Digital Design IE1204

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Digital Design IE1204"

Transkript

1 Digital Design IE204 F3 Asynkrona sekvensnät del 2

2 IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska kretsar F7 F8 Ö4 F9 Ö5 Multiplexor KK2 LAB2 Låskretsar, vippor, FSM F0 F Ö6 KK3 LAB3 FSM, VHDL introduktion F2 Ö7 F3 Asynkron FSM Ö8 F4 tentamen Minnen Föreläsningar och övningar bygger på varandra! Ta alltid igen det Du missat! Läs på i förväg delta i undervisningen arbeta igenom materialet efteråt!

3 Detta har hänt i kursen Decimala, hexadecimala, oktala och binära talsystemen AND OR NOT EXOR EXNOR Sanningstabell, mintermer Maxtermer PS-form Booles algebra SP-form demorgans lag Bubbelgrindar Fullständig logik NAND NOR CMOS grindar, standardkretsar Minimering med Karnaugh-diagram 2, 3, 4, 5, 6 variabler Registeraritmetik tvåkomplementrepresentation av binära tal Additionskretsar Multiplikationskrets Divisionskrets Multiplexorer och Shannon dekomposition Dekoder/Demultiplexor Enkoder Prioritetsenkoder Kodomvandlare VHDL introduktion Vippor och Låskretsar SR-latch D-latch D-vippa JK-vippa T-vippa Räknare Skiftregister Vippor i VHDL Moore-automat Mealy-automat Tillståndskod Oanvända tillstånd Analys av sekvensnät Tillståndsminimering Tillståndsmaskiner i VHDL Asynkrona sekvensnät flödestabell exitationstabell tillståndskodning

4 Repetition Delay-element Synkront sekvensnät Klockad vippa Asynkront sekvensnät ett konstgrepp: Delay-element Andra beteckningar: Y och y

5 Repetition Gyllene regeln Endast EN signal åt gången ändras

6 Repetition Exitationstabell Den asynkrona kodade tillståndstabellen kallas för Excitationstabell De stabila tillstånden (de med next state = present state) ringas in Present Nextstate state SR = y Y Y Y Y Y = y

7 Repetition Flödestabell och Tillståndsdiagram Den asynkrona okodade tillståndstabellen kallas för Flödestabell Present Next state Output state SR = Q A A A B A 0 B B A B A 00 0 Tillståndsdiagram SR 0 A 0 B

8 Repetition Tillståndsminimering Ospecificerade tillstånd Asynkrona sekvensnät har ofta många ospecificerade tillstånd. Gyllene regeln Fysikaliskt omöjligt! Tuggummiautomaten - Ett mynt i taget! Pres state Next State X= A A B C - 0 B D B C A - C - D D E F - 0 E A E - - F A - F - (X = ND, Q = z) Q Ospecificerade tillstånd är våra Jokrar!

9 Pres state Repetition Tillståndsminimering Ekvivalens (spara jokrarna) Next State X= A A B C - 0 B D B C A - C - D D E F - 0 E A E - - F A - F - (X = ND, Q = z) Q Regler för ekvivalensgrupp: Samma utsignal. Stabilt tillstånd för samma insignaler. Ospecificerade tillstånd för samma insignaler. Instabila tillstånd kan få skilja Spara jokrarna!

10 Repetition Tillståndsminimering Kompatibilitet (använd jokrarna) Pres Next State state X= A A B C - 0 B D B C A - C - D D E C - 0 E A E - - Här finns ofta flera möjligheter men en teori för vad som är optimalt saknas! Q Kompatibilitetsgraf C A E B Mealy-kompatibla D Använd ospecificerade tillstånd! Moore-kompatibla C(): A-C- E(): AE-- C(): A-C- A(0): ABC- Här väljer man mellan Moore eller Mealy kompatibel modell

11 Repetition Tillståndskodning Alla tillstånd måste kodas så att tillståndsövergångar sker med Hammingavståndet A D Placera tillståndsdiagrammet på en Graykodad hyperkub utan diagonaler. B C A E D G B F C Richard Hamming Använd lediga tillstånd som övergångstillstånd ( eftersändning ). B D : B E D

12

13 Hasard spikar När man konstruerar asynkrona kretsar så kan det händer att man får spikar (glitches) på signalvärden Detta beror på att olika signalvägar har olika fördröjningstider Fenomenet kallas för hasard (hazard) och kan elimineras med noggrann konstruktion

14 Snabbfråga Vilket tidsdiagram motsvarar bäst den signal som genereras av följande grindnät vid stigande flank? in Q in 0 in 0 in 0 Q 0 Q 0 Q 0 Alt: A Alt: B Alt: C

15 Snabbfråga Vilket tidsdigaram motsvarar bäst den signal som genereras av följande grindnät vid stigande in flank? Q x in Q 0 0 in Q 0 0 in Q 0 0 x 0 Alt: A PGA fördröjning i inverterare blir båda ingångarna till AND grinden ett kort tag Alt: B Alt: C Alt C tar ej hänsyn till fördröjning i AND grind

16 ( Kort 0-ställningspuls ) in Q Kretsen används ibland för att generera en kort 0- ställningspuls.

17 ( Kort 0-ställningspuls ) Du har sett kretsen förr.

18 Olika typer av Hasard Statisk Statisk 0 0 Dynamisk 0 Dynamisk 0

19 Statisk Hasard Statisk Statisk 0 0

20 Exempel, Statisk Hasard Hasard kan uppträda vid nedanstående krets vid övergången av x 3 x 2 x från 0 x 2 x p f x 3 q f = x + x2 xx3

21 Tidsdiagrammet x 2 x p f x2 xx3 f = x + x 3 q x p x x 2 x q 0 f Hasard t

22 Hasardfri krets x 2 x p x p x 3 q f q r Hasard-Cover x x 2 x r f t 0 f = x + x2 + xx3 x2x3

23 Hur undviker man statisk hasard? Möjligheten för statisk hasard finns om två intillliggande :or inte är täckta med en egen produktterm vid SOP Därmed kan man ta bort risken för statisk hazard genom att lägga till inringningar så att alla intillliggande :or är täckta med en egen inringning

24 Ex. Hasardfria hoptagningar Räcker dessa hoptagningar för hasardfrihet? f f = a + db + cb

25 Ex. Hasardfria hoptagningar Räcker dessa hoptagningar för hasardfrihet? f f = a + db + cb Hasard cover

26 Ex. Hasardfria hoptagningar Räcker dessa hoptagningar för hasardfrihet? f Karnaughdiagrammet är en donut!?? f = a + db + cb

27 Ex. Hasardfria hoptagningar Räcker dessa hoptagningar för hasardfrihet? f f = a + db + cb + dc

28 Ex. Hasardfria hoptagningar Lätt att missa! f f = a + db + cb + dc Hasard cover

29 Ex. Hasardfria hoptagningar Med annan variabelordning missar man inte! f f = a + db + cb + cd

30 Statisk hasard vid POS? Har man en POS-implementering så måste man se till att alla bredvidliggande 0:or är täckta av en egen summaterm

31 Dynamisk Hasard? En dynamisk hasard orsakar flera spikar på utgången En dynamisk hasard orsakas av kretsens struktur Dynamisk 0 Dynamisk 0

32 Exempel, Dynamisk Hasard Följande ekvation orsakar ingen hasard om man implementerar den som en AND-ORstruktur f = x + x2 + x3x4 xx4

33 Exempel, Dynamisk Hasard Följande ekvation orsakar ingen hasard om man implementerar den som en AND-ORstruktur f = x + x2 + x3x4 xx4 Problemfri med två-nivålogik!

