Digital- och datorteknik

Storlek: px
Starta visningen från sidan:

Download "Digital- och datorteknik"

Transkript

1 Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Instittionen för data- och informationsteknik Chalmers tekniska högskola Från data till digitala byggblock: Krsens inledande föreläsningarna har introdcerat bitar, bitsträngar och binära koder, d v s det som representerar de data som vår dator kommer att bearbeta. Nästa steg blir n att ta fram de byggblock (digitala kretsar) som senare på lämpligt sätt kombineras till större byggblock och blir det som tgör datorns grndläggande delar. För detta syfte behöver vi logikgrindar, digitala kretselement som tför enklare logiska operationer. I en logisk operation representerar varje bit ett sanningsvärde* som kan vara antingen SANT ( 1 ) eller FALSKT ( 0 ). * ) Vi har alltså stött på änn en kodning (tolkning) av binära siffror. Grndläggande logikoperationer och dess symboler: Grind (Gate) INVERTERARE (ICKE, NOT) ELLER (OR) OCH (AND) Symbol y y 1 1 Fnktionstabell y y Booleskt ttryck = = + y = y Fnktionstabell: Beskriver de möjliga logiska värden som kan påföras en grinds ingångar samt det reslterande värdet på grindens tgång. Regelverk för logiska operationer och grindnät: För bearbetning av variabler (symboler) som representerar tal finns regler som beskriver hr dessa variabler får manipleras, för att eempelvis lösa ekvationssystem och ttrycka formler. Detta regelverk kallas algebra. Ett motsvarande regelsystem finns för bearbetning av variabler som representerar logiska värden. Dessa regler kan användas för att beskriva och analysera beteendet hos logikgrindar, t e för påvisa ekvivalens mellan två givna grindnät eller för att ta fram kretslösningar med så få grindar som möjligt. Detta speciella regelverk kallas. 1

2 George Boole Clade Shannon Egenskaper: Den booleska algebran definieras av en ppsättning värden som variabler och konstanter kan anta en ppsättning grndläggande operationer som kan tföras på variabler och konstanter en ppsättning räkneregler De värden som kan antas är SANT (1, ) eller FALSKT (0, ) På 1930-talet jobbade Shannon med switchnät, nät ppbyggda av kretselement som kan väla mellan två tillstånd. Kretselementen bestod vid den tiden av reläer. För att modellera och analysera kretselementen på en matematisk form använde han den algebra som Boole presenterat i mitten av 1800-talet. De grndläggande operationer som kan tföras är: ICKE (negation): (alt. ' el. ) ELLER (disjnktion): + y (alt. y) OCH (konjnktion): y (alt. y, y el. y) Räkneregler: (Postlat) P1. + y = y + (kommtativa lagarna) y = y P2. (y + z) = y + z (distribtiva lagarna) + (y z) = ( + y) ( + z) P = (netralt element) 1= P4. + = 1 (komplementlagarna) = 0 Räkneregler: (Teorem) T5. + (y + z) = ( + y) + z (associativa lagarna) (y z) = ( y) z T6. y = ( + y) (De Morgans lagar) + y = ( y) T7. + = (idempotent element) = T8. + 1= 1 (annihilerande element) 0 = 0 T9. () = (dbbel negation) 2

3 För att illstrera hr användbar är i digitaloch datorteknik, föreställer vi oss ett scenario i en inte alltför avlägsen framtid: D är helt ny på ditt jobb som konstrktör av digitala system, och har fått i ppgift att avslta ett pågående projekt. Allt går bra tills d kommer till en delkomponent som tyvärr använder för många logiska grindar för att projektet skall ppfylla kraven. Mer specifikt har d fastnat vid fnktionen f = (+y)(+z) som tar tre logiska grindar i anspråk, men som d misstänker kan realiseras med färre grindar. Om d hittar en sådan lösning sklle prodkten knna färdigställas (varandes lite billigare och strömsnålare), vilket säkerligen sklle ppskattas av din chef. Då deadline för ppgiften är redan i morgon, och då d känner dig ortinerad vad gäller denna del av digitalteknik som kallas "kretsminimering, rådfrågar d en kollega som lovar att ta en titt på detta snarast möjligt. När arbetsdagen är nästan till ända kommer din kollega med en lösning som bara behöver två grindar: g = +yz. Din kollega har dock bråttom hem och hinner inte stanna för att förklara hr han fått fram lösningen, tan säger bara "Trst me! Då d vet att din kollega gått på Högskolan i X, och inte på Chalmers, vill d helst verifiera att den nya lösningen ger samma fnktion som den första. D vill j inte lämna ifrån dig en felaktig design det första d gör på ditt nya jobb Metod 1: Visa på lämpligt sätt att ( + y)( + z) = + y z Ställ pp en sanningstabell och visa att de två ttrycken ger samma tfall för varje kombination av ttryckens variabler. En tid har gått och d tänker tillbaka på den lyckade starten på ditt jobb. Fast det retar dig lite att d inte hade egen knskap för att lösa detta. Därför tar d fram ditt gamla material från krsen i Digital- och datorteknik, och går igenom det i lgn och ro nder en helg, så att d kan vara ordentligt förberedd nästa gång en liknande ppgift dyker pp. Så: hr borde d ha löst ppgiften??? Metod 2: Visa ekvivalensen algebraiskt genom att tillämpa räknereglerna i den Boolska algebran. 3

