SMD033 Digitalteknik. Digitalteknik F1 bild 1

Storlek: px
Starta visningen från sidan:

Download "SMD033 Digitalteknik. Digitalteknik F1 bild 1"

Transkript

1 SMD033 Digitalteknik Digitalteknik F1 bild 1

2 Vi som undervisar Anders Hansson A Digitalteknik F1 bild 2

3 Registrering Registrering via till Digitalteknik F1 bild 3

4 Kursuppläggning Föreläsningar 15 st Övningar 3 st Laboration 2 st Konstruktionsuppgift 2 st Digitalteknik F1 bild 4

5 Litteratur Huvudtext: Wakerly: Digital design, Principles and practices Prentice Hall Kompletterande kursmaterial: LuTH: Laborationer/konstruktionsuppgifter LuTH: Manualer till datorverktyg etc Information under kursens gång: (sätt ett bokmärke på den sidan!) Digitalteknik F1 bild 5

6 Var används digitalteknik? Styrning / övervakning av apparater : Diskmaskiner TV / Video Trafikljus Bilmotorer Räknande apparater (databeh. system): Kalkylatorer Datorer Telefoner Digitalteknik F1 bild 6

7 Karaktäristiskt: Information som hanteras kodas med symbolerna 1 och 0. Talsystem och koder Digitalteknik F1 bild 7

8 Några begrepp: Insignaler Utsignaler Digital funktion ƒ Digitalteknik F1 bild 8

9 Kombinatoriska kretsar Utsignalerna beror endast av insignalerna: Insignaler Utsignaler Digital funktion ƒ Digitalteknik F1 bild 9

10 Sekventiella kretsar Utsignalerna beror av insignal och gammalt tillstånd: Insignaler Utsignaler Digital funktion ƒ ( ) Minneselement M Synk Digitalteknik F1 bild 10

11 Komponenter Grindar Vippor MSI-kretsar Kombinatoriska adderare multiplexer jämförare Sekventiella räknare register Programmerbara kretsar Digitalteknik F1 bild 11

12 Arbetssätt och verktyg Arbetssätt/ verktyg Manuella metoder Datorbaserade metoder Boolesk algebra Karnaughdiagram Tillståndstabeller och -diagram Simulering Prototypuppkoppling Secifikationsspråk Optimeringsprogram Kretsgenerering Digitalteknik F1 bild 12

13 Kombinatoriska kretsar Att beskriva funktionen hos en kombinatorisk krets: Funktionstabell: Alla kombinationer av in- och utsignaler skrivs upp systematiskt. Logikekvationer: Funktionen beskrivs med hjälp av Boolesk algebra. Logikschema: Funktionen beskrivs med hjälp av symboler för enklare kretsar. Designspråk: Funktionen beskrivs med ett formellt språk. Alla beskrivningar av en given krets är ekvivalenta. Digitalteknik F1 bild 13

14 Funktionstabell Insignaler 3 2 rader 3 insignaler > 8 möjliga komb. 1 utsignal 8 > 2 möjliga komb. A B C ƒ Utsignal(er) Digitalteknik F1 bild 14

15 Logikschema A 1 & B 1 & 1 ƒ C 1 & Digitalteknik F1 bild 15

16 Logikekvationer ƒ = A BC + A BC + AB C Digitalteknik F1 bild 16

17 Designspråk module combinatorial_function Input pins A, B,C pin 1,2,3; output pins ƒ pin 4; equations ƒ = /A*B*/C + /A*B*C + A*/B*C; end combinatorial_function Digitalteknik F1 bild 17

18 Boolesk algebra En algebra (system med räkneregler, funktionsvärden etc) som lämpar sig för digitalteknik. Vi kan använda Boolesk algebra för att: beskriva Booleska (digitala) funktioner. skriva om Booleska funktioner till en mer ändamålsenlig form. förstå den teoretiska grunden för det som görs dolt i datorprogram för digital konstruktion Digitalteknik F1 bild 18

19 Boolesk algebra Det formella regelsystem (den matematik) som används för att beskriva och bearbeta digitala funktioner. Bygger på Axiom (postulat) Härledda satser som kan bevisas m h a axiomen m h a perfekt induktion Digitalteknik F1 bild 19

20 Boolesk algebra axiom Två element, 0 och 1. Två operationer, och (* och +) som satisfierar: x * 0 = 0 x + 1 = 1 begränsningar x * 1 = x x + 0 = x x * y = y * x x + y = y + x kommutativa lagar x * (y + z) = x * y + x * z distributiva x + y * z = (x + y) * (x + z) lagar 0 = 1 1 = 0 invers Digitalteknik F1 bild 20

21 Boolesk algebra några satser (x + y) + z = x + (y + z) associativa (x * y) * z = x * (y * z) lagar (x + y) = x * y demorgans (x * y) = x + y lagar x + x * y = x x * (x + y) = x absorbtion x + x = 1 x * x = 0 komplement x * y + x * z = x * y + x * z + y * z (x + y)*(x + z) = (x + y)*(x + z)*(y + z) konsensus Digitalteknik F1 bild 21

22 Disjunktiv normalform A B C ƒ Rader där ƒ = 1: ABC = 0 1 0; 0 1 1; Motsvarande Booleska uttryck kallas mintermer: A BC A BC AB C Den fullständiga funktionen ges på disjunktiv normalform (summa av produkter): ƒ(abc) = A BC + A BC + AB C Alla insignaler återfinns i samtliga termer! Digitalteknik F1 bild 22