34 Exempel, Dynamisk Hasard Men implementerar man ekvationen med följande flernivåslogik, så uppträder dynamisk hasard x x 2, x 3, x 4 a One gate delay b b c x x 2 x 3 a c d f d f x 4

35 Hur undviks Dynamisk Hasard? Dynamisk hasard kan undvikas med tvånivå-logik Ser man till att en två-nivå krets är fri från statisk hasard, så finns det inte heller någon dynamisk hasard!

36 Snabbfråga Vilket/vilka av följande grindnät kan ge upphov till hazard då x ändras? x x Alt: B x Alt: A Alt: C

37 Snabbfråga Vilket/vilka av följande grindnät kan ge upphov till hazard då x ändras? x Risk för hazard då a= och b=0 Den extra grinden täcker inte detta fall (utan a= och b=) x Alt: B a x Alt: A b Oooops! Alt: C inte Hazard cover!

38 Snabbfråga Risk för hazard då a= och b=0 Den extra grinden täcker inte detta fall (utan a= och b=) x ba 0 inte Hazard cover! a x b x ba Ingen Hazard Oooops! Alt: C x b a

39 När behöver man ta hänsyn till Hasard? I ett asynkront sekvensnät måste avkodaren för nästa-tillstånd vara hasardfri! Annars kan man hamna i ett inkorrekt tillstånd För kombinatoriska kretsar är hasard inte ett problem eftersom utgången alltid kommer att stabilisera sig efter ett kort tag I ett synkront sekvensnät är hasard inget problem, så länge man respekterar setup- och hold-tider ( under dessa tider får hasard inte uppträda! )

40 Undvik Hasard Statisk hasard orsakas av utelämnade primimplikanter Statisk Statisk 0 0 Dynamisk 0 Dynamisk 0 Dynamisk hasard kan uppstå när man implementera kretsar med flernivåslogik. Tvånivåslogikkretsar som är fria från statisk hasard är också fria från dynamisk hasard.

41 Utgångs-spikar i asynkrona sekvensnät Pres state Next State X=0 Q y 2 y Y 2 Y Man kan få utgångsspikar i ett asynkront sekvensnät när man byter från ett stabilt tillstånd till ett annat genom att passerar flera instabila tillstånd ( Fenomenet är ingen hasard! ).

42 Metastabilitet CMOS-kretsens överföringsfunktion (ex. inverterare) Utspänning V f V x V DD T V f T Inspänning V x

43 Om metastabilitet? Q 0? D 0 D C Q C 0 För att förstå vad metastabilitet innebär så kan vi tänka oss att insignalen D till en latch är väldigt belastad och därmed ändrar sig mycket långsamt i förhållande till klockan. Antag vidare att klock-signalen C slår om precis när D är vid V DD /2. Då låser sig latchen vid det spänningsvärde som råkar finnas på D. Efter en tid slår latchen om till antingen eller 0.

44 Om metastabilitet Denna instabilitet varar tills transistorerna i återkopplingen behagar gå åt ena eller andra hållet men det kan ta tid, och tiden beror på hur nära V DD /2 som låsningen skedde. Man kan likna situationen vid en boll som ligger på toppen en kulle, eller en penna som balanserar på sin spets. Minsta störning kommer att få bollen eller pennan att falla åt ena eller andra hållet. 0? Om Clk och D switchar samtidigt, vilket värde får då Q? På vilken sida kommer bollen att trilla ner?

45 Klockpuls och data samtidigt! Resultat från många mät-tillfällen. 0 Klocka och data ändras samtidigt!

46 Tidsfördröjning innan utvärdet blir bestämt Hur mycket samtidigt? exakt samtidigt oändlig tid data klocka hur nära?

47 Setup and Hold time (= metastabilitets-skydd) För att undvika samtidigt omslag/switchning, så måste setup and hold times garanteras: D Clk Setup Hold time Setup time är den tid D måste vara stabil innan Clk ändrar värde Hold time är den tid D måste vara stabil efter Clk har ändrat värde Om Setup and Hold time s är uppfyllda, så kommer vippan (Flip-flop) att garanterat bete sig snällt/deterministiskt!

48 Asynkrona insignaler? Dessvärre kan vi inte alltid garantera att en ingång är stabil under hela setup- och holdtiden Antag att du kopplar in en tryckknapp på D- ingången av en vippa Användaren kan trycker knappen när som helst, även under setup- och hold-tiden! Risken är att vippan hamnar i ett metastabilt tillstånd!

49 Synkronisering av insignaler För att synkronisera asynkrona ingångar användar man en extra vippa på ingången Den första vippans utgång (A) kan hamna i ett metastabilt läge Men om klockperioden är tillräckligt lång, så kommer den att stabiliseras innan nästa klockflank, så att B inte hamnar i ett metastabilt läge! Data (asynchronous) D Q A D Q B Data (synchronous) Clock Q Q

50 (Slumptal med metastabilitet?) Intelprocessorer singlar slant med följande krets. Innan klockpulsen blir är både node A och node B logiskt. När klockpulsen kommer hamnar båda inverterarna i det metastabila tillståndet och slumpen avgör sedan vilket tillstånd inverterarna slutgiltigen hamnar i.

51

52 Avancerade byggelement De asynkrona vipporna och låskretsarna används som säkra byggelement vid digital design. Nya byggelement utvecklas hela tiden. Vid övningen kommer vi att konstruera en dubbelflankvippa en vipptyp som kan komma att ge framtidens datorkretsar högre (dubblerade) prestanda Vid föreläsningen förfinar vi nu den enkla SR-låskretsen

53 Exempel förbättrad SR-latch Konstruktion av set-dominant SR-latch Specifikation Konstruktionen är en speciell typ av SR-latch (det finns inte ett förbjudet läge ) Om S och R är så går latchen i SET-läge (Q = ) Latchen kan först gå till RESET-läge om. både S och R först sätts till S=0 och R=0 (Q = ) 2. R aktiveras (S = 0, R = ) Q = 0! Källa: Fletcher: Engineering Approach to Digital Design, Prentice-Hall, 980. Exempel 0.5 (pp 670).