4 SP- och PS-form: I det framtida scenariot observerade vi att fnktionen hos en krets kan ttryckas på två olika former: Som en smma av prodkter, SP-form, även kallad disjnktiv form. Din kollegas lösning, +yz, är eempel på sådan form. Som en prodkt av smmor, PS-form, även kallad konjnktiv form. Den lösning d ville förbättra, (+y)(+z), är eempel på sådan form. SP-form och PS-form för samma fnktion är alltså ekvivalenta, så endera formen kan väljas. Dock kan den ena i praktiken vara mer lämpad, t e på grnd av begränsningar i hr många grindar som totalt får användas, eller på grnd av begränsningar i vilken typ av grindar som får användas. Mintermer och matermer: Utgående från fnktionstabellen för en given Booleskt fnktion är det möjligt att härleda fnktionens SP-form respektive PS-form: För SP-form skall vi identifiera de rader i tabellen som har ett fnktionsvärde lika med 1. Den nika prodkten av invariabler för en sådan rad kallas för en minterm. Smman av alla mintermer kallas för SP normal form. För PS-form skall vi identifiera de rader i tabellen som har ett fnktionsvärde lika med 0. Den nika smman av invariabler för en sådan rad kallas för en materm. Prodkten av alla matermer kallas för PS normal form. Observera att varje minterm och materm är nik och innehåller samtliga invariabler. Karnaghminimering Kommentar: Ta fram SP normal form för ( + y)( + z) Vi väljer SP-form eftersom vi såg att din kollegas lösning, med det minsta antalet grindar, hade den formen. Minimering av Booleska fnktioner: Om vi inte är nöjda med den lösning som ges av fnktionens SP normal form eller PS normal form, kan vi härleda ett minimalt ttryck genom Karnaghminimering. Denna metod bygger på att man för in fnktionstabellen i en matris med invariablernas olika värden längs rader och kolmner. Varje rta i matrisen representerar fnktionsvärdet för en minterm (för SP form) eller en materm (för PS form). 4

5 Karnaghminimering Minimering av Booleska fnktioner: För att ge möjlighet till effektiv eliminering av onödiga variabler skall intilliggande rader respektive kolmner representera termer ordnade enligt Gray-kod, d v s de skiljer sig åt i en bitposition. Ringa in så stora grpper av 1:or (för SP form) eller 0:or (för PS form) som möjligt, och ta fram ttrycken för dessa. Gör Karnaghminimering på SP normal form för ( + y)( + z) 5

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Logikgrindar Från data till digitala byggblock: Kursens

Läs mer

Digital- och datorteknik

Digital- och datorteknik LEU Digital- och datorteknik, Chalmers, /6 Föreläsning # Uppdaterad 6 september, Digital- och datorteknik Föreläsning # Biträdande professor Jan Jonsson SP- och PS-form: Vid förra föreläsningen konstaterade

Läs mer

Digital Design IE1204

Digital Design IE1204 Digital Design IE24 F2 : Logiska Grindar och Kretsar, Boolesk Algebra william@kth.se IE24 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska

Läs mer

EDA Digital och Datorteknik 2009/2010

EDA Digital och Datorteknik 2009/2010 EDA45 - Digital och Datorteknik 29/2 EDA 45 - Digital och Datorteknik 29/2, lärobokens kapitel 3 Ur innehållet: Satslogik och Boolesk algebra Grindar Funktionstabell Binär evaluering Normal orm/förenklad

Läs mer

F5 Introduktion till digitalteknik

F5 Introduktion till digitalteknik Exklusiv eller XOR F5 Introduktion till digitalteknik EDAA05 Roger Henriksson Jonas Wisbrant På övning 2 stötte ni på uttrycket x = (a b) ( a b) som kan utläsas antingen a eller b, men inte både a och

Läs mer

Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck

Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck KOMBINATORISK LOGIK Innehåll Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck Boolesk algebra Karnaugh-diagram Realisering av logiska funktioner

Läs mer

Digital elektronik CL0090

Digital elektronik CL0090 Digital elektronik CL0090 Föreläsning 2 2007-0-25 08.5 2.00 Naos De logiska unktionerna implementeras i grindar. Här visas de vanligaste. Svenska IEC standard SS IEC 87-2 Amerikanska ANSI/IEEE Std.9.984

Läs mer

Logik. Boolesk algebra. Logik. Operationer. Boolesk algebra

Logik. Boolesk algebra. Logik. Operationer. Boolesk algebra Logik F4 Logik Boolesk algebra EDAA05 Roger Henriksson Jonas Wisbrant Konsten att, och vetenskapen om, att resonera och dra slutsatser. Vad behövs för att man ska kunna dra en slutsats? Hur kan man dra

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #5 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Vad är ett bra grindnät? De egenskaper som betraktas som

Läs mer

Switch. En switch har två lägen. Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten. Öppen. Symbol. William Sandqvist

Switch. En switch har två lägen. Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten. Öppen. Symbol. William Sandqvist Switch En switch har två lägen Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten Öppen = = Symbol S Implementering av logiska funktioner Switchen kan användas för att implentera logiska funktioner Power