23 Konjunktiv normalform A B C ƒ Rader där ƒ = 0: ABC = 0 0 0; 0 0 1; 1 0 0; 1 1 0; Motsvarande Booleska uttryck kallas maxtermer: (A + B + C) (A + B + C ) (A + B + C) (A + B + C) (A + B + C ) Den fullständiga funktionen ges på konjunktiv normalform (produkt av summor): ƒ(abc) = (A + B + C) * (A + B + C ) * (A + B + C) * (A + B + C) * (A + B + C ) Digitalteknik F1 bild 23

24 Normalformer De disjunktiva och konjunktiva normalformerna består av fullständiga minrespektive maxtermer. Alternativa (kortare) skrivsätt: ƒ(abc) = (2,3,5) ƒ(abc) = (0,1,4,6,7) Digitalteknik F1 bild 24

25 Normalformer och logiksymboler A BC > A B C & A+B+C > A+B+C > A B C A B C 1 1 A BC > A B C & 1 ƒ A +B+C > A B C 1 & ƒ AB C > A B C & A +B +C > A +B +C > A B C A B C 1 1 A 1 A B 1 B C 1 C Digitalteknik F1 bild 25

26 Logiksymboler A B and or nand nor xor & 1 & 1 =1 Digitalteknik F1 bild 26

27 demorgans lagar demorgans lagar gör det möjligt att växla mellan AND- och OR-funktioner: (ab) = a + b > & = 1 (a+b) = a b > 1 = & Digitalteknik F1 bild 27

28 demorgan exempel 1 ƒ = abc + a bc ƒ = (abc + a bc) ƒ = ((abc ) (a bc) ) a b c a b c & & = 1 ƒ ƒ = ƒ = ((abc ) (a bc) ) a b c a b c & & & ƒ Digitalteknik F1 bild 28

29 demorgan exempel 2 Funktionstabell: ABCD ƒ ƒ = a b cd + a bc d + ab c d + abcd ƒ = (a b cd + a bc d + ab c d + abcd ) ƒ = (a b cd ) * (a bc d ) * (ab c d) * (abcd ) ƒ = ((a b cd ) * (a bc d ) * (ab c d) * (abcd ) ) Vår disjunktiva normalform har transformerats till ett uttryck på nand-nand-form. Digitalteknik F1 bild 29

30 demorgan exempel 3 Funktionstabell: ABCD ƒ ƒ = (a+b+c +d ) * (a+b +c+d) * (a+b +c +d ) * (a +b +c+d ) ƒ = ((a+b+c +d ) * (a+b +c+d) * (a+b +c +d ) * (a +b +c+d )) ƒ = (a+b+c +d ) + (a+b +c+d) + (a+b +c +d ) + (a +b +c+d ) ƒ = ((a+b+c +d ) + (a+b +c+d) + (a+b +c +d ) + (a +b +c+d ) ) Vår konjunktiva normalform har transformerats till ett uttryck på nor-nor-form. Digitalteknik F1 bild 30

31 Konstruktionsuppgifter NOR-labben: Du (ni) skall skriva ett program som givet en godtycklig funktionstabell implementerar funktionen med endast 2-ingångars NOR-grindar. 2. Multiplikatorn Du skall konstruera en krets som utför multiplikation på två 16-bitars tal. Det handlar om en sekventiell multiplikator som utför operationen i flera steg. Du kommer att använda ett grafiskt konstruktionshjälpmedel, GRTL Digitalteknik F1 bild 31

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Logikgrindar Från data till digitala byggblock: Kursens

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE24 F2 : Logiska Grindar och Kretsar, Boolesk Algebra william@kth.se IE24 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska

Läs mer

Laboration D181. ELEKTRONIK Digitalteknik. Kombinatoriska kretsar, HCMOS. 2008-01-24 v 2.1

Laboration D181. ELEKTRONIK Digitalteknik. Kombinatoriska kretsar, HCMOS. 2008-01-24 v 2.1 UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Christer Ardlin/Lars Wållberg/ Dan Weinehall/Håkan Joëlson 2008-01-24 v 2.1 ELEKTRONIK Digitalteknik Laboration D181 Kombinatoriska kretsar,

Läs mer

F5 Introduktion till digitalteknik

F5 Introduktion till digitalteknik Exklusiv eller XOR F5 Introduktion till digitalteknik EDAA05 Roger Henriksson Jonas Wisbrant På övning 2 stötte ni på uttrycket x = (a b) ( a b) som kan utläsas antingen a eller b, men inte både a och

Läs mer

Laborationshandledning

Laborationshandledning Laborationshandledning Utbildning: ED Ämne: TNE094 Digitalteknik och konstruktion Laborationens nummer och titel: Nr 3 Kombinatoriska nät Laborant: E-mail: Medlaboranters namn: Handledarens namn: Kommentarer

Läs mer

Styrteknik: Grundläggande logiska funktioner D2:1

Styrteknik: Grundläggande logiska funktioner D2:1 Styrteknik: Grundläggande logiska funktioner D2:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik: Grundläggande logiska funktioner

Läs mer

F5 Introduktion till digitalteknik

F5 Introduktion till digitalteknik George Boole och paraplyet F5 Introduktion till digitalteknik EDAA05 Roger Henriksson Jonas Wisbrant p = b! (s " r) George Boole (1815-1864) Professor i Matematik, Queens College, Cork, Irland 2 Exklusiv

