika författare använder olika notationer IE1205 Digital Design 24

25 Analys och syntes Syntes Konstruktion av ett grindnätverk som implementerar en given logisk funktion Analys Framtagandet av den logiska funktionen för ett existerande grindnätverk IE1205 Digital Design 25

26 Hur kan följande sanningstabell implementeras med logiska grindar? IE1205 Digital Design 26

27 Hur kan följande sanningstabell implementeras med logiska grindar? 1. Ta fram den logiska funktionen: f x 1 x 1 x 1 IE1205 Digital Design 27

28 Hur kan följande sanningstabell implementeras med logiska grindar? 2. a) Gör en direkt implementering av den logiska funktionen: x 1 f x 1 x 1 x 1 f IE1205 Digital Design 28

29 Hur kan följande sanningstabell implementeras med logiska grindar? 2. (bättre) Minimera den logiska funktionen f x 1 x 1 x 1 x 1 x 1 x 1 x 1 Lägg till redundant term x 1 (7b) x 1 ( ) (x 1 x 1 ) Distribution (12a) x (8b) x 1 IE1205 Digital Design 29

30 Hur kan följande sanningstabell implementeras med logiska grindar? 3. Implementera den minimerade funktionen f x 1 x 1 Mycket enklare implementering! f IE1205 Digital Design 30

31 Snabbfråga Vilken oolesk ekvation motsvarar grindnätet x y z q Alt 1: q = x y + z Alt 2: q = x y + z Alt 3 q = x y + z

32 Diskussion: Algebraisk manipulering Algebraisk manipulering av logiska uttryck kan leda till effektiva implementeringar Men: För större nätverk kan det bli mycket svårt att identifiera möjliga optimeringar Vi behöver en generisk metod som fungerar för alla kombinatoriska nätverk! IE1205 Digital Design 32

33 Mintermer och Maxtermer En minterm är en produktterm för en logisk funktion där alla variabler av den logiska funktionen måste vara representerade En maxterm är en summaterm för en logisk funktion där alla variabler av den logiska funktionen måste vara representerade IE1205 Digital Design 33

34 Mintermer och Maxtermer IE1205 Digital Design 34

35 Introduktion SOP och POS Följande logisk funktion ska beskrivas med ett booleskt uttryck IE1205 Digital Design 35

36 Sum-of-Products m 1 m 4 m 5 m 6 f x 1 x 3 x 1 x 3 x 1 x 3 x 1 x 3 m(1,4,5,6) IE1205 Digital Design 36

37 Sum-of-Products En summa av produkter (sum-of-products) är en logisk funktion f som bildas genom att summera produkttermerna så att f blir 1 om en av produkttermerna blir 1. Följande förkortningar används SOP (engelska) och SP (svenska) I SOP-normalformen är alla produkttermer mintermer Det benämns även som disjunktiv normalform IE1205 Digital Design 37

38 Product-of-Sums IE1205 Digital Design 38 (0,2,3,7) ) ( ) ( ) ( ) ( M x x x x x x x x x x x x f M 0 M 2 M 3 M 7

39 Product-of-Sums En produkt av summor (product-of-sums) är en logisk funktion f som bildas genom en produkt av sumtermerna så att f blir 0 om en av sumtermer blir 0. Följande förkortningar används POS (engelska) och PS (svenska) I POS-normalformen är alla sumtermer maxtermer Det benämns även som konjunktiv normalform IE1205 Digital Design 39

40 Dualitet: Maxtermer och Mintermer, SOP och POS Till varje minterm finns det en motsvarande maxterm f m i M i M 0 m 0 x 1 x 3 x1 x 3 x 1 x 3 (mha DeMorgan 15a) Till varje SOP finns det en motsvarande POS f m(1,4,5,6) M(0,2,3,7) IE1205 Digital Design 40

41 Logiska grindar NAND-grinden IEC Symbol (International Electrotechnical Commission) A Y A & Y Traditional (American) Symbol Y A A Y IE1205 Digital Design 41

42 Logiska grindar NOR-grinden IEC Symbol (International Electrotechnical Commission) A Y A 1 Y Traditional (American) Symbol Y A A Y IE1205 Digital Design 42

43 ara en grind behövs! För att implementera en boolesk funktion behövs det bara NAND- eller NOR-grindar NOT = AND = OR = IE1205 Digital Design 43

44 DeMorgan s teorem Formulering med logiska grindar x 1 x 1 x 1 (a) x 1 = x 1 + (DeMorgan (15a)) Inverterade ingångar x 1 x 1 x 1 (b) x 1 + = x 1 (DeMorgan (15b)) IE1205 Digital Design 44