Läs mer

VEKTORRUMMET R n. 1. Introduktion

VEKTORRUMMET R n. 1. Introduktion VEKTORRUMMET R n RYSZARD RUBINSZTEIN 28--8. Introdktion Låt n vara ett heltal. Med R n kommer vi att beteckna mängden vars element är alla n-tipplar av reella tal (a, a 2,..., a n ), R n = { (a, a 2,...,

Läs mer

F5 Introduktion till digitalteknik

F5 Introduktion till digitalteknik George Boole och paraplyet F5 Introduktion till digitalteknik EDAA05 Roger Henriksson Jonas Wisbrant p = b! (s " r) George Boole (1815-1864) Professor i Matematik, Queens College, Cork, Irland 2 Exklusiv

Läs mer

IE1205 Digital Design. F2 : Logiska Grindar och Kretsar, Boolesk Algebra. Fredrik Jonsson KTH/ICT/ES

IE1205 Digital Design. F2 : Logiska Grindar och Kretsar, Boolesk Algebra. Fredrik Jonsson KTH/ICT/ES IE1205 Digital Design F2 : Logiska Grindar och Kretsar, oolesk Algebra Fredrik Jonsson KTH/ICT/ES fjon@kth.se Switch En switch har två lägen Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten Öppen x

Läs mer

Switchnätsalgebra. Negation, ICKE NOT-grind (Inverterare) Konjunktion, OCH AND-grind. Disjunktion, ELLER OR-grind

Switchnätsalgebra. Negation, ICKE NOT-grind (Inverterare) Konjunktion, OCH AND-grind. Disjunktion, ELLER OR-grind Dagens öreläsning behandlar: Läroboken kapitel 3 Arbetsboken kapitel,3 Ur innehållet: Satslogik och Grindar Funktionstabell Binär evaluering Normal orm/förenklad orm/ Minimal orm Karnaughdiagram Negation,

Läs mer

IE1205 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering

IE1205 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering IE25 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering Mintermer 2 3 OR f En minterm är en produktterm som innehåller alla variabler och som anger den kombination av :or och :or som

Läs mer

Mintermer. SP-form med tre mintermer. William Sandqvist

Mintermer. SP-form med tre mintermer. William Sandqvist Mintermer OR f 2 3 En minterm är en produktterm som innehåller alla variabler och som anger den kombination av :or och :or som tillsammans gör att termen antar värdet. SP-form med tre mintermer. f = m

Läs mer

Sanningstabell. En logisk funktion kan också beskrivas genom en sanningstabell (truth table) 1 står för sann (true) 0 står för falsk (false)

Sanningstabell. En logisk funktion kan också beskrivas genom en sanningstabell (truth table) 1 står för sann (true) 0 står för falsk (false) Sanningstabell En logisk funktion kan också beskrivas genom en sanningstabell (truth table) 1 står för sann (true) 0 står för falsk (false) ND OR Logiska grindar ND-grinden (OCH) IEC Symbol (International

Läs mer

Kap. 7 Logik och boolesk algebra

Kap. 7 Logik och boolesk algebra Ka. 7 Logik och boolesk algebra Satslogik Fem logiska konnektiv: ej, och, eller, om-så, omm Begre: sats, sanningsvärde, sanningsvärdestabell tautologi, kontradiktion Egenskaer: Räkneregler för satslogik

Läs mer

Maurice Karnaugh. Karnaugh-diagrammet gör det enkelt att minimera Boolska uttryck! William Sandqvist

Maurice Karnaugh. Karnaugh-diagrammet gör det enkelt att minimera Boolska uttryck! William Sandqvist Maurice Karnaugh Karnaugh-diagrammet gör det enkelt att minimera Boolska uttryck! En funktion av fyra variabler a b c d Sanningstabellen till höger innehåller 11 st 1:or och 5 st 0:or. Funktionen kan uttryckas

Läs mer

Laboration D181. ELEKTRONIK Digitalteknik. Kombinatoriska kretsar, HCMOS. 2008-01-24 v 2.1

Laboration D181. ELEKTRONIK Digitalteknik. Kombinatoriska kretsar, HCMOS. 2008-01-24 v 2.1 UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Christer Ardlin/Lars Wållberg/ Dan Weinehall/Håkan Joëlson 2008-01-24 v 2.1 ELEKTRONIK Digitalteknik Laboration D181 Kombinatoriska kretsar,

Läs mer

SMD033 Digitalteknik. Digitalteknik F1 bild 1

SMD033 Digitalteknik. Digitalteknik F1 bild 1 SMD033 Digitalteknik Digitalteknik F1 bild 1 Vi som undervisar Anders Hansson A3209 91 230 aha@sm.luth.se Digitalteknik F1 bild 2 Registrering Registrering via email till diglabs@luth.se Digitalteknik

Läs mer

Moment 2 - Digital elektronik. Föreläsning 1 Binära tal och logiska grindar

Moment 2 - Digital elektronik. Föreläsning 1 Binära tal och logiska grindar Moment 2 - Digital elektronik Föreläsning 1 Binära tal och logiska grindar Jan Thim 1 F1: Binära tal och logiska grindar Innehåll: Introduktion Talsystem och koder Räkna binärt Logiska grindar Boolesk