Läs mer

IE1205 Digital Design. F2 : Logiska Grindar och Kretsar, Boolesk Algebra. Fredrik Jonsson KTH/ICT/ES

IE1205 Digital Design. F2 : Logiska Grindar och Kretsar, Boolesk Algebra. Fredrik Jonsson KTH/ICT/ES IE1205 Digital Design F2 : Logiska Grindar och Kretsar, oolesk Algebra Fredrik Jonsson KTH/ICT/ES fjon@kth.se Switch En switch har två lägen Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten Öppen x

Läs mer

Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck

Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck KOMBINATORISK LOGIK Innehåll Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck Boolesk algebra Karnaugh-diagram Realisering av logiska funktioner

Läs mer

Digitalteknik syntes Arne Linde 2012

Digitalteknik syntes Arne Linde 2012 Digitalteknik, fortsättningskurs Föreläsning 3 Kombinatoriska nät 202 VHDL repetition + Strukturell VHDL Lite repetition + Karnaughdiagram(4-6var), flera utgångar + Quine-McCluskey + intro tid 2 Entity

Läs mer

Kap. 7 Logik och boolesk algebra

Kap. 7 Logik och boolesk algebra Ka. 7 Logik och boolesk algebra Satslogik Fem logiska konnektiv: ej, och, eller, om-så, omm Begre: sats, sanningsvärde, sanningsvärdestabell tautologi, kontradiktion Egenskaer: Räkneregler för satslogik

Läs mer

Sanningstabell. En logisk funktion kan också beskrivas genom en sanningstabell (truth table) 1 står för sann (true) 0 står för falsk (false)

Sanningstabell. En logisk funktion kan också beskrivas genom en sanningstabell (truth table) 1 står för sann (true) 0 står för falsk (false) Sanningstabell En logisk funktion kan också beskrivas genom en sanningstabell (truth table) 1 står för sann (true) 0 står för falsk (false) ND OR Logiska grindar ND-grinden (OCH) IEC Symbol (International

Läs mer

Digitalteknik F4. NOR-labben. Digitalteknik F1b bild 1

Digitalteknik F4. NOR-labben. Digitalteknik F1b bild 1 Digitalteknik F4 NOR-labben Digitalteknik F1b bild 1 Att implementera en funktion Utgångsläge: En funktion: A B C ƒ 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 ƒ(abc) = A BC + A BC

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2010-08-27 Skrivtid 9.00-14.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #5 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Vad är ett bra grindnät? De egenskaper som betraktas som

Läs mer

Moment 2 - Digital elektronik. Föreläsning 1 Binära tal och logiska grindar

Moment 2 - Digital elektronik. Föreläsning 1 Binära tal och logiska grindar Moment 2 - Digital elektronik Föreläsning 1 Binära tal och logiska grindar Jan Thim 1 F1: Binära tal och logiska grindar Innehåll: Introduktion Talsystem och koder Räkna binärt Logiska grindar Boolesk

Läs mer

Tentamen i IE1204/5 Digital Design onsdagen den 5/

Tentamen i IE1204/5 Digital Design onsdagen den 5/ Tentamen i IE1204/5 Digital Design onsdagen den 5/6 2013 9.00-13.00 Tentamensfrågor med lösningsförslag Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista

Läs mer

EDA Digital och Datorteknik 2009/2010

EDA Digital och Datorteknik 2009/2010 EDA45 - Digital och Datorteknik 29/2 EDA 45 - Digital och Datorteknik 29/2, lärobokens kapitel 3 Ur innehållet: Satslogik och Boolesk algebra Grindar Funktionstabell Binär evaluering Normal orm/förenklad

Läs mer

Digital elektronik CL0090

Digital elektronik CL0090 Digital elektronik CL0090 Föreläsning 2 2007-0-25 08.5 2.00 Naos De logiska unktionerna implementeras i grindar. Här visas de vanligaste. Svenska IEC standard SS IEC 87-2 Amerikanska ANSI/IEEE Std.9.984

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2011-08-26 Skrivtid 9.00-14.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna hjälpmedel

Läs mer

Switch. En switch har två lägen. Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten. Öppen. Symbol. William Sandqvist

Switch. En switch har två lägen. Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten. Öppen. Symbol. William Sandqvist Switch En switch har två lägen Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten Öppen = = Symbol S Implementering av logiska funktioner Switchen kan användas för att implentera logiska funktioner Power

Läs mer

Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga.

Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga. GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2005 MATEMATISK BASKURS Övningshäfte 6: Syftet med övningen är att utforska strukturen hos talsystemen under addition respektive multiplikation samt sambandet

Läs mer

Tentamen i TTIT07 Diskreta Strukturer

Tentamen i TTIT07 Diskreta Strukturer Tentamen i TTIT07 Diskreta Strukturer 2004-10-28, kl 8 13, TER1 och TERC Inga hjälpmedel är tillåtna Kom ihåg att svaren på samtliga uppgifter måste MOTIVERAS, och att motiveringarna skall vara uppställda

Läs mer

IE1204/IE1205 Digital Design

IE1204/IE1205 Digital Design TENTAMEN IE1204/IE1205 Digital Design 2012-12-13, 09.00-13.00 Inga hjälpmedel är tillåtna! Hjälpmedel Tentamen består av tre delar med sammanlagd tolv uppgifter, och totalt 30 poäng. Del A1 (Analys) innehåller

Läs mer

Digitalteknik 7.5 hp distans: 5.1 Generella sekvenskretsar 5.1.1

Digitalteknik 7.5 hp distans: 5.1 Generella sekvenskretsar 5.1.1 Digitalteknik 7.5 hp distans: 5.1 Generella sekvenskretsar 5.1.1 Från Wikipedia: Sekvensnät Ett sekvensnäts utgångsvärde beror inte bara på indata, utan även i vilken ordning datan kommer (dess sekvens).