54 Repris: SR-latch R S (a) Circuit Q a Q b S R Q a (b) Truth table Så länge man undviker insignalen SR-Latch S = R = ( = förbjudet tillstånd ) kommer utgångarna Q a och Q b att S S Q Q vara varandras inverser. Man kan? R R Q då använda symbolen till höger. Tar man signaler från låskretsar finns det således alltid inverser att tillgå! Q b 0/ /0 (no change) Förbjuden insignal S=R= Q a Q b

55 Mer problem med SR-latchen R Q a S R Q a Q b 0 0 0/ /0 (no change) S Q b 0 0 (a) Circuit (b) Truth table Om man vill gå från SR = till SR = 00 är det en dubbeländring av insignalerna. I praktiken hamnar vi antingen i Q = 0 eller i Q = ingen kan veta! Detta är ett ytterligare skäl till att utesluta SR =.

56 SR-latch SR 00 0 Q= a 0 0 d Q=0 00 0

57 SET-dominant SR-latch 0(0) 0(0) f SR( QQ) 00(0) 00(0) Q= e b a Fletchers förslag på tillståndsdiagram för SET-dominant SRlatch. (Här givet). 00(0) 00(0) 00(0) c 0(0) SR = d 0(0) 0(0) Q=0

58 Önskat beteende SR= Set-dominant SR-latch Vanlig SR-latch

59 (SET-dominant SR-latch) 0(0) 0(0) f SR( QQ) 00(0) 00(0) Q= e b a 00(0) c 00(0) 00(0) 0(0) d 0(0) 0(0) Q=0

60 (SET-dominant SR-latch) 0(0) 0(0) f SR( QQ) 00(0) 00(0) Q= e b a 00(0) c 00(0) 00(0) 0(0) d 0(0) 0(0) Q=0

61 (SET-dominant SR-latch) 0(0) 0(0) f SR( QQ) 00(0) 00(0) Q= e b a 00(0) c 00(0) 00(0) 0(0) d 0(0) 0(0) Q=0

62 (SET-dominant SR-latch) 0(0) 0(0) f SR( QQ) 00(0) 00(0) Q= e b a 00(0) c 00(0) 00(0) 0(0) d 0(0) 0(0) Q=0

63 (SET-dominant SR-latch) 0(0) 0(0) f SR( QQ) 00(0) 00(0) Q= e b a 00(0) c 00(0) 00(0) 0(0) d 0(0) 0(0) Q=0

64 (SET-dominant SR-latch) 0(0) 0(0) f SR( QQ) 00(0) 00(0) Q= e b a 00(0) c 00(0) 00(0) 0(0) d 0(0) 0(0) Q=0

65 (SET-dominant SR-latch) 0(0) 0(0) f SR( QQ) 00(0) 00(0) Q= e b a 00(0) c 00(0) 00(0) 0(0) d 0(0) 0(0) Q=0

66 (SET-dominant SR-latch) 0(0) 0(0) f SR( QQ) 00(0) 00(0) Q= e b a 00(0) c 00(0) 00(0) 0(0) d 0(0) 0(0) Q=0

67 (SET-dominant SR-latch) 0(0) 0(0) f SR( QQ) 00(0) 00(0) Q= e b a 00(0) c 00(0) 00(0) 0(0) d 0(0) 0(0) Q=0

68 (SET-dominant SR-latch) 0(0) 0(0) f SR( QQ) 00(0) 00(0) Q= e b a 00(0) c 00(0) 00(0) 0(0) d 0(0) 0(0) Q=0

69 (SET-dominant SR-latch) 0(0) 0(0) f SR( QQ) 00(0) 00(0) Q= e b a 00(0) c 00(0) 00(0) 0(0) d 0(0) 0(0) Q=0

70 (SET-dominant SR-latch) 0(0) 0(0) f SR( QQ) 00(0) 00(0) Q= e b a 00(0) c 00(0) 00(0) 0(0) d 0(0) 0(0) Q=0

71

72 SET-dominant SR-latch e 0(0) 0(0) 00(0) f b c SR( QQ) 00(0) 00(0) 00(0) 0(0) a d 00(0) 0(0) 0(0) a b c d e f 00 a a c c a 0 d d d f f SR( QQ) e e e e 0 b b b b Q 0 0 Q SR = Tillståndet e tar hand om fallet SR =

73 Kompatibilitet a (0) b (0) c (0) d (0) e (0) f (0) Det finns inga ekvivalenta tillstånd, finns det några Moorekompatibla tillstånd?

74 Kompatibilitet Använd ospecificerade tillstånd! a (0) b (0) c (0) d (0) e (0) f (0) Många valmöjligheter a(0): ad-b b(0): a-eb b(0): a-eb f(0): afe- c(0): cd-b d(0): cde- b(0): a-eb e(0): -feb e(0): -feb f(0): afe-

75 Kompatibilitetsgraf Många valmöjligheter a (0) e (0) c (0) b (0) f (0) d (0) Nya beteckningar a (ab), e (ef), c (cd) Tre tillstånd kräver två tillståndsvariabler Y 2 och Y a c e 00 a c a 0 c c e SR( QQ) e e e 0 a a a Q 0 Q Reducerad flödestabell 0 0

76 Tillståndskodning Vald tillståndskod (Gray) a c y 2 y e a, e c Q Övergångs-tillstånd Utgångsavkodning = y Q = Q = 0 2 a : e : c :? Eftersändning Från c till e krävs det en dubbeländring av Y 2 Y detta ändras med hjälp av övergångstillståndet till två enkeländringar

77 Karnaughdiagram Y = + Y Ry + SR 2 S y2 + SR y Ry2 y = Hasardfria nät direkt!

78 Krets-schema y 2 = Sy2 + SR y Ry2 y = Ry SR Y + Y + y y 2 2 = Q = Q Här har vi vår idiotsäkra SR-låskrets!

79 Otur!

80 En annan lösning? egentligen 0 men pröva Förutom att lösa problemet med dubbeländringen, som vi redan löst, vill vi få så enkla nät som möjligt! Vad händer om vi skriver (i stället för 0) som instabilt tillstånd i ruta 3, på ren spekulation att detta kommer att ge oss ett enklare nät? Från 00 i ruta 2 till i ruta 3 är en ofarlig dubbeländring. Blir det 0 hamnar man stabilt i 0, blir det 0 går man till och därefter stabilt till 0.

81 Nya Karnaughdiagram Från 00 till innebär en ofarlig dubbeländring av tillståndsvariablerna som till sist alltid leder till stabilt 0. Y = + Y Ry + SR 2 S y2 R y = Enklare nät! Vi introducerade en ickekritisk Hasard och det gav oss större hoptagningar och ett enklare nät!

82 Idiotsäker och kompakt Y + 2 = S y2 R y Y Ry + SR = y y 2 y y 2 2 = Q = Q

83 Asynkrona nät är byggstenar Eftersom de asynkrona sekvensnäten används som byggstenar vid all annan Digital Design är det vanligt att stor möda har lagts på att göra dom så optimala som möjligt. De används oftare i tusental i en konstruktion än styckvis. Varje ingående grind kostar och räknas!

84 Används dominanta SR-latchar?

85 PIC6F690 IO-enhet, SR-latch Låskretsen är RESET-dominant SR Q = 0 Q =

86 PIC6F690 IO-enhet, SR-latch Touch control. Användningsområdet för SR-latchen är en kapacitivt styrd oscillator. Den ändrar frekvens vid en touch med fingret. f = f 0 f

87

Repetition delay-element

Repetition delay-element Repetition delay-element Synkront sekvensnät Klockad vippa Asynkront sekvensnät ett konstgrepp: Delay-element Andra beteckningar: Y och y Gyllene regeln Endast EN signal åt gången ändras Exitationstabell

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE204 Kursomgång för Högskoleingenjörsinriktningarna: Datateknik, Elektronik och Datorteknik. Kandidatinriktningen: Informations- och Kommunikationsteknik F3 Asynkrona sekvensnät del 2 william@kth.se

Läs mer

IE1205 Digital Design: F13: Asynkrona Sekvensnät (Del 2)

IE1205 Digital Design: F13: Asynkrona Sekvensnät (Del 2) IE25 Digital Design: F3: Asynkrona Sekvensnät (Del 2) Rep. Tillståndsmaskiner LT_I_EURO (a) (b) (c) COIN_PRESENT COIN_PRESENT COIN_PRESENT COIN_PRESENT Tillståndsmaskiner styr sekvenser av händelser. Övergångar

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE204 F9 Tillståndsautomater del william@kth.se IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska kretsar F7

Läs mer

IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare

IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare IE1205 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE1204 F8 Vippor och låskretsar, räknare william@kth.se IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE24 F2 : Logiska Grindar och Kretsar, Boolesk Algebra william@kth.se IE24 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska

Läs mer

Sekvensnät Som Du kommer ihåg

Sekvensnät Som Du kommer ihåg Sekvensnät Som Du kommer ihåg Designmetodik Grundläggande designmetodik för tillståndsmaskiner. 1. Analysera specifikationen för kretsen 2. Skapa tillståndsdiagram 3. Ställ upp tillståndstabellen 4. Minimera

Läs mer

IE1205 Digital Design: F10: Synkrona tillståndsautomater del 2

IE1205 Digital Design: F10: Synkrona tillståndsautomater del 2 IE1205 Digital Design: F10: Synkrona tillståndsautomater del 2 Sekvensnät Om en och samma insignal kan ge upphov till olika utsignal, är logiknätet ett sekvensnät. Det måste då ha ett inre minne som gör

Läs mer

Tentamen i IE1204/5 Digital Design onsdagen den 5/

Tentamen i IE1204/5 Digital Design onsdagen den 5/ Tentamen i IE1204/5 Digital Design onsdagen den 5/6 2013 9.00-13.00 Tentamensfrågor med lösningsförslag Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE1204 Kursomgång för Högskoleingenjörsinriktningarna: Datateknik, Elektronik och Datorteknik. F14 Halvledarminnen, mikrodatorn william@kth.se IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles

Läs mer

DIGITALTEKNIK I. Laboration DE2. Sekvensnät och sekvenskretsar

DIGITALTEKNIK I. Laboration DE2. Sekvensnät och sekvenskretsar UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Håkan Joëlson, John Berge 203 DIGITALTEKNIK I Laboration DE2 Sekvensnät och sekvenskretsar Namn... Personnummer... Epost-adress... Datum för

Läs mer

Digitalteknik 7.5 hp distans: 5.1 Generella sekvenskretsar 5.1.1

Digitalteknik 7.5 hp distans: 5.1 Generella sekvenskretsar 5.1.1 Digitalteknik 7.5 hp distans: 5.1 Generella sekvenskretsar 5.1.1 Från Wikipedia: Sekvensnät Ett sekvensnäts utgångsvärde beror inte bara på indata, utan även i vilken ordning datan kommer (dess sekvens).

Läs mer

Tentamen i IE1204/5 Digital Design Torsdag 29/

Tentamen i IE1204/5 Digital Design Torsdag 29/ Tentamen i IE1204/5 Digital Design Torsdag 29/10 2015 9.00-13.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist

Läs mer

Sekvensnät. William Sandqvist

Sekvensnät. William Sandqvist Sekvensnät Om en och samma insignal kan ge upphov till olika utsignal, är logiknätet ett sekvensnät. Det måste då ha ett inre minne som gör att utsignalen påverkas av både nuvarande och föregående insignaler!

Läs mer

IE1204/IE1205 Digital Design

IE1204/IE1205 Digital Design TENTAMEN IE1204/IE1205 Digital Design 2012-12-13, 09.00-13.00 Inga hjälpmedel är tillåtna! Hjälpmedel Tentamen består av tre delar med sammanlagd tolv uppgifter, och totalt 30 poäng. Del A1 (Analys) innehåller

Läs mer

Tentamen med lösningar i IE Digital Design Fredag 15/

Tentamen med lösningar i IE Digital Design Fredag 15/ Tentamen med lösningar i IE4-5 Digital Design Fredag 5/ 6 4.-8. Allmän information (TCOMK, Ask for an english version of this exam if needed Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandvist

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE1204 F11 Programmerbar logik VHDL för sekvensnät william@kth.se IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE1204 Kursomgång för IT, (ME), och IT-Kandidat, Kista. F11 Programmerbar logik VHDL för sekvensnät william@kth.se IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi,

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2011-08-26 Skrivtid 9.00-14.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna hjälpmedel

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #9 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola ekvensnät Vad kännetecknar ett sekvensnät? I ett sekvensnät

Läs mer

IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare

IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare Sekvensiella System a(t) f(a(t)) Ett sekvensiellt system har ett inbyggt minne - utsignalen beror därför BÅDE av insignalens NUVARANDE

Läs mer

Mintermer. SP-form med tre mintermer. William Sandqvist

Mintermer. SP-form med tre mintermer. William Sandqvist Mintermer OR f 2 3 En minterm är en produktterm som innehåller alla variabler och som anger den kombination av :or och :or som tillsammans gör att termen antar värdet. SP-form med tre mintermer. f = m

Läs mer

D2 och E3. EDA321 Digitalteknik-syntes. Fredag den 13 januari 2012, fm i M-salarna

D2 och E3. EDA321 Digitalteknik-syntes. Fredag den 13 januari 2012, fm i M-salarna EDA321 Digitalteknik-syntes D2 och E3 GU DIT795 Tentamen (EDA321-0205) Fredag den 13 januari 2012, fm i M-salarna Examinator Arne Linde, tel. 772 1683 Tillåtna hjälpmedel Inga hjälpmedel tillåtna. Detta

Läs mer

IE1205 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering

IE1205 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering IE25 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering Mintermer 2 3 OR f En minterm är en produktterm som innehåller alla variabler och som anger den kombination av :or och :or som

Läs mer

Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck

Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck KOMBINATORISK LOGIK Innehåll Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck Boolesk algebra Karnaugh-diagram Realisering av logiska funktioner

Läs mer

Tentamen med lösningar i IE Digital Design Fredag 21/

Tentamen med lösningar i IE Digital Design Fredag 21/ Tentamen med lösningar i IE04-5 Digital Design Fredag /0 06 09.00-3.00 Allmän information (TCOMK, Ask for an english version of this exam if needed) Examinator: Ingo Sander. Ansvarig lärare: Kista, William

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2010-08-27 Skrivtid 9.00-14.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna

Läs mer

Digitalteknik F12. Några speciella automater: register räknare Synkronisering av insignaler. Digitalteknik F12 bild 1

Digitalteknik F12. Några speciella automater: register räknare Synkronisering av insignaler. Digitalteknik F12 bild 1 igitalteknik F2 Några speciella automater: register räknare Synkronisering av insignaler igitalteknik F2 bild Register Ett register är en degenererad automat som i allt väsentligt används för att lagra

Läs mer

F5 Introduktion till digitalteknik

F5 Introduktion till digitalteknik Exklusiv eller XOR F5 Introduktion till digitalteknik EDAA05 Roger Henriksson Jonas Wisbrant På övning 2 stötte ni på uttrycket x = (a b) ( a b) som kan utläsas antingen a eller b, men inte både a och

Läs mer

Tentamen i IE Digital Design Fredag 21/

Tentamen i IE Digital Design Fredag 21/ Tentamen i IE204-5 Digital Design Fredag 2/0 206 09.00-3.00 Allmän information (TCOMK, Ask for an english version of this exam if needed) Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist

Läs mer

Grundläggande digitalteknik

Grundläggande digitalteknik Grundläggande digitalteknik Jan Carlsson Inledning I den verkliga världen vet vi att vi kan få vilka värden som helst när vi mäter på något. En varm sommardag visar termometern kanske 6, 7 C. Men när det

Läs mer

D0013E Introduktion till Digitalteknik

D0013E Introduktion till Digitalteknik D0013E Introduktion till Digitalteknik Slides : Per Lindgren EISLAB per.lindgren@ltu.se Ursprungliga slides : Ingo Sander KTH/ICT/ES ingo@kth.se Vem är Per Lindgren? Professor Inbyggda System Från Älvsbyn

Läs mer

Tentamen i Digital Design

Tentamen i Digital Design Kungliga Tekniska Högskolan Tentamen i Digital Design Kursnummer : Kursansvarig: 2B56 :e fo ingenjör Lars Hellberg tel 79 7795 Datum: 27-5-25 Tid: Kl 4. - 9. Tentamen rättad 27-6-5 Klagotiden utgår: 27-6-29

Läs mer

Repetition och sammanfattning av syntes och analys av sekvensnät

Repetition och sammanfattning av syntes och analys av sekvensnät Repetition och sammanfattning av syntes och analys av sekvensnät Sekvensnät = ihopkoppling av sekvenskretsar Består i praktiken av - minnesdel (sekvenskretsar) - kombinatorisk del. Sekvenskretsar = kretsar

Läs mer

Tentamen IE Digital Design Fredag 13/

Tentamen IE Digital Design Fredag 13/ Tentamen IE204-5 Digital Design Fredag / 207 08.00-2.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2008-08-29 Skrivtid 9.00-13.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Johan Eriksson Tel 070 589 7911 Tillåtna

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2012-12-17 Skrivtid 9.00-14.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna hjälpmedel

Läs mer

Sekvensnät vippor, register och bussar

Sekvensnät vippor, register och bussar ekvensnät vippor, register och bussar agens föreläsning: Lärobok kap.5 Arbetsbok kap 8,9,10 Ur innehållet: Hur fungerar en -latch? Hur konstrueras JK-, - och T-vippor? er och excitationstabeller egister

Läs mer

Låskretsar och Vippor

Låskretsar och Vippor Låskretsar och Vippor Låskretsar (latch) och vippor (flip-flop) är kretsar med minnesfunktion. De ingår i datorns minnen och i processorns register. SR-låskretsen är i princip datorns minnescell Q=1 Q=0

Läs mer

IE1205 Digital Design. F2 : Logiska Grindar och Kretsar, Boolesk Algebra. Fredrik Jonsson KTH/ICT/ES

IE1205 Digital Design. F2 : Logiska Grindar och Kretsar, Boolesk Algebra. Fredrik Jonsson KTH/ICT/ES IE1205 Digital Design F2 : Logiska Grindar och Kretsar, oolesk Algebra Fredrik Jonsson KTH/ICT/ES fjon@kth.se Switch En switch har två lägen Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten Öppen x

Läs mer

Digital elektronik CL0090

Digital elektronik CL0090 Digital elektronik CL9 Föreläsning 5 27-2-2 8.5 2. Naxos Demonstration av uartus programvara. Genomgång av uartus flödesschema. Detta dokument finns på kurshemsidan. http://www.idt.mdh.se/kurser/cl9/ VHDL-kod

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2009-08-28 Skrivtid 9.00-13.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna

Läs mer

Maurice Karnaugh. Karnaugh-diagrammet gör det enkelt att minimera Boolska uttryck! William Sandqvist

Maurice Karnaugh. Karnaugh-diagrammet gör det enkelt att minimera Boolska uttryck! William Sandqvist Maurice Karnaugh Karnaugh-diagrammet gör det enkelt att minimera Boolska uttryck! En funktion av fyra variabler a b c d Sanningstabellen till höger innehåller 11 st 1:or och 5 st 0:or. Funktionen kan uttryckas

Läs mer

Översikt, kursinnehåll

Översikt, kursinnehåll Översikt, kursinnehåll Specifikation av digitala funktioner och system Digitala byggelement Kombinatoriska system Digital Aritmetik Synkrona system och tillståndsmaskiner Asynkrona system och tillståndsmaskiner

Läs mer

Laboration D151. Kombinatoriska kretsar, HCMOS. Namn: Datum: Epostadr: Kurs:

Laboration D151. Kombinatoriska kretsar, HCMOS. Namn: Datum: Epostadr: Kurs: UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Christer Ardlin/Lars Wållberg/ Håkan Joëlson 2000-01-28 v 2.3 ELEKTRONIK Digitalteknik Laboration D151 Kombinatoriska kretsar, HCMOS Namn:

Läs mer

SMD033 Digitalteknik. Digitalteknik F1 bild 1

SMD033 Digitalteknik. Digitalteknik F1 bild 1 SMD033 Digitalteknik Digitalteknik F1 bild 1 Vi som undervisar Anders Hansson A3209 91 230 aha@sm.luth.se Digitalteknik F1 bild 2 Registrering Registrering via email till diglabs@luth.se Digitalteknik

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2009-06-04 Skrivtid 9.00-13.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik Cederlöf Per Liljas Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D1 2001-05-28 Tentamen omfattar 40 poäng, 2 poäng för varje uppgift. 20 poäng ger godkänd tentamen. Tillåtet

Läs mer

Quine McCluskys algoritm

Quine McCluskys algoritm Quine McCluskys algoritm Tabellmetod för att systematiskt finna alla primimplikatorer ƒ(a,b,c,d) = m(4,5,6,8,9,0,3) + d(0,7,5) Moment : Finn alla primimplikatorer Steg: Fyll i alla mintermer i kolumn.

Läs mer

Sanningstabell. En logisk funktion kan också beskrivas genom en sanningstabell (truth table) 1 står för sann (true) 0 står för falsk (false)

Sanningstabell. En logisk funktion kan också beskrivas genom en sanningstabell (truth table) 1 står för sann (true) 0 står för falsk (false) Sanningstabell En logisk funktion kan också beskrivas genom en sanningstabell (truth table) 1 står för sann (true) 0 står för falsk (false) ND OR Logiska grindar ND-grinden (OCH) IEC Symbol (International

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE1204 F5 Digital aritmetik I william@kth.se IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska kretsar

Läs mer

Institutionen för systemteknik, ISY, LiTH. Tentamen i. Tid: kl

Institutionen för systemteknik, ISY, LiTH. Tentamen i. Tid: kl Institutionen för systemteknik, ISY, LiTH Tentamen i Digitalteknik TSIU05/TEN1 Tid: 2016 10 26 kl. 14 18 Lokal : TER3 TER4 Ansvarig lärare: Michael Josefsson. Besöker lokalen kl 16. Tel.: 013-28 12 64

Läs mer

Switch. En switch har två lägen. Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten. Öppen. Symbol. William Sandqvist

Switch. En switch har två lägen. Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten. Öppen. Symbol. William Sandqvist Switch En switch har två lägen Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten Öppen = = Symbol S Implementering av logiska funktioner Switchen kan användas för att implentera logiska funktioner Power

Läs mer

Laboration D181. ELEKTRONIK Digitalteknik. Kombinatoriska kretsar, HCMOS. 2008-01-24 v 2.1

Laboration D181. ELEKTRONIK Digitalteknik. Kombinatoriska kretsar, HCMOS. 2008-01-24 v 2.1 UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Christer Ardlin/Lars Wållberg/ Dan Weinehall/Håkan Joëlson 2008-01-24 v 2.1 ELEKTRONIK Digitalteknik Laboration D181 Kombinatoriska kretsar,

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Logikgrindar Från data till digitala byggblock: Kursens

Läs mer

Styrteknik: Grundläggande logiska funktioner D2:1

Styrteknik: Grundläggande logiska funktioner D2:1 Styrteknik: Grundläggande logiska funktioner D2:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik: Grundläggande logiska funktioner

Läs mer

DIGITALTEKNIK. Laboration D161. Kombinatoriska kretsar och nät

DIGITALTEKNIK. Laboration D161. Kombinatoriska kretsar och nät UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik jörne Lindberg/Håkan Joëlson 2003-09-15 v 2.2 DIGITALTEKNIK Laboration D161 Kombinatoriska kretsar och nät Innehåll Uppgift 1...Grundläggande

Läs mer

Transistorn en omkopplare utan rörliga delar

Transistorn en omkopplare utan rörliga delar Transistorn en omkopplare utan rörliga delar Gate Source Drain Principskiss för SiGe transistor (KTH) Varför CMOS? CMOS-Transistorer är enkla att tillverka CMOS-Transistorer är gjorda av vanlig sand =>

Läs mer

Digital elektronik CL0090

Digital elektronik CL0090 Digital elektronik CL0090 Föreläsning 2 2007-0-25 08.5 2.00 Naos De logiska unktionerna implementeras i grindar. Här visas de vanligaste. Svenska IEC standard SS IEC 87-2 Amerikanska ANSI/IEEE Std.9.984

Läs mer

F5 Introduktion till digitalteknik

F5 Introduktion till digitalteknik George Boole och paraplyet F5 Introduktion till digitalteknik EDAA05 Roger Henriksson Jonas Wisbrant p = b! (s " r) George Boole (1815-1864) Professor i Matematik, Queens College, Cork, Irland 2 Exklusiv

Läs mer

Tillämpad digitalteknik med PIC-processor för Fort och Vidareutbildning. Häfte: Digitalteknik

Tillämpad digitalteknik med PIC-processor för Fort och Vidareutbildning. Häfte: Digitalteknik Tillämpad digitalteknik med PIC-processor för Fort och Vidareutbildning Häfte: Digitalteknik William Sandqvist 2004 1 2 Binärkod och Graykod Vinkelmätare med kodskiva. Till vänster binärkod, till höger

Läs mer

T1-modulen Lektionerna 10-12. Radioamatörkurs OH6AG - 2011 OH6AG. Bearbetning och översättning: Thomas Anderssén, OH6NT Heikki Lahtivirta, OH2LH

T1-modulen Lektionerna 10-12. Radioamatörkurs OH6AG - 2011 OH6AG. Bearbetning och översättning: Thomas Anderssén, OH6NT Heikki Lahtivirta, OH2LH T1-modulen Lektionerna 10-12 Radioamatörkurs OH6AG - 2011 Bearbetning och översättning: Thomas Anderssén, OH6NT Original: Heikki Lahtivirta, OH2LH 1 Logikkretsar Logikkretsarna är digitala mikrokretsar.

Läs mer

IE1205 Digital Design: F14: Halvledarminnen, Mikrodatorn

IE1205 Digital Design: F14: Halvledarminnen, Mikrodatorn IE1205 Digital Design: F14: Halvledarminnen, Mikrodatorn IE1205 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska kretsar F7

Läs mer

TSIU05 Digitalteknik. LAB1 Kombinatorik LAB2 Sekvensnät LAB3 System

TSIU05 Digitalteknik. LAB1 Kombinatorik LAB2 Sekvensnät LAB3 System 1 TSIU05 Digitalteknik LAB1 Kombinatorik LAB2 Sekvensnät LAB3 System Sammanställning september 2013 Läs detta först Läs igenom hela laborationen så du vet vad du skall göra på laborationspasset. Hela

Läs mer

Digitalteknik syntes Arne Linde 2012

Digitalteknik syntes Arne Linde 2012 Digitalteknik, fortsättningskurs Föreläsning 3 Kombinatoriska nät 202 VHDL repetition + Strukturell VHDL Lite repetition + Karnaughdiagram(4-6var), flera utgångar + Quine-McCluskey + intro tid 2 Entity

Läs mer

DIGITALTEKNIK. Laboration D164. Logiska funktioner med mikroprocessor Kombinatoriska funktioner med PIC16F84 Sekvensfunktioner med PIC16F84

DIGITALTEKNIK. Laboration D164. Logiska funktioner med mikroprocessor Kombinatoriska funktioner med PIC16F84 Sekvensfunktioner med PIC16F84 UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Björne Lindberg Håkan Joëlson 2007-11-22 v 2.3 DIGITALTEKNIK Laboration D164 Logiska funktioner med mikroprocessor Kombinatoriska funktioner

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik Cederlöf Tentamen i Grundläggande ellära och digitalteknik ETA 03 för D 2000-05-03 Tentamen omfattar 40 poäng, 2 poäng för varje uppgift. 20 poäng ger godkänd tentamen. Tillåtet hjälpmedel är

Läs mer

Tenta i Digitalteknik

Tenta i Digitalteknik Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2010-06-01 Skrivtid 9.00-14.00 (5 timmar) Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376

Läs mer

Tentamen i Digitalteknik, EIT020

Tentamen i Digitalteknik, EIT020 Elektro- och informationsteknik Tentamen i Digitalteknik, EIT020 4 april 2013, kl 14-19 Skriv namn och årskurs på alla papper. Börja en ny lösning på ett nytt papper. Använd bara en sida av pappret. Lösningarna

Läs mer

LABORATIONSINSTRUKTION

LABORATIONSINSTRUKTION Högskolan Dalarna Institutionen för Elektroteknik LABORATION LABORATIONSINSTRUKTION LOG/iC, PLD, kombinatorik, sekvensnät KURS Digitalteknik LAB NR 6 INNEHÅLL. Inledning 2. Prioritetskodare 3. Elektronisk

Läs mer

Lösningförslag till Exempel på tentamensfrågor Digitalteknik I.

Lösningförslag till Exempel på tentamensfrågor Digitalteknik I. Lösningförslag till Exempel på tentamensfrågor Digitalteknik I.. Uttryckt i decimal form: A=28+32+8 + 2 =70 B=59 C=7 A+B+C=246 2. Jag låter A' betyda "icke A" A'B'C'D'+ABC'D'+A'BCD'+AB'CD'=D'(A'(B'C'+BC)+A(BC'+B'C))=

Läs mer

INNEHÅLL. Inledning...1. Talsystem...2. Logiska funktioner...12. Logiska kretsar i praktiken...19. Elektrostatisk urladdning (ESD)...

INNEHÅLL. Inledning...1. Talsystem...2. Logiska funktioner...12. Logiska kretsar i praktiken...19. Elektrostatisk urladdning (ESD)... INNEHÅLL Inledning... Talsystem...2 Logiska funktioner...2 Logiska kretsar i praktiken...9 Elektrostatisk urladdning (ESD)...2 - Introduktion övningsmoduler...23 2 - NOT-grind...24 3 - ND-grind...25 4

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE204 Kursomgång för Högskoleingenjörsinriktningarna: Datateknik, Elektronik och Datorteknik. F Introduktion till Digitaltekniken william@kth.se IE204 Digital Design F F3 F2 F4 Ö Booles

Läs mer

Tentamen i EDA320 Digitalteknik för D2

Tentamen i EDA320 Digitalteknik för D2 CHALMERS TEKNISKA HÖGSKOLA Institutionen för datorteknik Tentamen i EDA320 Digitalteknik för D2 Tentamenstid: onsdagen den 2 mars 997 kl 4.5-8.5. Sal: vv Examinator: Peter Dahlgren Tel. expedition 03-772677.

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE204 F Introduktion till Digitaltekniken william@kth.se IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 F7 F8 Ö4 F9 Ö5 KK LAB Multiplexor

Läs mer

Laboration Kombinatoriska kretsar

Laboration Kombinatoriska kretsar Laboration Kombinatoriska kretsar Digital Design IE1204/5 Observera! För att få laborera måste Du ha: bokat en laborationstid i bokningssystemet (Daisy). löst ditt personliga web-häfte med förkunskapsuppgifter

Läs mer

Avkodning av minnen (och I/O)

Avkodning av minnen (och I/O) Avkodning av minnen (och I/O) IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska kretsar F7 F8 Ö4 F9 Ö5 Multiplexor KK2

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik Cederlöf Tentamen i Grundläggande ellära och digitalteknik ET 3 för D 999-3-5 Tentamen omfattar 4 poäng, 2 poäng för varje uppgift. 2 poäng ger godkänd tentamen. Tillåtet hjälpmedel är räknedosa.

Läs mer

Lösningsföslag till Exempel på tentamensuppgifter i Digitalteknik I

Lösningsföslag till Exempel på tentamensuppgifter i Digitalteknik I Lösningsföslag till Exempel på tentamensuppgifter i Digitalteknik I Flervalsfrågor. A 2. C 3. B 4. D 5. A 6. B 7. C 8. D 9. C 0. B. B 2. C 3. A 4. C 5. A Problemuppgifter. Uttryckt i decimal form: A=28+32+8

Läs mer

Hjälpmedel: Appendix A. VHDL-syntax. (bifogas detta prov) Appendix B.2. IEEE-package (bifogas detta prov)

Hjälpmedel: Appendix A. VHDL-syntax. (bifogas detta prov) Appendix B.2. IEEE-package (bifogas detta prov) 7HQWDPHQL.XQGDQSDVVDGHNUHWVDUI U(P Datum: 991012 Tid: 8.00-13.00 Lokal: E138 Hjälpmedel: Appendix A. VHDL-syntax. (bifogas detta prov) Appendix B.2. IEEE-package (bifogas detta prov) Vid eventuella frågor

Läs mer

Kodlås. Kopplingsschema över kodlåset PAL-18

Kodlås. Kopplingsschema över kodlåset PAL-18 Kodlås I den här uppgiften skall du konstruera ett kodlås med hjälp av ett litet tangentbord. Varje gång man trycker på en tangent skall det pipa i summern och när man tryckt in den rätta fyrsiffriga koden

Läs mer

Minneselement,. Styrteknik grundkurs. Digitala kursmoment. SR-latch med logiska grindar. Funktionstabell för SR-latchen R S Q Q ?

Minneselement,. Styrteknik grundkurs. Digitala kursmoment. SR-latch med logiska grindar. Funktionstabell för SR-latchen R S Q Q ? Styrteknik grundkurs Digitala kursmoment Binära tal, talsystem och koder Boolesk Algebra Grundläggande logiska grindar Minneselement, register, enkla räknare Analog/digital omvandling SR-latch med logiska

Läs mer

LOG/iC2. Introduction

LOG/iC2. Introduction LOG/iC2 Introduction L00000 11110111111111111111111111111111111111111111* L04884 11111111111111111111111111111111111111111111* L04928 11111111011111111111111111111111111111101111* L04972 11111111101110111111111111111111111111011111*

Läs mer

Laboration Sekvenskretsar

Laboration Sekvenskretsar Laboration Sekvenskretsar Digital Design IE1204/5 Observera! För att få laborera måste Du ha: bokat en laborationstid i bokningssystemet (Daisy). löst ditt personliga web-häfte med förkunskapsuppgifter

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #5 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Vad är ett bra grindnät? De egenskaper som betraktas som

Läs mer

FÖRELÄSNING 8 INTRODUKTION TILL DESIGN AV DIGITALA ELEKTRONIKSYSTEM

FÖRELÄSNING 8 INTRODUKTION TILL DESIGN AV DIGITALA ELEKTRONIKSYSTEM FÖRELÄSNING 8 INTRODUKTION TILL DESIGN AV DIGITALA ELEKTRONIKSYSTEM Innehåll Designflöde Översikt av integrerade kretsar Motivation Hardware Description Language CAD-verktyg 1 DESIGNFLÖDE FÖR DIGITALA

Läs mer

Digital elektronik CL0090

Digital elektronik CL0090 Digital elektronik CL9 Föreläsning 3 27--29 8.5 2. My Talsystem Binära tal har basen 2 Exempel Det decimala talet 9 motsvarar 2 Den första ettan är MSB, Most Significant Bit, den andra ettan är LSB Least

Läs mer

EDA Digital och Datorteknik 2009/2010

EDA Digital och Datorteknik 2009/2010 EDA45 - Digital och Datorteknik 29/2 EDA 45 - Digital och Datorteknik 29/2, lärobokens kapitel 3 Ur innehållet: Satslogik och Boolesk algebra Grindar Funktionstabell Binär evaluering Normal orm/förenklad

Läs mer

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum Laboration 6 A/D- och D/A-omvandling A/D-omvandlare Digitala Utgång V fs 3R/2 Analog Sample R R D E C O D E R P/S Skiftregister R/2 2 N-1 Komparatorer Digital elektronik Halvledare, Logiska grindar Digital

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Instittionen för data- och informationsteknik Chalmers tekniska högskola Från data till digitala byggblock: Krsens inledande föreläsningarna

Läs mer

Grindar och transistorer

Grindar och transistorer Föreläsningsanteckningar Föreläsning 17 - Digitalteknik I boken: nns ej med Grindar och transistorer Vi ska kort beskriva lite om hur vi kan bygga upp olika typer av grindar med hjälp av transistorer.

Läs mer

Switchnätsalgebra. Negation, ICKE NOT-grind (Inverterare) Konjunktion, OCH AND-grind. Disjunktion, ELLER OR-grind

Switchnätsalgebra. Negation, ICKE NOT-grind (Inverterare) Konjunktion, OCH AND-grind. Disjunktion, ELLER OR-grind Dagens öreläsning behandlar: Läroboken kapitel 3 Arbetsboken kapitel,3 Ur innehållet: Satslogik och Grindar Funktionstabell Binär evaluering Normal orm/förenklad orm/ Minimal orm Karnaughdiagram Negation,

Läs mer

IE1205 Digital Design: F11: Programmerbar Logik, VHDL för Sekvensnät

IE1205 Digital Design: F11: Programmerbar Logik, VHDL för Sekvensnät IE1205 Digital Design: F11: Programmerbar Logik, VHDL för Sekvensnät Programmable Logic Devices Under 1970-talet introducerades programmerbara logiska kretsar som betecknas programmable logic device (PLD)

Läs mer

Laboration D184. ELEKTRONIK Digitalteknik. Sekvensnät beskrivna med VHDL och realiserade med PLD

Laboration D184. ELEKTRONIK Digitalteknik. Sekvensnät beskrivna med VHDL och realiserade med PLD UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Lars Wållberg/Dan Weinehall/ Håkan Joëlson 2010-05-06 v 1.7 ELEKTRONIK Digitalteknik Laboration D184 Sekvensnät beskrivna med VHDL och realiserade

Läs mer

Laboration Kombinatoriska kretsar

Laboration Kombinatoriska kretsar Laboration Kombinatoriska kretsar Digital Design IE1204/5 Observera! För att få laborera måste Du ha: en bokad laborationstid i bokningssystemet (Daisy). löst ditt personliga web-häfte med förkunskapsuppgifter

Läs mer

DIGITALTEKNIK. Laboration D173. Grundläggande digital logik

DIGITALTEKNIK. Laboration D173. Grundläggande digital logik UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Håkan Joëlson 2007-11-19 v 1.1 DIGITALTEKNIK Laboration D173 Grundläggande digital logik Innehåll Mål. Material.... Uppgift 1...Sanningstabell

Läs mer

Exempel 3 på Tentamen

Exempel 3 på Tentamen Institutionen för data- och informationsteknik CHALMERS TEKNISKA HÖGSKOLA Exempel 3 på Tentamen Grundläggande datorteknik Examinator Kontaktperson under tentamen Tillåtna hjälpmedel Häfte Instruktionslista

Läs mer

Tentamen EDAA05 Datorer i system

Tentamen EDAA05 Datorer i system LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Tentamen EDAA05 Datorer i system 2011 10 17, 8.00 13.00 Tillåtna hjälpmedel: bifogad formel- och symbolsamling. För godkänt betyg på tentamen

Läs mer

Angående buffer. clk clear >=1 =9?

Angående buffer. clk clear >=1 =9? 10.VHDL3 Repetition buffer, record, loop kombinaoriska processer Varning latchar, hasard CPU-embryo VHDL-kod för mikromaskin med hämtfas Minnen i FGPA Distributed RAM (LUT) Block-RAM 1 Angående buffer

Läs mer