45 Inverteraren med NAND-grindar A Y = A Y Y A A A IE1205 Digital Design 45

46 AND-grind med NAND-grindar A Y Y A A = A Y 46 IE1205 Digital Design

47 OR-grind med NAND-grindar A A Y = Y Y A A A A A 47 IE1205 Digital Design

48 Implementering av logiska funktioner med enbart NAND-grindar x 1 x 3 x 4 x 5 x 1 x 3 x 4 x 5 AND-OR funktion x 1 x 3 x 4 x 5 IE1205 Digital Design 48

49 Universella mängder av grindar En mängd (eng. set) av grindar kallas universell eller komplett om alla kombinatoriska system kan beskrivas mha detta set. Exempel på universella grind-mängder: {AND, OR, NOT} -> (DeMorgan) -> {AND,NOT} -> {NAND} {AND,OR,NOT} -> (DeMorgan) -> {OR,NOT} -> {NOR} IE1205 Digital Design 49

50 Logiska grindar XOR-grinden (Exclusivt ELLER) IEC Symbol (International Electrotechnical Commission) A Y A 1 Y Traditional (American) Symbol Y A A A A Y IE1205 Digital Design 50

51 Logiska grindar XNOR-grinden (Exclusivt ELLER) IEC Symbol (International Electrotechnical Commission) A Y A 1 Y Traditional (American) Symbol Y A A A A Y IE1205 Digital Design 51

52 Exempel: Trevägsljuskontroll rown/vranesic: IE1205 Digital Design 52

53 Sammanfattning Logiska funktioner kan beskrivas med boolesk algebra Det finns logiska grindar för de vanliga booleska funktioner En logisk funktion kan uttryckas och skrivas om mha boolesk algebra till SOP-form (Summa av min-termer) eller POS-form (Produkt av max-termer) IE1205 Digital Design 53

Switch. En switch har två lägen. Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten. Öppen. Symbol. William Sandqvist

Switch. En switch har två lägen. Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten. Öppen. Symbol. William Sandqvist Switch En switch har två lägen Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten Öppen = = Symbol S Implementering av logiska funktioner Switchen kan användas för att implentera logiska funktioner Power

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE24 F2 : Logiska Grindar och Kretsar, Boolesk Algebra william@kth.se IE24 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska

Läs mer

Sanningstabell. En logisk funktion kan också beskrivas genom en sanningstabell (truth table) 1 står för sann (true) 0 står för falsk (false)

Sanningstabell. En logisk funktion kan också beskrivas genom en sanningstabell (truth table) 1 står för sann (true) 0 står för falsk (false) Sanningstabell En logisk funktion kan också beskrivas genom en sanningstabell (truth table) 1 står för sann (true) 0 står för falsk (false) ND OR Logiska grindar ND-grinden (OCH) IEC Symbol (International

Läs mer

D0013E Introduktion till Digitalteknik

D0013E Introduktion till Digitalteknik D0013E Introduktion till Digitalteknik Slides : Per Lindgren EISLAB per.lindgren@ltu.se Ursprungliga slides : Ingo Sander KTH/ICT/ES ingo@kth.se Vem är Per Lindgren? Professor Inbyggda System Från Älvsbyn

Läs mer

Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck

Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck KOMBINATORISK LOGIK Innehåll Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck Boolesk algebra Karnaugh-diagram Realisering av logiska funktioner

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Logikgrindar Från data till digitala byggblock: Kursens

Läs mer

DIGITALTEKNIK. Laboration D173. Grundläggande digital logik

DIGITALTEKNIK. Laboration D173. Grundläggande digital logik UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Håkan Joëlson 2007-11-19 v 1.1 DIGITALTEKNIK Laboration D173 Grundläggande digital logik Innehåll Mål. Material.... Uppgift 1...Sanningstabell

Läs mer

EDA Digital och Datorteknik 2009/2010

EDA Digital och Datorteknik 2009/2010 EDA45 - Digital och Datorteknik 29/2 EDA 45 - Digital och Datorteknik 29/2, lärobokens kapitel 3 Ur innehållet: Satslogik och Boolesk algebra Grindar Funktionstabell Binär evaluering Normal orm/förenklad

Läs mer

SMD033 Digitalteknik. Digitalteknik F1 bild 1

SMD033 Digitalteknik. Digitalteknik F1 bild 1 SMD033 Digitalteknik Digitalteknik F1 bild 1 Vi som undervisar Anders Hansson A3209 91 230 aha@sm.luth.se Digitalteknik F1 bild 2 Registrering Registrering via email till diglabs@luth.se Digitalteknik

Läs mer

IE1205 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering

IE1205 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering IE25 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering Mintermer 2 3 OR f En minterm är en produktterm som innehåller alla variabler och som anger den kombination av :or och :or som