Läs mer

Grundläggande digitalteknik

Grundläggande digitalteknik Grundläggande digitalteknik Jan Carlsson Inledning I den verkliga världen vet vi att vi kan få vilka värden som helst när vi mäter på något. En varm sommardag visar termometern kanske 6, 7 C. Men när det

Läs mer

T1-modulen Lektionerna 10-12. Radioamatörkurs OH6AG - 2011 OH6AG. Bearbetning och översättning: Thomas Anderssén, OH6NT Heikki Lahtivirta, OH2LH

T1-modulen Lektionerna 10-12. Radioamatörkurs OH6AG - 2011 OH6AG. Bearbetning och översättning: Thomas Anderssén, OH6NT Heikki Lahtivirta, OH2LH T1-modulen Lektionerna 10-12 Radioamatörkurs OH6AG - 2011 Bearbetning och översättning: Thomas Anderssén, OH6NT Original: Heikki Lahtivirta, OH2LH 1 Logikkretsar Logikkretsarna är digitala mikrokretsar.

Läs mer

Switchnätsalgebra. Negation, ICKE NOT-grind (Inverterare) Konjunktion, OCH AND-grind. Disjunktion, ELLER OR-grind

Switchnätsalgebra. Negation, ICKE NOT-grind (Inverterare) Konjunktion, OCH AND-grind. Disjunktion, ELLER OR-grind Dagens öreläsning behandlar: Läroboken kapitel 3 Arbetsboken kapitel,3 Ur innehållet: Satslogik och Grindar Funktionstabell Binär evaluering Normal orm/förenklad orm/ Minimal orm Karnaughdiagram Negation,

Läs mer

Tentamen i Digital Design

Tentamen i Digital Design Kungliga Tekniska Högskolan Tentamen i Digital Design Kursnummer : Kursansvarig: 2B56 :e fo ingenjör Lars Hellberg tel 79 7795 Datum: 27-5-25 Tid: Kl 4. - 9. Tentamen rättad 27-6-5 Klagotiden utgår: 27-6-29

Läs mer

IE1205 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering

IE1205 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering IE25 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering Mintermer 2 3 OR f En minterm är en produktterm som innehåller alla variabler och som anger den kombination av :or och :or som

Läs mer

Digital- och datorteknik

Digital- och datorteknik Dessa sidor innehåller ett antal typ-prov som delas ut vid laborationerna. Syfte med dessa prov är att du skall känna att du hänger med på kursen att vi som godkänner dig på laborationsmomenten ser att

Läs mer

DIGITALTEKNIK. Laboration D173. Grundläggande digital logik

DIGITALTEKNIK. Laboration D173. Grundläggande digital logik UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Håkan Joëlson 2007-11-19 v 1.1 DIGITALTEKNIK Laboration D173 Grundläggande digital logik Innehåll Mål. Material.... Uppgift 1...Sanningstabell

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2008-08-29 Skrivtid 9.00-13.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Johan Eriksson Tel 070 589 7911 Tillåtna

Läs mer

Logik. Boolesk algebra. Logik. Operationer. Boolesk algebra

Logik. Boolesk algebra. Logik. Operationer. Boolesk algebra Logik F4 Logik Boolesk algebra EDAA05 Roger Henriksson Jonas Wisbrant Konsten att, och vetenskapen om, att resonera och dra slutsatser. Vad behövs för att man ska kunna dra en slutsats? Hur kan man dra

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2009-08-28 Skrivtid 9.00-13.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna

Läs mer

Laboration D151. Kombinatoriska kretsar, HCMOS. Namn: Datum: Epostadr: Kurs:

Laboration D151. Kombinatoriska kretsar, HCMOS. Namn: Datum: Epostadr: Kurs: UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Christer Ardlin/Lars Wållberg/ Håkan Joëlson 2000-01-28 v 2.3 ELEKTRONIK Digitalteknik Laboration D151 Kombinatoriska kretsar, HCMOS Namn:

Läs mer

Tentamen i Digitalteknik, EIT020

Tentamen i Digitalteknik, EIT020 Elektro- och informationsteknik Tentamen i Digitalteknik, EIT020 4 april 2013, kl 14-19 Skriv namn och årskurs på alla papper. Börja en ny lösning på ett nytt papper. Använd bara en sida av pappret. Lösningarna

Läs mer

DIGITALTEKNIK. Laboration D161. Kombinatoriska kretsar och nät

DIGITALTEKNIK. Laboration D161. Kombinatoriska kretsar och nät UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik jörne Lindberg/Håkan Joëlson 2003-09-15 v 2.2 DIGITALTEKNIK Laboration D161 Kombinatoriska kretsar och nät Innehåll Uppgift 1...Grundläggande

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Instittionen för data- och informationsteknik Chalmers tekniska högskola Från data till digitala byggblock: Krsens inledande föreläsningarna

Läs mer

Tentamen i IE1204/5 Digital Design Torsdag 29/

Tentamen i IE1204/5 Digital Design Torsdag 29/ Tentamen i IE1204/5 Digital Design Torsdag 29/10 2015 9.00-13.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist

Läs mer

DIGITALTEKNIK. Laboration D164. Logiska funktioner med mikroprocessor Kombinatoriska funktioner med PIC16F84 Sekvensfunktioner med PIC16F84

DIGITALTEKNIK. Laboration D164. Logiska funktioner med mikroprocessor Kombinatoriska funktioner med PIC16F84 Sekvensfunktioner med PIC16F84 UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Björne Lindberg Håkan Joëlson 2007-11-22 v 2.3 DIGITALTEKNIK Laboration D164 Logiska funktioner med mikroprocessor Kombinatoriska funktioner

Läs mer

Mintermer. SP-form med tre mintermer. William Sandqvist

Mintermer. SP-form med tre mintermer. William Sandqvist Mintermer OR f 2 3 En minterm är en produktterm som innehåller alla variabler och som anger den kombination av :or och :or som tillsammans gör att termen antar värdet. SP-form med tre mintermer. f = m

Läs mer

IE1205 Digital Design: F10: Synkrona tillståndsautomater del 2

IE1205 Digital Design: F10: Synkrona tillståndsautomater del 2 IE1205 Digital Design: F10: Synkrona tillståndsautomater del 2 Sekvensnät Om en och samma insignal kan ge upphov till olika utsignal, är logiknätet ett sekvensnät. Det måste då ha ett inre minne som gör

Läs mer

Digital och Datorteknik

Digital och Datorteknik Digital och Datorteknik Dig o Dat = DoD LEU43 LP-LP2 Mekatronik Digital och Datorteknik OH LV Kursens mål: Fatta hur en dator är uppbyggd (HDW) Fatta hur du du programmerar den (SW) Fatta hur HDW o SW

Läs mer

Digital elektronik CL0090

Digital elektronik CL0090 Digital elektronik CL9 Föreläsning 3 27--29 8.5 2. My Talsystem Binära tal har basen 2 Exempel Det decimala talet 9 motsvarar 2 Den första ettan är MSB, Most Significant Bit, den andra ettan är LSB Least

Läs mer

Sekvensnät Som Du kommer ihåg

Sekvensnät Som Du kommer ihåg Sekvensnät Som Du kommer ihåg Designmetodik Grundläggande designmetodik för tillståndsmaskiner. 1. Analysera specifikationen för kretsen 2. Skapa tillståndsdiagram 3. Ställ upp tillståndstabellen 4. Minimera

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2012-12-17 Skrivtid 9.00-14.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna hjälpmedel

Läs mer

Grindar och transistorer

Grindar och transistorer Föreläsningsanteckningar Föreläsning 17 - Digitalteknik I boken: nns ej med Grindar och transistorer Vi ska kort beskriva lite om hur vi kan bygga upp olika typer av grindar med hjälp av transistorer.

Läs mer

Laboration Kombinatoriska kretsar

Laboration Kombinatoriska kretsar Laboration Kombinatoriska kretsar Digital Design IE1204/5 Observera! För att få laborera måste Du ha: bokat en laborationstid i bokningssystemet (Daisy). löst ditt personliga web-häfte med förkunskapsuppgifter

Läs mer

DIGITALA TAL OCH BOOLESK ALGEBRA

DIGITALA TAL OCH BOOLESK ALGEBRA DIGITALA TAL OCH BOOLESK ALGEBRA Innehåll Talsystem och koder Aritmetik för inära tal Grundläggande logiska operationer Logiska grindar Definitioner i Boolesk algera Räknelagar BINÄRA TALSYSTEMET Binärt

Läs mer

Tentamen. EDA432 Digital och datorteknik IT INN790 Digital och datorteknik GU. Måndag 23 oktober 2006, kl i V-salar

Tentamen. EDA432 Digital och datorteknik IT INN790 Digital och datorteknik GU. Måndag 23 oktober 2006, kl i V-salar EDA432 Digital och datorteknik IT INN790 Digital och datorteknik GU Tentamen Måndag 23 oktober 2006, kl. 08.30 12.30 i V-salar Examinatorer Rolf Snedsböl, tel. 772 1665 Kontaktpersoner under tentamen Som

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2009-06-04 Skrivtid 9.00-13.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna

Läs mer

Lösningförslag till Exempel på tentamensfrågor Digitalteknik I.

Lösningförslag till Exempel på tentamensfrågor Digitalteknik I. Lösningförslag till Exempel på tentamensfrågor Digitalteknik I.. Uttryckt i decimal form: A=28+32+8 + 2 =70 B=59 C=7 A+B+C=246 2. Jag låter A' betyda "icke A" A'B'C'D'+ABC'D'+A'BCD'+AB'CD'=D'(A'(B'C'+BC)+A(BC'+B'C))=

Läs mer

Tentamen. EDA432 Digital- och datorteknik, It DIT790 Digital- och datorteknik, GU. Onsdag 12 Januari 2011, kl

Tentamen. EDA432 Digital- och datorteknik, It DIT790 Digital- och datorteknik, GU. Onsdag 12 Januari 2011, kl Institutionen för data- och informationsteknik CHALMERS TEKNISKA HÖGSKOLA Tentamen EDA432 Digital- och datorteknik, It DIT790 Digital- och datorteknik, GU Onsdag 12 Januari 2011, kl. 14.00-18.00 Examinatorer