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #2 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Talomvandling Principer för omvandling mellan olika talsystem:

Läs mer

Tentamen i IE1204/5 Digital Design onsdagen den 5/

Tentamen i IE1204/5 Digital Design onsdagen den 5/ Tentamen i IE1204/5 Digital Design onsdagen den 5/6 2013 9.00-13.00 Tentamensfrågor med lösningsförslag Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista

Läs mer

Styrteknik: Grundläggande logiska funktioner D2:1

Styrteknik: Grundläggande logiska funktioner D2:1 Styrteknik: Grundläggande logiska funktioner D2:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik: Grundläggande logiska funktioner

Läs mer

Grundläggande digitalteknik

Grundläggande digitalteknik Grundläggande digitalteknik Jan Carlsson Inledning I den verkliga världen vet vi att vi kan få vilka värden som helst när vi mäter på något. En varm sommardag visar termometern kanske 6, 7 C. Men när det

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #7 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Aritmetik i digitala system Speciella egenskaper: Systemet

Läs mer

DIGITALTEKNIK. Laboration D161. Kombinatoriska kretsar och nät

DIGITALTEKNIK. Laboration D161. Kombinatoriska kretsar och nät UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik jörne Lindberg/Håkan Joëlson 2003-09-15 v 2.2 DIGITALTEKNIK Laboration D161 Kombinatoriska kretsar och nät Innehåll Uppgift 1...Grundläggande

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #7 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Speciella egenskaper: Systemet arbetar med kodord (s k

Läs mer

DIGITALA TAL OCH BOOLESK ALGEBRA

DIGITALA TAL OCH BOOLESK ALGEBRA DIGITALA TAL OCH BOOLESK ALGEBRA Innehåll Talsystem och koder Aritmetik för inära tal Grundläggande logiska operationer Logiska grindar Definitioner i Boolesk algera Räknelagar BINÄRA TALSYSTEMET Binärt

Läs mer

Booleska variabler och översättning mellan programuttryck och booleska variabler

Booleska variabler och översättning mellan programuttryck och booleska variabler Vad är Boolesk algebra Lite förenklat kan man säga att Boolesk algebra är räkneregler konstruerade av den engelske matematikern Gerge Boole för att kunna räkna med logiska uttryck. I den booleska algebran

Läs mer

Föreläsning 4/11. Lite om logiska operationer. Hambley avsnitt 12.7, 14.1 (7.3 för den som vill läsa lite mer om grindar)

Föreläsning 4/11. Lite om logiska operationer. Hambley avsnitt 12.7, 14.1 (7.3 för den som vill läsa lite mer om grindar) 1 Föreläsning 4/11 Hambley avsnitt 12.7, 14.1 (7.3 för den som vill läsa lite mer om grindar) Lite om logiska operationer Logiska variabler är storheter som kan anta två värden; sann 1 falsk 0 De logiska

Läs mer

T1-modulen Lektionerna 10-12. Radioamatörkurs OH6AG - 2011 OH6AG. Bearbetning och översättning: Thomas Anderssén, OH6NT Heikki Lahtivirta, OH2LH

T1-modulen Lektionerna 10-12. Radioamatörkurs OH6AG - 2011 OH6AG. Bearbetning och översättning: Thomas Anderssén, OH6NT Heikki Lahtivirta, OH2LH T1-modulen Lektionerna 10-12 Radioamatörkurs OH6AG - 2011 Bearbetning och översättning: Thomas Anderssén, OH6NT Original: Heikki Lahtivirta, OH2LH 1 Logikkretsar Logikkretsarna är digitala mikrokretsar.

Läs mer

Mattias Wiggberg Collaboration

Mattias Wiggberg Collaboration Informationsteknologi sommarkurs 5p, 24 Mattias Wiggberg Dept. of Information Technology Box 337 SE75 5 Uppsala +46 847 3 76 Collaboration Jakob Carlström Binära tal Slideset 5 Agenda Binära tal Talbaser

Läs mer

Kursens mål: Grundläggande Datorteknik. Kursens Hemsida. Fatta hur en dator är uppbyggd (HDW) Fatta hur du du programmerar den (SW)

Kursens mål: Grundläggande Datorteknik. Kursens Hemsida. Fatta hur en dator är uppbyggd (HDW) Fatta hur du du programmerar den (SW) Grundläggande Datorteknik Kursens mål: Fatta hur en dator är uppbggd (HDW) Fatta hur du du programmerar den (SW) Fatta hur HDW o SW samverkar LP EDA433 (IT), DIT79 (GU) LP2 EDA45 (D), DIT79 (GU) LP3 EDA27

Läs mer

DIGITALTEKNIK. Laboration D173. Grundläggande digital logik

DIGITALTEKNIK. Laboration D173. Grundläggande digital logik UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Håkan Joëlson 2007-11-19 v 1.1 DIGITALTEKNIK Laboration D173 Grundläggande digital logik Innehåll Mål. Material.... Uppgift 1...Sanningstabell