Läs mer

Digital elektronik CL0090

Digital elektronik CL0090 Digital elektronik CL0090 Föreläsning 2 2007-0-25 08.5 2.00 Naos De logiska unktionerna implementeras i grindar. Här visas de vanligaste. Svenska IEC standard SS IEC 87-2 Amerikanska ANSI/IEEE Std.9.984

Läs mer

Mintermer. SP-form med tre mintermer. William Sandqvist

Mintermer. SP-form med tre mintermer. William Sandqvist Mintermer OR f 2 3 En minterm är en produktterm som innehåller alla variabler och som anger den kombination av :or och :or som tillsammans gör att termen antar värdet. SP-form med tre mintermer. f = m

Läs mer

Laboration D181. ELEKTRONIK Digitalteknik. Kombinatoriska kretsar, HCMOS. 2008-01-24 v 2.1

Laboration D181. ELEKTRONIK Digitalteknik. Kombinatoriska kretsar, HCMOS. 2008-01-24 v 2.1 UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Christer Ardlin/Lars Wållberg/ Dan Weinehall/Håkan Joëlson 2008-01-24 v 2.1 ELEKTRONIK Digitalteknik Laboration D181 Kombinatoriska kretsar,

Läs mer

F5 Introduktion till digitalteknik

F5 Introduktion till digitalteknik Exklusiv eller XOR F5 Introduktion till digitalteknik EDAA05 Roger Henriksson Jonas Wisbrant På övning 2 stötte ni på uttrycket x = (a b) ( a b) som kan utläsas antingen a eller b, men inte både a och

Läs mer

DIGITALTEKNIK. Laboration D161. Kombinatoriska kretsar och nät

DIGITALTEKNIK. Laboration D161. Kombinatoriska kretsar och nät UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik jörne Lindberg/Håkan Joëlson 2003-09-15 v 2.2 DIGITALTEKNIK Laboration D161 Kombinatoriska kretsar och nät Innehåll Uppgift 1...Grundläggande

Läs mer

Styrteknik: Grundläggande logiska funktioner D2:1

Styrteknik: Grundläggande logiska funktioner D2:1 Styrteknik: Grundläggande logiska funktioner D2:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik: Grundläggande logiska funktioner

Läs mer

Kap. 7 Logik och boolesk algebra

Kap. 7 Logik och boolesk algebra Ka. 7 Logik och boolesk algebra Satslogik Fem logiska konnektiv: ej, och, eller, om-så, omm Begre: sats, sanningsvärde, sanningsvärdestabell tautologi, kontradiktion Egenskaer: Räkneregler för satslogik

Läs mer

F5 Introduktion till digitalteknik

F5 Introduktion till digitalteknik George Boole och paraplyet F5 Introduktion till digitalteknik EDAA05 Roger Henriksson Jonas Wisbrant p = b! (s " r) George Boole (1815-1864) Professor i Matematik, Queens College, Cork, Irland 2 Exklusiv

Läs mer

Switchnätsalgebra. Negation, ICKE NOT-grind (Inverterare) Konjunktion, OCH AND-grind. Disjunktion, ELLER OR-grind

Switchnätsalgebra. Negation, ICKE NOT-grind (Inverterare) Konjunktion, OCH AND-grind. Disjunktion, ELLER OR-grind Dagens öreläsning behandlar: Läroboken kapitel 3 Arbetsboken kapitel,3 Ur innehållet: Satslogik och Grindar Funktionstabell Binär evaluering Normal orm/förenklad orm/ Minimal orm Karnaughdiagram Negation,

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Instittionen för data- och informationsteknik Chalmers tekniska högskola Från data till digitala byggblock: Krsens inledande föreläsningarna

Läs mer

T1-modulen Lektionerna 10-12. Radioamatörkurs OH6AG - 2011 OH6AG. Bearbetning och översättning: Thomas Anderssén, OH6NT Heikki Lahtivirta, OH2LH

T1-modulen Lektionerna 10-12. Radioamatörkurs OH6AG - 2011 OH6AG. Bearbetning och översättning: Thomas Anderssén, OH6NT Heikki Lahtivirta, OH2LH T1-modulen Lektionerna 10-12 Radioamatörkurs OH6AG - 2011 Bearbetning och översättning: Thomas Anderssén, OH6NT Original: Heikki Lahtivirta, OH2LH 1 Logikkretsar Logikkretsarna är digitala mikrokretsar.

Läs mer

Moment 2 - Digital elektronik. Föreläsning 1 Binära tal och logiska grindar

Moment 2 - Digital elektronik. Föreläsning 1 Binära tal och logiska grindar Moment 2 - Digital elektronik Föreläsning 1 Binära tal och logiska grindar Jan Thim 1 F1: Binära tal och logiska grindar Innehåll: Introduktion Talsystem och koder Räkna binärt Logiska grindar Boolesk

Läs mer

Tentamen i IE1204/5 Digital Design onsdagen den 5/

Tentamen i IE1204/5 Digital Design onsdagen den 5/ Tentamen i IE1204/5 Digital Design onsdagen den 5/6 2013 9.00-13.00 Tentamensfrågor med lösningsförslag Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista

Läs mer

Föreläsning 4/11. Lite om logiska operationer. Hambley avsnitt 12.7, 14.1 (7.3 för den som vill läsa lite mer om grindar)

Föreläsning 4/11. Lite om logiska operationer. Hambley avsnitt 12.7, 14.1 (7.3 för den som vill läsa lite mer om grindar) 1 Föreläsning 4/11 Hambley avsnitt 12.7, 14.1 (7.3 för den som vill läsa lite mer om grindar) Lite om logiska operationer Logiska variabler är storheter som kan anta två värden; sann 1 falsk 0 De logiska

Läs mer

DIGITALA TAL OCH BOOLESK ALGEBRA

DIGITALA TAL OCH BOOLESK ALGEBRA DIGITALA TAL OCH BOOLESK ALGEBRA Innehåll Talsystem och koder Aritmetik för inära tal Grundläggande logiska operationer Logiska grindar Definitioner i Boolesk algera Räknelagar BINÄRA TALSYSTEMET Binärt

Läs mer

Laboration D151. Kombinatoriska kretsar, HCMOS. Namn: Datum: Epostadr: Kurs:

Laboration D151. Kombinatoriska kretsar, HCMOS. Namn: Datum: Epostadr: Kurs: UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Christer Ardlin/Lars Wållberg/ Håkan Joëlson 2000-01-28 v 2.3 ELEKTRONIK Digitalteknik Laboration D151 Kombinatoriska kretsar, HCMOS Namn:

Läs mer

Tentamen i Digital Design

Tentamen i Digital Design Kungliga Tekniska Högskolan Tentamen i Digital Design Kursnummer : Kursansvarig: 2B56 :e fo ingenjör Lars Hellberg tel 79 7795 Datum: 27-5-25 Tid: Kl 4. - 9. Tentamen rättad 27-6-5 Klagotiden utgår: 27-6-29

Läs mer

Digitalteknik F4. NOR-labben. Digitalteknik F1b bild 1

Digitalteknik F4. NOR-labben. Digitalteknik F1b bild 1 Digitalteknik F4 NOR-labben Digitalteknik F1b bild 1 Att implementera en funktion Utgångsläge: En funktion: A B C ƒ 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 ƒ(abc) = A BC + A BC

Läs mer

Introduktion till logik

Introduktion till logik Introduktion till logik Av Johan Johansson Johan.johansson@guldstadsgymnasiet.se Logik sägs som många andra saker komma från de grekiska filosoferna, och ordet kommer också därifrån. Grekerna kallade det

Läs mer

Maurice Karnaugh. Karnaugh-diagrammet gör det enkelt att minimera Boolska uttryck! William Sandqvist

Maurice Karnaugh. Karnaugh-diagrammet gör det enkelt att minimera Boolska uttryck! William Sandqvist Maurice Karnaugh Karnaugh-diagrammet gör det enkelt att minimera Boolska uttryck! En funktion av fyra variabler a b c d Sanningstabellen till höger innehåller 11 st 1:or och 5 st 0:or. Funktionen kan uttryckas

Läs mer

Digital- och datorteknik

Digital- och datorteknik LEU Digital- och datorteknik, Chalmers, /6 Föreläsning # Uppdaterad 6 september, Digital- och datorteknik Föreläsning # Biträdande professor Jan Jonsson SP- och PS-form: Vid förra föreläsningen konstaterade

Läs mer

Tentamen i TTIT07 Diskreta Strukturer

Tentamen i TTIT07 Diskreta Strukturer Tentamen i TTIT07 Diskreta Strukturer 2004-10-28, kl 8 13, TER1 och TERC Inga hjälpmedel är tillåtna Kom ihåg att svaren på samtliga uppgifter måste MOTIVERAS, och att motiveringarna skall vara uppställda

Läs mer

Digitalteknik syntes Arne Linde 2012

Digitalteknik syntes Arne Linde 2012 Digitalteknik, fortsättningskurs Föreläsning 3 Kombinatoriska nät 202 VHDL repetition + Strukturell VHDL Lite repetition + Karnaughdiagram(4-6var), flera utgångar + Quine-McCluskey + intro tid 2 Entity

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2011-08-26 Skrivtid 9.00-14.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna hjälpmedel

Läs mer

Logik. Boolesk algebra. Logik. Operationer. Boolesk algebra

Logik. Boolesk algebra. Logik. Operationer. Boolesk algebra Logik F4 Logik Boolesk algebra EDAA05 Roger Henriksson Jonas Wisbrant Konsten att, och vetenskapen om, att resonera och dra slutsatser. Vad behövs för att man ska kunna dra en slutsats? Hur kan man dra