Läs mer

Inledning. Kapitel 0. Det finns tre typer av regler- och styrproblem

Inledning. Kapitel 0. Det finns tre typer av regler- och styrproblem Kapitel 0 Inledning Det finns tre typer av regler- och styrproblem 1. Reglering och styrning av procesesser som kan beskrivas med hjälp av differential- eller differensekvationer. Ingående variabler beskrivs

Läs mer

Kursens mål: Grundläggande Datorteknik. Kursens Hemsida. Fatta hur en dator är uppbyggd (HDW) Fatta hur du du programmerar den (SW)

Kursens mål: Grundläggande Datorteknik. Kursens Hemsida. Fatta hur en dator är uppbyggd (HDW) Fatta hur du du programmerar den (SW) Grundläggande Datorteknik Kursens mål: Fatta hur en dator är uppbggd (HDW) Fatta hur du du programmerar den (SW) Fatta hur HDW o SW samverkar LP EDA433 (IT), DIT79 (GU) LP2 EDA45 (D), DIT79 (GU) LP3 EDA27

Läs mer

Institutionen för systemteknik, ISY, LiTH. Tentamen i. Tid: kl

Institutionen för systemteknik, ISY, LiTH. Tentamen i. Tid: kl Institutionen för systemteknik, ISY, LiTH Tentamen i Digitalteknik TSIU05/TEN1 Tid: 2016 10 26 kl. 14 18 Lokal : TER3 TER4 Ansvarig lärare: Michael Josefsson. Besöker lokalen kl 16. Tel.: 013-28 12 64

Läs mer

LABORATIONSINSTRUKTION

LABORATIONSINSTRUKTION Högskolan Dalarna Institutionen för Elektroteknik LABORATION LABORATIONSINSTRUKTION LOG/iC, PLD, kombinatorik, sekvensnät KURS Digitalteknik LAB NR 6 INNEHÅLL. Inledning 2. Prioritetskodare 3. Elektronisk

Läs mer

Tentamen i EDA320 Digitalteknik för D2

Tentamen i EDA320 Digitalteknik för D2 CHALMERS TEKNISKA HÖGSKOLA Institutionen för datorteknik Tentamen i EDA320 Digitalteknik för D2 Tentamenstid: onsdagen den 2 mars 997 kl 4.5-8.5. Sal: vv Examinator: Peter Dahlgren Tel. expedition 03-772677.

Läs mer

Övningar och datorlaborationer, Datorer i system

Övningar och datorlaborationer, Datorer i system LUNDS TEKNISKA HÖGSKOLA Datorer i system Institutionen för datavetenskap 2013/14 Övningar och datorlaborationer, Datorer i system Kursen Datorer i system inkluderar under läsperiod HT1 två övningar i seminariesal

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 03-05-3 Salar U, KÅRA, U3 Tid -8 Kurskod TSEA Provkod TEN Kursnamn Digitalteknik Institution ISY Antal uppgifter som ingår

Läs mer

Minneselement,. Styrteknik grundkurs. Digitala kursmoment. SR-latch med logiska grindar. Funktionstabell för SR-latchen R S Q Q ?

Minneselement,. Styrteknik grundkurs. Digitala kursmoment. SR-latch med logiska grindar. Funktionstabell för SR-latchen R S Q Q ? Styrteknik grundkurs Digitala kursmoment Binära tal, talsystem och koder Boolesk Algebra Grundläggande logiska grindar Minneselement, register, enkla räknare Analog/digital omvandling SR-latch med logiska

Läs mer

ÅBO AKADEMI LOGIKSTYRNING. Hannu Toivonen Jari Böling. Augusti 2012. Biskopsgatan 8 FIN 20500 Åbo Finland

ÅBO AKADEMI LOGIKSTYRNING. Hannu Toivonen Jari Böling. Augusti 2012. Biskopsgatan 8 FIN 20500 Åbo Finland ÅBO AKADEMI TEKNISKA FAKULTETEN Laboratoriet för reglerteknik DEPARTMENT OF ENGINEERING Process Control Laboratory LOGIKSTYRNING Hannu Toivonen Jari Böling Augusti 202 Biskopsgatan 8 FIN 20500 Åbo Finland

Läs mer

TSIU05 Digitalteknik. LAB1 Kombinatorik LAB2 Sekvensnät LAB3 System

TSIU05 Digitalteknik. LAB1 Kombinatorik LAB2 Sekvensnät LAB3 System 1 TSIU05 Digitalteknik LAB1 Kombinatorik LAB2 Sekvensnät LAB3 System Sammanställning september 2013 Läs detta först Läs igenom hela laborationen så du vet vad du skall göra på laborationspasset. Hela

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2010-06-01 Skrivtid 9.00-14.00 (5 timmar) Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376

Läs mer

Maurice Karnaugh. Karnaugh-diagrammet gör det enkelt att minimera Boolska uttryck! William Sandqvist

Maurice Karnaugh. Karnaugh-diagrammet gör det enkelt att minimera Boolska uttryck! William Sandqvist Maurice Karnaugh Karnaugh-diagrammet gör det enkelt att minimera Boolska uttryck! En funktion av fyra variabler a b c d Sanningstabellen till höger innehåller 11 st 1:or och 5 st 0:or. Funktionen kan uttryckas

Läs mer

2.1 Disjunktiv och konjunktiv normalform

2.1 Disjunktiv och konjunktiv normalform Kapitel 2 Booleska funktioner 2. Disjunktiv och konjunktiv normalform Låt x,..., x n vara booleska variabler. En boolesk funktion f(x,..., x n ) är då en funktion av variablerna x,..., x n som antar något

Läs mer

Översikt, kursinnehåll

Översikt, kursinnehåll Översikt, kursinnehåll Specifikation av digitala funktioner och system Digitala byggelement Kombinatoriska system Digital Aritmetik Synkrona system och tillståndsmaskiner Asynkrona system och tillståndsmaskiner

Läs mer

INNEHÅLL. Inledning...1. Talsystem...2. Logiska funktioner...12. Logiska kretsar i praktiken...19. Elektrostatisk urladdning (ESD)...