Läs mer

5:2 Digitalteknik Boolesk algebra. Inledning OCH-funktionen

5:2 Digitalteknik Boolesk algebra. Inledning OCH-funktionen 5:2 Digitalteknik Boolesk algebra. Inledning I en dator representeras det binära talsystemet med signaler i form av elektriska spänningar. 0 = 0 V (låg spänning), 1 = 5 V(hög spänning). Datorn kombinerar

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #9 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola ekvensnät Vad kännetecknar ett sekvensnät? I ett sekvensnät

Läs mer

Tentamen i EDA320 Digitalteknik för D2

Tentamen i EDA320 Digitalteknik för D2 CHALMERS TEKNISKA HÖGSKOLA Institutionen för datorteknik Tentamen i EDA320 Digitalteknik för D2 Tentamenstid: onsdagen den 2 mars 997 kl 4.5-8.5. Sal: vv Examinator: Peter Dahlgren Tel. expedition 03-772677.

Läs mer

D0013E Introduktion till Digitalteknik

D0013E Introduktion till Digitalteknik D0013E Introduktion till Digitalteknik Slides : Per Lindgren EISLAB per.lindgren@ltu.se Ursprungliga slides : Ingo Sander KTH/ICT/ES ingo@kth.se Vem är Per Lindgren? Professor Inbyggda System Från Älvsbyn

Läs mer

Laboration D151. Kombinatoriska kretsar, HCMOS. Namn: Datum: Epostadr: Kurs:

Laboration D151. Kombinatoriska kretsar, HCMOS. Namn: Datum: Epostadr: Kurs: UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Christer Ardlin/Lars Wållberg/ Håkan Joëlson 2000-01-28 v 2.3 ELEKTRONIK Digitalteknik Laboration D151 Kombinatoriska kretsar, HCMOS Namn:

Läs mer

Digitalteknik F4. NOR-labben. Digitalteknik F1b bild 1

Digitalteknik F4. NOR-labben. Digitalteknik F1b bild 1 Digitalteknik F4 NOR-labben Digitalteknik F1b bild 1 Att implementera en funktion Utgångsläge: En funktion: A B C ƒ 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 ƒ(abc) = A BC + A BC

Läs mer

Vad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system

Vad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system Vad är det? Översikt Discrete structure: A set of discrete elements on which certain operations are defined. Discrete implies non-continuous and therefore discrete sets include finite and countable sets

Läs mer

Föreläsningsanteckningar och övningar till logik mängdlära Boolesk algebra

Föreläsningsanteckningar och övningar till logik mängdlära Boolesk algebra Föreläsningsantekningar oh övningar till logik mängdlära Boolesk algebra I kursen matematiska metoder, del A (TMA04 behandlar vi i lv logik, mängdlära oh Boolesk algebra I satslogik oh mängdalgebra, två

Läs mer

Inledning. Kapitel 0. Det finns tre typer av regler- och styrproblem

Inledning. Kapitel 0. Det finns tre typer av regler- och styrproblem Kapitel 0 Inledning Det finns tre typer av regler- och styrproblem 1. Reglering och styrning av procesesser som kan beskrivas med hjälp av differential- eller differensekvationer. Ingående variabler beskrivs

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 6: Binära beslutsdiagram (BDD) Henrik Björklund Umeå universitet 22. september, 2014 Binära beslutsdiagram Binära beslutsdiagram (Binary decision diagrams, BDDs)

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2015 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner

Läs mer

Kortlaboration DIK. Digitalteknik, kombinatorik.

Kortlaboration DIK. Digitalteknik, kombinatorik. MMK, KTH Kortlaborationer 1 Kortlaboration DIK Digitalteknik, kombinatorik. I denna laboration bekantar vi oss med datorprogrammet LabVIEW. Programmet har blivit något av en industristandard för att automatisera

Läs mer

Digital och Datorteknik

Digital och Datorteknik Digital och Datorteknik Dig o Dat = DoD LEU43 LP-LP2 Mekatronik Digital och Datorteknik OH LV Kursens mål: Fatta hur en dator är uppbyggd (HDW) Fatta hur du du programmerar den (SW) Fatta hur HDW o SW

Läs mer

DIGITALTEKNIK. Laboration D164. Logiska funktioner med mikroprocessor Kombinatoriska funktioner med PIC16F84 Sekvensfunktioner med PIC16F84

DIGITALTEKNIK. Laboration D164. Logiska funktioner med mikroprocessor Kombinatoriska funktioner med PIC16F84 Sekvensfunktioner med PIC16F84 UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Björne Lindberg Håkan Joëlson 2007-11-22 v 2.3 DIGITALTEKNIK Laboration D164 Logiska funktioner med mikroprocessor Kombinatoriska funktioner

Läs mer

Föreläsningsanteckningar och övningar till logik mängdlära

Föreläsningsanteckningar och övningar till logik mängdlära Inledande matematisk analys tma970, 010, logik, mängdlära Föreläsningsanteckningar och övningar till logik mängdlära Dessa öreläsningsanteckningar kompletterar mycket kortattat kap 0 och appendix B i Persson/Böiers,

Läs mer

Laboration Kombinatoriska kretsar

Laboration Kombinatoriska kretsar Laboration Kombinatoriska kretsar Digital Design IE1204/5 Observera! För att få laborera måste Du ha: bokat en laborationstid i bokningssystemet (Daisy). löst ditt personliga web-häfte med förkunskapsuppgifter