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE204 Kursomgång för Högskoleingenjörsinriktningarna: Datateknik, Elektronik och Datorteknik. Kandidatinriktningen: Informations- och Kommunikationsteknik F3 Asynkrona sekvensnät del 2 william@kth.se

Läs mer

IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare

IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare Sekvensiella System a(t) f(a(t)) Ett sekvensiellt system har ett inbyggt minne - utsignalen beror därför BÅDE av insignalens NUVARANDE

Läs mer

IE1204/IE1205 Digital Design

IE1204/IE1205 Digital Design TENTAMEN IE1204/IE1205 Digital Design 2012-12-13, 09.00-13.00 Inga hjälpmedel är tillåtna! Hjälpmedel Tentamen består av tre delar med sammanlagd tolv uppgifter, och totalt 30 poäng. Del A1 (Analys) innehåller

Läs mer

Lösningförslag till Exempel på tentamensfrågor Digitalteknik I.

Lösningförslag till Exempel på tentamensfrågor Digitalteknik I. Lösningförslag till Exempel på tentamensfrågor Digitalteknik I.. Uttryckt i decimal form: A=28+32+8 + 2 =70 B=59 C=7 A+B+C=246 2. Jag låter A' betyda "icke A" A'B'C'D'+ABC'D'+A'BCD'+AB'CD'=D'(A'(B'C'+BC)+A(BC'+B'C))=

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #9 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola ekvensnät Vad kännetecknar ett sekvensnät? I ett sekvensnät

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2010-08-27 Skrivtid 9.00-14.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna

Läs mer

Översikt, kursinnehåll

Översikt, kursinnehåll Översikt, kursinnehåll Specifikation av digitala funktioner och system Digitala byggelement Kombinatoriska system Digital Aritmetik Synkrona system och tillståndsmaskiner Asynkrona system och tillståndsmaskiner

Läs mer

Tentamen i IE1204/5 Digital Design Torsdag 29/

Tentamen i IE1204/5 Digital Design Torsdag 29/ Tentamen i IE1204/5 Digital Design Torsdag 29/10 2015 9.00-13.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist

Läs mer

Laboration Kombinatoriska kretsar

Laboration Kombinatoriska kretsar Laboration Kombinatoriska kretsar Digital Design IE1204/5 Observera! För att få laborera måste Du ha: bokat en laborationstid i bokningssystemet (Daisy). löst ditt personliga web-häfte med förkunskapsuppgifter

Läs mer

Quine McCluskys algoritm

Quine McCluskys algoritm Quine McCluskys algoritm Tabellmetod för att systematiskt finna alla primimplikatorer ƒ(a,b,c,d) = m(4,5,6,8,9,0,3) + d(0,7,5) Moment : Finn alla primimplikatorer Steg: Fyll i alla mintermer i kolumn.

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE204 F3 Asynkrona sekvensnät del 2 william@kth.se IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska kretsar

Läs mer

2.1 Disjunktiv och konjunktiv normalform

2.1 Disjunktiv och konjunktiv normalform Kapitel 2 Booleska funktioner 2. Disjunktiv och konjunktiv normalform Låt x,..., x n vara booleska variabler. En boolesk funktion f(x,..., x n ) är då en funktion av variablerna x,..., x n som antar något

Läs mer

Repetition delay-element

Repetition delay-element Repetition delay-element Synkront sekvensnät Klockad vippa Asynkront sekvensnät ett konstgrepp: Delay-element Andra beteckningar: Y och y Gyllene regeln Endast EN signal åt gången ändras Exitationstabell

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2012-12-17 Skrivtid 9.00-14.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna hjälpmedel

Läs mer

Hur implementera algoritmerna på maskinnivå - datorns byggstenar

Hur implementera algoritmerna på maskinnivå - datorns byggstenar Hur implementera algoritmerna på maskinnivå - datorns byggstenar Binära tal Boolesk logik grindar och kretsar A A extern representation intern representation minnet i datorn extern representation 1000001

Läs mer

IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare

IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare IE1205 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska

Läs mer

Introduktion till xdigiflex-simulatorn

Introduktion till xdigiflex-simulatorn Introduktion till xdigiflex-simulatorn Installera simulatorprogrammet xdigiflex om detta inte är gjort tidigare. (Det finns en länk till ett installationsprogram på kurshemsidan.) Starta sedan xdigiflex!

Läs mer

Booleska variabler och översättning mellan programuttryck och booleska variabler

Booleska variabler och översättning mellan programuttryck och booleska variabler Vad är Boolesk algebra Lite förenklat kan man säga att Boolesk algebra är räkneregler konstruerade av den engelske matematikern Gerge Boole för att kunna räkna med logiska uttryck. I den booleska algebran

Läs mer

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum Laboration 6 A/D- och D/A-omvandling A/D-omvandlare Digitala Utgång V fs 3R/2 Analog Sample R R D E C O D E R P/S Skiftregister R/2 2 N-1 Komparatorer Digital elektronik Halvledare, Logiska grindar Digital

Läs mer

INNEHÅLL. Inledning...1. Talsystem...2. Logiska funktioner...12. Logiska kretsar i praktiken...19. Elektrostatisk urladdning (ESD)...

INNEHÅLL. Inledning...1. Talsystem...2. Logiska funktioner...12. Logiska kretsar i praktiken...19. Elektrostatisk urladdning (ESD)... INNEHÅLL Inledning... Talsystem...2 Logiska funktioner...2 Logiska kretsar i praktiken...9 Elektrostatisk urladdning (ESD)...2 - Introduktion övningsmoduler...23 2 - NOT-grind...24 3 - ND-grind...25 4

Läs mer

Digital elektronik CL0090

Digital elektronik CL0090 Digital elektronik CL9 Föreläsning 3 27--29 8.5 2. My Talsystem Binära tal har basen 2 Exempel Det decimala talet 9 motsvarar 2 Den första ettan är MSB, Most Significant Bit, den andra ettan är LSB Least

Läs mer

IE1205 Digital Design: F13: Asynkrona Sekvensnät (Del 2)

IE1205 Digital Design: F13: Asynkrona Sekvensnät (Del 2) IE25 Digital Design: F3: Asynkrona Sekvensnät (Del 2) Rep. Tillståndsmaskiner LT_I_EURO (a) (b) (c) COIN_PRESENT COIN_PRESENT COIN_PRESENT COIN_PRESENT Tillståndsmaskiner styr sekvenser av händelser. Övergångar

Läs mer

IE1205 Digital Design: F10: Synkrona tillståndsautomater del 2

IE1205 Digital Design: F10: Synkrona tillståndsautomater del 2 IE1205 Digital Design: F10: Synkrona tillståndsautomater del 2 Sekvensnät Om en och samma insignal kan ge upphov till olika utsignal, är logiknätet ett sekvensnät. Det måste då ha ett inre minne som gör

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #5 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Vad är ett bra grindnät? De egenskaper som betraktas som

Läs mer

Lösningsföslag till Exempel på tentamensuppgifter i Digitalteknik I

Lösningsföslag till Exempel på tentamensuppgifter i Digitalteknik I Lösningsföslag till Exempel på tentamensuppgifter i Digitalteknik I Flervalsfrågor. A 2. C 3. B 4. D 5. A 6. B 7. C 8. D 9. C 0. B. B 2. C 3. A 4. C 5. A Problemuppgifter. Uttryckt i decimal form: A=28+32+8

Läs mer

Grundläggande digitalteknik

Grundläggande digitalteknik Grundläggande digitalteknik Jan Carlsson Inledning I den verkliga världen vet vi att vi kan få vilka värden som helst när vi mäter på något. En varm sommardag visar termometern kanske 6, 7 C. Men när det

Läs mer

Transistorn en omkopplare utan rörliga delar

Transistorn en omkopplare utan rörliga delar Transistorn en omkopplare utan rörliga delar Gate Source Drain Principskiss för SiGe transistor (KTH) Varför CMOS? CMOS-Transistorer är enkla att tillverka CMOS-Transistorer är gjorda av vanlig sand =>

Läs mer

Laboration Kombinatoriska kretsar

Laboration Kombinatoriska kretsar Laboration Kombinatoriska kretsar Digital Design IE1204/5 Observera! För att få laborera måste Du ha: en bokad laborationstid i bokningssystemet (Daisy). löst ditt personliga web-häfte med förkunskapsuppgifter

Läs mer

Övningshäfte 1: Logik och matematikens språk

Övningshäfte 1: Logik och matematikens språk GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE204 F9 Tillståndsautomater del william@kth.se IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska kretsar F7

Läs mer

Diskret matematik: Övningstentamen 4

Diskret matematik: Övningstentamen 4 Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen

Läs mer

ÅBO AKADEMI LOGIKSTYRNING. Hannu Toivonen Jari Böling. Augusti 2012. Biskopsgatan 8 FIN 20500 Åbo Finland

ÅBO AKADEMI LOGIKSTYRNING. Hannu Toivonen Jari Böling. Augusti 2012. Biskopsgatan 8 FIN 20500 Åbo Finland ÅBO AKADEMI TEKNISKA FAKULTETEN Laboratoriet för reglerteknik DEPARTMENT OF ENGINEERING Process Control Laboratory LOGIKSTYRNING Hannu Toivonen Jari Böling Augusti 202 Biskopsgatan 8 FIN 20500 Åbo Finland

Läs mer

Grindar och transistorer

Grindar och transistorer Föreläsningsanteckningar Föreläsning 17 - Digitalteknik I boken: nns ej med Grindar och transistorer Vi ska kort beskriva lite om hur vi kan bygga upp olika typer av grindar med hjälp av transistorer.

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2008-08-29 Skrivtid 9.00-13.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Johan Eriksson Tel 070 589 7911 Tillåtna

Läs mer

Tentamen i IE Digital Design Fredag 21/

Tentamen i IE Digital Design Fredag 21/ Tentamen i IE204-5 Digital Design Fredag 2/0 206 09.00-3.00 Allmän information (TCOMK, Ask for an english version of this exam if needed) Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist

Läs mer

IE1205 Digital Design: F3 : CMOS-kretsen, Implementeringsteknologier. Fredrik Jonsson KTH/ICT/ES

IE1205 Digital Design: F3 : CMOS-kretsen, Implementeringsteknologier. Fredrik Jonsson KTH/ICT/ES IE1205 Digital Design: F3 : CMOS-kretsen, Implementeringsteknologier Fredrik Jonsson KTH/ICT/ES fjon@kth.se Transistorn en omkopplare utan rörliga delar Gate Source Drain Principskiss för SiGe ( KTH )

Läs mer

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55 Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att

Läs mer

Grundläggande logik och modellteori (5DV102)

Grundläggande logik och modellteori (5DV102) Tentamen 2013-10-31 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 11 Maximalt antal poäng 30 Krav för 3 i betyg 14 poäng Krav för 4 i betyg 19 poäng,

Läs mer

TSIU05 Digitalteknik. LAB1 Kombinatorik LAB2 Sekvensnät LAB3 System

TSIU05 Digitalteknik. LAB1 Kombinatorik LAB2 Sekvensnät LAB3 System 1 TSIU05 Digitalteknik LAB1 Kombinatorik LAB2 Sekvensnät LAB3 System Sammanställning september 2013 Läs detta först Läs igenom hela laborationen så du vet vad du skall göra på laborationspasset. Hela

Läs mer

Digital- och datorteknik

Digital- och datorteknik Dessa sidor innehåller ett antal typ-prov som delas ut vid laborationerna. Syfte med dessa prov är att du skall känna att du hänger med på kursen att vi som godkänner dig på laborationsmomenten ser att

Läs mer

Sekvensnät. William Sandqvist

Sekvensnät. William Sandqvist Sekvensnät Om en och samma insignal kan ge upphov till olika utsignal, är logiknätet ett sekvensnät. Det måste då ha ett inre minne som gör att utsignalen påverkas av både nuvarande och föregående insignaler!

Läs mer

De grundläggande logiska grindarna

De grundläggande logiska grindarna dlab00a Namn Datum Handledarens sign. Laboration De grundläggande logiska grindarna Varför denna laboration? Till de grundläggande digitala kretsarna brukar man räkna kretsar som innehåller NND- och NORgrindar.

Läs mer

Digital Aritmetik Unsigned Integers Signed Integers"

Digital Aritmetik Unsigned Integers Signed Integers Digital Aritmetik Unsigned Integers Signed Integers" Slides! Per Lindgren! EISLAB! Per.Lindgren@ltu.se! Original Slides! Ingo Sander! KTH/ICT/ES! ingo@kth.se! Talrepresentationer" Ett tal kan representeras

Läs mer

Repetition och sammanfattning av syntes och analys av sekvensnät

Repetition och sammanfattning av syntes och analys av sekvensnät Repetition och sammanfattning av syntes och analys av sekvensnät Sekvensnät = ihopkoppling av sekvenskretsar Består i praktiken av - minnesdel (sekvenskretsar) - kombinatorisk del. Sekvenskretsar = kretsar

Läs mer

Digitalitet. Kontinuerlig. Direkt proportionerlig mot källan. Ex. sprittermometer. Elektrisk signal som representerar ljud.

Digitalitet. Kontinuerlig. Direkt proportionerlig mot källan. Ex. sprittermometer. Elektrisk signal som representerar ljud. Analog Digitalitet Kontinuerlig Direkt proportionerlig mot källan Ex. sprittermometer Elektrisk signal som representerar ljud Diskret Digital Representation som siffror/symboler Ex. CD-skiva Varje siffra

Läs mer

Tentamen med lösningar i IE Digital Design Fredag 15/

Tentamen med lösningar i IE Digital Design Fredag 15/ Tentamen med lösningar i IE4-5 Digital Design Fredag 5/ 6 4.-8. Allmän information (TCOMK, Ask for an english version of this exam if needed Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandvist

Läs mer

DIGITALTEKNIK. Laboration D164. Logiska funktioner med mikroprocessor Kombinatoriska funktioner med PIC16F84 Sekvensfunktioner med PIC16F84