INNEHÅLL. Inledning...1. Talsystem...2. Logiska funktioner...12. Logiska kretsar i praktiken...19. Elektrostatisk urladdning (ESD)... INNEHÅLL Inledning... Talsystem...2 Logiska funktioner...2 Logiska kretsar i praktiken...9 Elektrostatisk urladdning (ESD)...2 - Introduktion övningsmoduler...23 2 - NOT-grind...24 3 - ND-grind...25 4

Läs mer

5:2 Digitalteknik Boolesk algebra. Inledning OCH-funktionen

5:2 Digitalteknik Boolesk algebra. Inledning OCH-funktionen 5:2 Digitalteknik Boolesk algebra. Inledning I en dator representeras det binära talsystemet med signaler i form av elektriska spänningar. 0 = 0 V (låg spänning), 1 = 5 V(hög spänning). Datorn kombinerar

Läs mer

Exempel 3 på Tentamen

Exempel 3 på Tentamen Institutionen för data- och informationsteknik CHALMERS TEKNISKA HÖGSKOLA Exempel 3 på Tentamen Grundläggande datorteknik Examinator Kontaktperson under tentamen Tillåtna hjälpmedel Häfte Instruktionslista

Läs mer

Tentamen med lösningar i IE Digital Design Fredag 21/

Tentamen med lösningar i IE Digital Design Fredag 21/ Tentamen med lösningar i IE04-5 Digital Design Fredag /0 06 09.00-3.00 Allmän information (TCOMK, Ask for an english version of this exam if needed) Examinator: Ingo Sander. Ansvarig lärare: Kista, William

Läs mer

IE1205 Digital Design: F5 : Digital aritmetik 1

IE1205 Digital Design: F5 : Digital aritmetik 1 IE1205 Digital Design: F5 : Digital aritmetik 1 Heltal Positiva Heltal: 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 1 0 1 1 0 1 = 1*2 6 + 1*2 5 + 0*2 4 + 1*2 3 + 1*2 2 + 0*2 1 + 1*2 0 = 64 + 32 + 0*16 + 8 + 4 + 0*2

Läs mer

D0013E Introduktion till Digitalteknik

D0013E Introduktion till Digitalteknik D0013E Introduktion till Digitalteknik Slides : Per Lindgren EISLAB per.lindgren@ltu.se Ursprungliga slides : Ingo Sander KTH/ICT/ES ingo@kth.se Vem är Per Lindgren? Professor Inbyggda System Från Älvsbyn

Läs mer

DIGITALTEKNIK I. Laboration DE2. Sekvensnät och sekvenskretsar

DIGITALTEKNIK I. Laboration DE2. Sekvensnät och sekvenskretsar UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Håkan Joëlson, John Berge 203 DIGITALTEKNIK I Laboration DE2 Sekvensnät och sekvenskretsar Namn... Personnummer... Epost-adress... Datum för

Läs mer

Digital elektronik CL0090

Digital elektronik CL0090 Digital elektronik CL9 Föreläsning 5 27-2-2 8.5 2. Naxos Demonstration av uartus programvara. Genomgång av uartus flödesschema. Detta dokument finns på kurshemsidan. http://www.idt.mdh.se/kurser/cl9/ VHDL-kod

Läs mer

Abstrakt algebra för gymnasister

Abstrakt algebra för gymnasister Abstrakt algebra för gymnasister Veronica Crispin Quinonez Sammanfattning. Denna text är föreläsningsanteckningar från föredraget Abstrakt algebra som hölls under Kleindagarna på Institutet Mittag-Leffler

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

Tentamen med lösningar i IE Digital Design Fredag 15/

Tentamen med lösningar i IE Digital Design Fredag 15/ Tentamen med lösningar i IE4-5 Digital Design Fredag 5/ 6 4.-8. Allmän information (TCOMK, Ask for an english version of this exam if needed Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandvist

Läs mer

Lösningsföslag till Exempel på tentamensuppgifter i Digitalteknik I

Lösningsföslag till Exempel på tentamensuppgifter i Digitalteknik I Lösningsföslag till Exempel på tentamensuppgifter i Digitalteknik I Flervalsfrågor. A 2. C 3. B 4. D 5. A 6. B 7. C 8. D 9. C 0. B. B 2. C 3. A 4. C 5. A Problemuppgifter. Uttryckt i decimal form: A=28+32+8

Läs mer

Laboration Kombinatoriska kretsar

Laboration Kombinatoriska kretsar Laboration Kombinatoriska kretsar Digital Design IE1204/5 Observera! För att få laborera måste Du ha: en bokad laborationstid i bokningssystemet (Daisy). löst ditt personliga web-häfte med förkunskapsuppgifter

Läs mer

Algebra I, 1MA004. Lektionsplanering

Algebra I, 1MA004. Lektionsplanering UPPSALA UNIVERSITET Matematiska Institutionen Dan Strängberg HT2016 Fristående, IT, KandDv, KandMa, Lärare 2016-11-02 Algebra I, 1MA004 Lektionsplanering Här anges rekommenderade uppgifter ur boken till