Läs mer

Satslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar)

Satslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Satslogik grundläggande definitioner Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Modeller, logisk konsekvens och ekvivalens Några notationella förenklingar Kompletta mängder

Läs mer

Institutionen för systemteknik, ISY, LiTH. Tentamen i. Tid: kl

Institutionen för systemteknik, ISY, LiTH. Tentamen i. Tid: kl Institutionen för systemteknik, ISY, LiTH Tentamen i Digitalteknik TSIU05/TEN1 Tid: 2016 10 26 kl. 14 18 Lokal : TER3 TER4 Ansvarig lärare: Michael Josefsson. Besöker lokalen kl 16. Tel.: 013-28 12 64

Läs mer

1. Inledning. x y z. u = xe 1 + ye 2 + ze 3 = e

1. Inledning. x y z. u = xe 1 + ye 2 + ze 3 = e . Inledning I Linjär algebra kommer vi att stdera olika objekt samt deras egenskaper. Dessa objekt kan ha geometrisk tolkning såsom geometriska vektorer men också inte som t.e. matriser. Vi har tidigare

Läs mer

Följddiagram för händelsestyrda rörelser

Följddiagram för händelsestyrda rörelser Följddiagram för händelsestyrda rörelser 2 STYROBJEKT UNIKA FASER Två arbetscylindrar ska röra sig i följande ordning. När man ger startkommando ska kolvstången i cylinder gå ut. När den har nått sitt

Läs mer

Datorsimuleringsuppgift i Mekanik I del 2, Ht Stela Kroppens Dynamik (TMME18) Rulle på Cylinder. Deadline för inlämning: , kl 15.

Datorsimuleringsuppgift i Mekanik I del 2, Ht Stela Kroppens Dynamik (TMME18) Rulle på Cylinder. Deadline för inlämning: , kl 15. (6) Bakgrnd Datorsimleringsppgift i Mekanik I del, Ht 0 Stela Kroppens Dynamik (TMME8) Rlle på Cylinder Deadline för inlämning: 0--09, kl 5.00 I ppgiften skall d ställa pp rörelseekvationerna för ett mekaniskt

Läs mer

Övningar och datorlaborationer, Datorer i system

Övningar och datorlaborationer, Datorer i system LUNDS TEKNISKA HÖGSKOLA Datorer i system Institutionen för datavetenskap 2013/14 Övningar och datorlaborationer, Datorer i system Kursen Datorer i system inkluderar under läsperiod HT1 två övningar i seminariesal

Läs mer

Formell logik Kapitel 3 och 4. Robin Stenwall Lunds universitet

Formell logik Kapitel 3 och 4. Robin Stenwall Lunds universitet Formell logik Kapitel 3 och 4 Robin Stenwall Lunds universitet Kapitel 3: De Booleska konnektiven Vi sade att predikaten och namnen kan variera mellan olika FOL Vi ska nu titta på några språkliga element

Läs mer

1 Suddig logik och gitter

1 Suddig logik och gitter UPPSALA UNIVERSITET Matematiska institutionen Erik Palmgren Kompletterande material Algebra DV2 ht-2000 1 Suddig logik och gitter Suddig logik (engelska: fuzzy logic) är en utvidgning av vanlig boolesk

Läs mer

Introduktion till logik

Introduktion till logik Introduktion till logik Av Johan Johansson Johan.johansson@guldstadsgymnasiet.se Logik sägs som många andra saker komma från de grekiska filosoferna, och ordet kommer också därifrån. Grekerna kallade det

Läs mer

IE1204/IE1205 Digital Design

IE1204/IE1205 Digital Design TENTAMEN IE1204/IE1205 Digital Design 2012-12-13, 09.00-13.00 Inga hjälpmedel är tillåtna! Hjälpmedel Tentamen består av tre delar med sammanlagd tolv uppgifter, och totalt 30 poäng. Del A1 (Analys) innehåller

Läs mer

Laboration Kombinatoriska kretsar

Laboration Kombinatoriska kretsar Laboration Kombinatoriska kretsar Digital Design IE1204/5 Observera! För att få laborera måste Du ha: en bokad laborationstid i bokningssystemet (Daisy). löst ditt personliga web-häfte med förkunskapsuppgifter

Läs mer

Digitalteknik. Talsystem Grindlogik Koder Booles algebra Tillämpningar Karnaughdiagram. A.Lövdahl

Digitalteknik. Talsystem Grindlogik Koder Booles algebra Tillämpningar Karnaughdiagram. A.Lövdahl Digitalteknik Talsystem Grindlogik Koder ooles algebra Tillämpningar Karnaughdiagram.Lövdahl 1001001100101100000001011010010 TLSYSTEM Talsystem är en angivelse på en viss position. De vanligaste talsystemen

Läs mer

Digitalteknik 7.5 hp distans: 5.1 Generella sekvenskretsar 5.1.1

Digitalteknik 7.5 hp distans: 5.1 Generella sekvenskretsar 5.1.1 Digitalteknik 7.5 hp distans: 5.1 Generella sekvenskretsar 5.1.1 Från Wikipedia: Sekvensnät Ett sekvensnäts utgångsvärde beror inte bara på indata, utan även i vilken ordning datan kommer (dess sekvens).

Läs mer

MATEMATIKENS SPRÅK. Avsnitt 1

MATEMATIKENS SPRÅK. Avsnitt 1 Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en

Läs mer

repetitionskoder blockkoder Felrättande koder

repetitionskoder blockkoder Felrättande koder Antag att en följd av nollor och ettor ska skickas genom en kanal: 0 0 0 0 0 0... Om det finns en viss risk (sannolikhet) för fel kanske vi får ut: 0 0 0 0 0 0... Hur kan man rätta till felen med så lite

Läs mer

Översikt, kursinnehåll

Översikt, kursinnehåll Översikt, kursinnehåll Specifikation av digitala funktioner och system Digitala byggelement Kombinatoriska system Digital Aritmetik Synkrona system och tillståndsmaskiner Asynkrona system och tillståndsmaskiner

Läs mer

MÖNSTER OCH TALFÖLJDER

MÖNSTER OCH TALFÖLJDER MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll

Läs mer

Tentamen i TTIT07 Diskreta Strukturer

Tentamen i TTIT07 Diskreta Strukturer Tentamen i TTIT07 Diskreta Strukturer 2004-10-28, kl 8 13, TER1 och TERC Inga hjälpmedel är tillåtna Kom ihåg att svaren på samtliga uppgifter måste MOTIVERAS, och att motiveringarna skall vara uppställda

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 2 Strukturer 2 2.1 Domäner... 2 2.2 Tolkningar... 3

Tommy Färnqvist, IDA, Linköpings universitet. 2 Strukturer 2 2.1 Domäner... 2 2.2 Tolkningar... 3 Föreläsning 2 Semantik 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 27 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 2.1 Innehåll Innehåll 1 Lite mer syntax 1 2 Strukturer

Läs mer

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum Laboration 6 A/D- och D/A-omvandling A/D-omvandlare Digitala Utgång V fs 3R/2 Analog Sample R R D E C O D E R P/S Skiftregister R/2 2 N-1 Komparatorer Digital elektronik Halvledare, Logiska grindar Digital

Läs mer

Övningshäfte 1: Logik och matematikens språk

Övningshäfte 1: Logik och matematikens språk GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter

Läs mer

Tentamen i Digitalteknik, EIT020

Tentamen i Digitalteknik, EIT020 Elektro- och informationsteknik Tentamen i Digitalteknik, EIT020 4 april 2013, kl 14-19 Skriv namn och årskurs på alla papper. Börja en ny lösning på ett nytt papper. Använd bara en sida av pappret. Lösningarna

Läs mer

Hur implementera algoritmerna på maskinnivå - datorns byggstenar

Hur implementera algoritmerna på maskinnivå - datorns byggstenar Hur implementera algoritmerna på maskinnivå - datorns byggstenar Binära tal Boolesk logik grindar och kretsar A A extern representation intern representation minnet i datorn extern representation 1000001

Läs mer

IE1205 Digital Design: F5 : Digital aritmetik 1

IE1205 Digital Design: F5 : Digital aritmetik 1 IE1205 Digital Design: F5 : Digital aritmetik 1 Heltal Positiva Heltal: 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 1 0 1 1 0 1 = 1*2 6 + 1*2 5 + 0*2 4 + 1*2 3 + 1*2 2 + 0*2 1 + 1*2 0 = 64 + 32 + 0*16 + 8 + 4 + 0*2

Läs mer

BOOLESK ALGEBRA OCH BOOLESKA FUNKTIONER. ; samt

BOOLESK ALGEBRA OCH BOOLESKA FUNKTIONER. ; samt Institutionen för matematik, KTH 5B8 Diskret matematik BOOLESK ALGEBRA OCH BOOLESKA FUNKTIONER ANDERS BJÖRNER OCH KIMMO ERIKSSON Boolesk algebra skapades vid 8-talets mitt av den engelske matematikern

Läs mer

Kursens mål: Digital och Datorteknik. Kursens mål: Digital teknik Dator teknik. Dator teknik. Digital teknik. Dig o Dat = DoD

Kursens mål: Digital och Datorteknik. Kursens mål: Digital teknik Dator teknik. Dator teknik. Digital teknik. Dig o Dat = DoD Digital och Datorteknik Dig o Dat = DoD LP ED432 (IT), DIT79 (GU), LEU43 (L) LP2 ED25 (Z), DIT79 (GU), ED45 (D) LP4 ED3 (E) Digital och Datorteknik OH LV Kursens mål: Fatta hur en dator är uppbggd (HDW)

Läs mer

INNEHÅLL. Inledning...1. Talsystem...2. Logiska funktioner...12. Logiska kretsar i praktiken...19. Elektrostatisk urladdning (ESD)...

INNEHÅLL. Inledning...1. Talsystem...2. Logiska funktioner...12. Logiska kretsar i praktiken...19. Elektrostatisk urladdning (ESD)... INNEHÅLL Inledning... Talsystem...2 Logiska funktioner...2 Logiska kretsar i praktiken...9 Elektrostatisk urladdning (ESD)...2 - Introduktion övningsmoduler...23 2 - NOT-grind...24 3 - ND-grind...25 4

Läs mer

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt,

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, Explorativ övning 1 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt matematiska språk,

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2

Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2 Föreläsning 1 Syntax 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 21 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 1.1 Innehåll Innehåll 1 Kursadministration 1 2 Introduktion

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2013 1 Inledning 2 Satslogik Inledning Satslogiska uttryck Resonemang och härledningar

Läs mer

Lösningsföslag till Exempel på tentamensuppgifter i Digitalteknik I

Lösningsföslag till Exempel på tentamensuppgifter i Digitalteknik I Lösningsföslag till Exempel på tentamensuppgifter i Digitalteknik I Flervalsfrågor. A 2. C 3. B 4. D 5. A 6. B 7. C 8. D 9. C 0. B. B 2. C 3. A 4. C 5. A Problemuppgifter. Uttryckt i decimal form: A=28+32+8

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik Cederlöf Per Liljas Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D1 2001-05-28 Tentamen omfattar 40 poäng, 2 poäng för varje uppgift. 20 poäng ger godkänd tentamen. Tillåtet

Läs mer

Logik och kontrollstrukturer

Logik och kontrollstrukturer Logik och kontrollstrukturer Flödet av instruktioner i ett programmeringsspråk bygger vi upp med hjälp av dess kontrollstrukturer. I C har vi exemplen if, if else, while, do while. Dessutom finns switch

Läs mer

Tentamen i IE1204/5 Digital Design Torsdag 29/

Tentamen i IE1204/5 Digital Design Torsdag 29/ Tentamen i IE1204/5 Digital Design Torsdag 29/10 2015 9.00-13.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist

Läs mer

Tentamen i. TDDC67 Funktionell programmering och Lisp

Tentamen i. TDDC67 Funktionell programmering och Lisp 1 Linköpings tekniska högskola Institutionen för datavetenskap Anders Haraldsson Tentamen i TDDC67 Funktionell programmering och Lisp och äldre kurser TDDC57 Programmering, Lisp och funktionell programmering

Läs mer

Ett urval D/A- och A/D-omvandlare

Ett urval D/A- och A/D-omvandlare Ett urval D/A- och A/D-omvandlare Om man vill ansluta en mikrodator (eller annan digital krets) till sensorer och givare så är det inga problem så länge givarna själva är digitala. Strömbrytare, reläer

Läs mer

TSIU05 Digitalteknik. LAB1 Kombinatorik LAB2 Sekvensnät LAB3 System

TSIU05 Digitalteknik. LAB1 Kombinatorik LAB2 Sekvensnät LAB3 System 1 TSIU05 Digitalteknik LAB1 Kombinatorik LAB2 Sekvensnät LAB3 System Sammanställning september 2013 Läs detta först Läs igenom hela laborationen så du vet vad du skall göra på laborationspasset. Hela

Läs mer

Örnsköldsviks kommun. Granskning av kommunens upphandlings- och inköpsverksamhet

Örnsköldsviks kommun. Granskning av kommunens upphandlings- och inköpsverksamhet Revisionsrapport 2014 Genomförd på ppdrag av revisorerna december 2014-mars 2015 Örnsköldsviks kommn Granskning av kommnens pphandlings- och inköpsverksamhet Innehåll 1. Sammanfattning...2 2. Inledning...3

Läs mer

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2.

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2. Logik Vid alla matematiskt resonemang måste man vara säker på att man verkligen menar det man skriver ner på sitt papper. Därför måste man besinna hur man egentligen tänker. Den vetenskap, som sysslar

Läs mer

MA 11. Hur starkt de binder. 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi

MA 11. Hur starkt de binder. 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi MA 11 Talteori och logik 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi propositionssymboler: bokstäver konnektiv Paranteser konnektiv

Läs mer

Övervakning & Programspråk

Övervakning & Programspråk Övervakning & Programspråk Denna PowerPoint är gjord för att du ska få en inblick i vad ett driftövervakningssystem är. Vad kan man se? Olika tekniska funktioner? Fördelar? Även en inblick i hur man programmerar

Läs mer

Vardagssituationer och algebraiska formler

Vardagssituationer och algebraiska formler Modul: Algebra Del 7: Kommunikation i algebraklassrummet Vardagssituationer och algebraiska formler Cecilia Kilhamn, Göteborgs Universitet och Jörgen Fors, Linnéuniversitetet En viktig del av algebran

Läs mer

Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter

Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter Inledande matematik för I1 MVE011 läsperiod 1 010 Matlab vecka övningsuppgifter Linjära ekvationssystem Matlab har många kraftfulla redskap för att hantera matriser och därmed också linjära ekvationssystem.

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

Semantik och pragmatik

Semantik och pragmatik Semantik och pragmatik OH-serie 4 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Om barnet har svårt att andas eller har ont i bröstet

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik ederlöf Tentamen i Grundläggande ellära och digitalteknik ET 03 för D 000-03-3 Tentamen omfattar 40 poäng, poäng för varje uppgift. 0 poäng ger godkänd tentamen. Tillåtet hjälpmedel är räknedosa.

Läs mer

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss Explorativ övning 1 LMA100 vt 2003 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #19 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Normaltillstånd vs undantagstillstånd I normaltillstånd

Läs mer