DIGITALTEKNIK. Laboration D164. Logiska funktioner med mikroprocessor Kombinatoriska funktioner med PIC16F84 Sekvensfunktioner med PIC16F84 UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Björne Lindberg Håkan Joëlson 2007-11-22 v 2.3 DIGITALTEKNIK Laboration D164 Logiska funktioner med mikroprocessor Kombinatoriska funktioner

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2009-08-28 Skrivtid 9.00-13.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna

Läs mer

Du har följande material: 1 Kopplingsdäck 2 LM339 4 komparatorer i vardera kapsel. ( ELFA art.nr datablad finns )

Du har följande material: 1 Kopplingsdäck 2 LM339 4 komparatorer i vardera kapsel. ( ELFA art.nr datablad finns ) Projektuppgift Digital elektronik CEL08 Syfte: Det här lilla projektet har som syfte att visa hur man kan konverterar en analog signal till en digital. Här visas endast en metod, flash-omvandlare. Uppgift:

Läs mer

TDP007 Konstruktion av datorspråk Hemtentamen

TDP007 Konstruktion av datorspråk Hemtentamen TDP007 Konstruktion av datorspråk Hemtentamen 2008-08-20 Hemtentamen är kompletterings- och omexaminationstillfälle för de studenter som missat hela eller delar av inlämningar och seminarier, moment LAB1,

Läs mer

Övningar och datorlaborationer, Datorer i system

Övningar och datorlaborationer, Datorer i system LUNDS TEKNISKA HÖGSKOLA Datorer i system Institutionen för datavetenskap 2013/14 Övningar och datorlaborationer, Datorer i system Kursen Datorer i system inkluderar under läsperiod HT1 två övningar i seminariesal

Läs mer

Logik och kontrollstrukturer

Logik och kontrollstrukturer Logik och kontrollstrukturer Flödet av instruktioner i ett programmeringsspråk bygger vi upp med hjälp av dess kontrollstrukturer. I C har vi exemplen if, if else, while, do while. Dessutom finns switch

Läs mer

Tentamen EDAA05 Datorer i system

Tentamen EDAA05 Datorer i system LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Tentamen EDAA05 Datorer i system 2011 10 17, 8.00 13.00 Tillåtna hjälpmedel: bifogad formel- och symbolsamling. För godkänt betyg på tentamen

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Talrepresentation. Heltal, positiva heltal (eng. integers)

Talrepresentation. Heltal, positiva heltal (eng. integers) Talrepresentation Ett tal kan representeras binärt på många sätt. De vanligaste taltyperna som skall representeras är: Heltal, positiva heltal (eng. integers) ett-komplementet, två-komplementet, sign-magnitude

Läs mer

ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.

ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband. MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

5:2 Digitalteknik Boolesk algebra. Inledning OCH-funktionen

5:2 Digitalteknik Boolesk algebra. Inledning OCH-funktionen 5:2 Digitalteknik Boolesk algebra. Inledning I en dator representeras det binära talsystemet med signaler i form av elektriska spänningar. 0 = 0 V (låg spänning), 1 = 5 V(hög spänning). Datorn kombinerar

Läs mer

Digital och Datorteknik

Digital och Datorteknik Digital och Datorteknik Dig o Dat = DoD LEU43 LP-LP2 Mekatronik Digital och Datorteknik OH LV Kursens mål: Fatta hur en dator är uppbyggd (HDW) Fatta hur du du programmerar den (SW) Fatta hur HDW o SW

Läs mer

Grunderna i stegkodsprogrammering

Grunderna i stegkodsprogrammering Kapitel 1 Grunderna i stegkodsprogrammering Följande bilaga innehåller grunderna i stegkodsprogrammering i den form som används under kursen. Vi kommer att kort diskutera olika datatyper, villkor, operationer

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2015 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2009-06-04 Skrivtid 9.00-13.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik Cederlöf Per Liljas Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D1 2001-05-28 Tentamen omfattar 40 poäng, 2 poäng för varje uppgift. 20 poäng ger godkänd tentamen. Tillåtet

Läs mer

Mattias Wiggberg Collaboration

Mattias Wiggberg Collaboration Informationsteknologi sommarkurs 5p, 24 Mattias Wiggberg Dept. of Information Technology Box 337 SE75 5 Uppsala +46 847 3 76 Collaboration Jakob Carlström Binära tal Slideset 5 Agenda Binära tal Talbaser

Läs mer

JavaScript del 3 If, Operatorer och Confirm

JavaScript del 3 If, Operatorer och Confirm JavaScript del 3 If, Operatorer och Confirm Under förra uppgiften så kollade vi på hur användaren kan ge oss information via promt(), vi använde den informationen både för att skriva ut den och för att

Läs mer