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik Cederlöf Per Liljas Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D1 2001-05-28 Tentamen omfattar 40 poäng, 2 poäng för varje uppgift. 20 poäng ger godkänd tentamen. Tillåtet

Läs mer

Digitalteknik F14. Programmerbara logikkretsar. Digitalteknik F14 bild 1

Digitalteknik F14. Programmerbara logikkretsar. Digitalteknik F14 bild 1 igitalteknik F4 Programmerbara logikkretsar igitalteknik F4 bild En programmerbar krets... In Programmerbar krets Kombinatorisk eller sekventiell funktion Ut Innehållet i den programmerbara kretsen är

Läs mer

Tentamen i IE Digital Design Fredag 21/

Tentamen i IE Digital Design Fredag 21/ Tentamen i IE204-5 Digital Design Fredag 2/0 206 09.00-3.00 Allmän information (TCOMK, Ask for an english version of this exam if needed) Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist

Läs mer

Geometriska vektorer

Geometriska vektorer Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive

Läs mer

Styrteknik distans: Minneselement, register, räknare, AD-omv D4:1

Styrteknik distans: Minneselement, register, räknare, AD-omv D4:1 Styrteknik distans: Minneselement, register, räknare, AD-omv D4:1 Digitala kursmoment D1 Binära tal, talsystem och koder D2 Boolesk Algebra D3 Grundläggande logiska grindar D4 Minneselement, register,

Läs mer

Repetitionsfrågor inför tentamen

Repetitionsfrågor inför tentamen Industriell Mätning och Styrning (IMS) Repetitionsfrågor inför tentamen Nedan följer ett antal frågor som kan ses som typiska tentamensuppgifter. Genom att gå igenom och lösa dessa uppgifter erhålles en

Läs mer

Repetition och sammanfattning av syntes och analys av sekvensnät

Repetition och sammanfattning av syntes och analys av sekvensnät Repetition och sammanfattning av syntes och analys av sekvensnät Sekvensnät = ihopkoppling av sekvenskretsar Består i praktiken av - minnesdel (sekvenskretsar) - kombinatorisk del. Sekvenskretsar = kretsar

Läs mer

Introduktion till logik

Introduktion till logik Introduktion till logik Av Johan Johansson Johan.johansson@guldstadsgymnasiet.se Logik sägs som många andra saker komma från de grekiska filosoferna, och ordet kommer också därifrån. Grekerna kallade det

Läs mer

Funktionella beroenden - teori

Funktionella beroenden - teori Relationell databasdesign, FB Teori 7-12 Funktionella beroenden - teori Vid utformning av databassystem är det av största vikt att man kan resonera systematiskt om funktionella beroenden bl.a. för att

Läs mer

Diskret matematik: Övningstentamen 1

Diskret matematik: Övningstentamen 1 Diskret matematik: Övningstentamen 1 1. Bevisa att de reella talen är en icke-uppräknelig mängd.. För två mängder av positiva heltal A och B skriver vi A C B, om det är så att A innehåller ett heltal som

Läs mer

Tentamen i Digitalteknik, EIT020

Tentamen i Digitalteknik, EIT020 Elektro- och informationsteknik Tentamen i Digitalteknik, EIT020 18 december 2010, kl 8-13 Skriv namn och årskurs på alla papper. Börja en ny lösning på ett nytt papper. Använd bara en sida av pappret.

Läs mer

Tentamen EDAA05 Datorer i system

Tentamen EDAA05 Datorer i system LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Tentamen EDAA05 Datorer i system 2011 10 17, 8.00 13.00 Tillåtna hjälpmedel: bifogad formel- och symbolsamling. För godkänt betyg på tentamen

Läs mer

Programmerbar logik och VHDL. Föreläsning 1

Programmerbar logik och VHDL. Föreläsning 1 Programmerbar logik och VHDL Föreläsning 1 Programmerbar logik och VHDL Programmerbar logik VHDL intro Upplägg, litteratur, examination Programmerbara kretsar Mikroprocessor Fix hårdvara som kan utföra

Läs mer

Hur implementera algoritmerna på maskinnivå - datorns byggstenar

Hur implementera algoritmerna på maskinnivå - datorns byggstenar Hur implementera algoritmerna på maskinnivå - datorns byggstenar Binära tal Boolesk logik grindar och kretsar A A extern representation intern representation minnet i datorn extern representation 1000001

Läs mer

Sekvensnät vippor, register och bussar

Sekvensnät vippor, register och bussar ekvensnät vippor, register och bussar agens föreläsning: Lärobok kap.5 Arbetsbok kap 8,9,10 Ur innehållet: Hur fungerar en -latch? Hur konstrueras JK-, - och T-vippor? er och excitationstabeller egister

Läs mer

Introduktion till Xilinx CPLD och ISE WebPack 6.2 Version NV

Introduktion till Xilinx CPLD och ISE WebPack 6.2 Version NV Introduktion till Xilinx CPLD och ISE WebPack 6.2 Version NV Introduktionen beskriver grunderna för att använda programvaran Xilinx ISE WebPack 6.2.03 tillsammans med en CPLD (Complex Programmable Logic

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #9 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola ekvensnät Vad kännetecknar ett sekvensnät? I ett sekvensnät

Läs mer

Explorativ övning Geometri

Explorativ övning Geometri Explorativ övning Geometri Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer