7, Diskreta strukturer

Storlek: px
Starta visningen från sidan:

Download "7, Diskreta strukturer"

Transkript

1 Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2015

2 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner Derivator, integraler Dierentialekvationer Diskreta modeller Program-modeller Mängder, relationer, funktioner Träd, grafer Språk, automater Logik Funktioner Datastrukturer Objektorienterade modeller Inledning 7, Diskreta strukturer 2/37

3 Diskreta strukturer Logik logiska uttryck och resonemang Mängder, funktioner och relationer Formella språk, reguljära uttryck och grammatiker Turingmaskiner och frågan om P = NP Inledning 7, Diskreta strukturer 3/37

4 Symbolen = π = f(x) = x + 1 x 2 = = = 3 x = x + 1 Inledning 7, Diskreta strukturer 4/37

5 Symbolen = π = f(x) = x + 1 NB! denierar f, inte x f = x x + 1 f = λx. x + 1 Inledning 7, Diskreta strukturer 5/37

6 Satslogik Mål: Efter att ha studerat detta kapitel och arbetat med övningar och programmeringsuppgifter skall du kunna 1 översätta påståenden i naturligt språk till satslogisk notation. 2 konstruera enkla bevis med naturlig härledning 3 avgöra om ett komplicerat bevis är korrekt konstruerat 4 analysera ett uttryck när regler för precedens och associativitet är givna. Satslogik : Inledning 7, Diskreta strukturer 6/37

7 Satslogik Att använda logiska uttryck (jfr Boolesk algebra) för att modellera logiska resonemang. Att beskriva hur man drar slutsatser från en mängd premisser. Uttryck består av påståenden, som kan vara sanna eller falska, och operatorer. Satslogiken behandlar bara påståendena som sådana, vi kommer sen att utöka detta till predikatlogik, med större uttryckskraft. Satslogik : Inledning 7, Diskreta strukturer 7/37

8 Översätt från naturligt språk till satslogiskt uttryck Identiera påståenden och ge dem namn (satsvariabler) Identiera operatorer (konnektiv) Satslogik : Inledning 7, Diskreta strukturer 8/37

9 Exempel: EM i fotboll 2008 Om Sverige vinner över eller spelar oavgjort mot Ryssland så går Sverige till kvartsnal. Detta är en sammansättning av tre stycken påståenden. Det blir tydligare med formuleringen Om Sverige vinner över Ryssland eller om Sverige spelar oavgjort mot Ryssland så går Sverige till kvartsnal. p q r Sverige vinner över Ryssland Sverige spelar oavgjort mot Ryssland Sverige går till kvartsnal Om p eller q, så r. Detta kan skrivas som (p q) r Satslogik : Inledning 7, Diskreta strukturer 9/37

10 Satslogik p, q,... variabler och eller inte, om... så, implicerar ekvivalent Satslogik : Satslogiska uttryck 7, Diskreta strukturer 10/37

11 Satslogiska uttryck P, Q,... står för godtyckliga satslogiska uttryck. p, q,... variabler (P Q) och, konjunktion (P Q) eller, disjunktion P inte, negation (P Q) om... så, implikation (P Q) ekvivalens Satslogik : Satslogiska uttryck 7, Diskreta strukturer 11/37

12 Elektriska kretsar Seriekoppling: Paralellkoppling: Satslogik : Satslogiska uttryck 7, Diskreta strukturer 12/37

13 ... och mängdlära B B B A A A A B A B B A Satslogik : Satslogiska uttryck 7, Diskreta strukturer 13/37

14 Aktivitet Om Sverige vinner mot Ryssland så får Sverige möta Holland i kvartsnalen och om Sverige förlorar så får Ryssland möta Holland. p q r s Sverige vinner över Ryssland Sverige förlorar mot Ryssland Sverige möter Holland i kvartsnalen Ryssland möter Holland i kvartsnalen (p r) (q s) Satslogik : Satslogiska uttryck 7, Diskreta strukturer 14/37

15 Grundläggande begrepp satslogik premisser slutsatser satslogiska uttryck satsvariabler sanningsvärden, T, F, (1, 0), (, ) sanning, falskhet operatorer (konnektiv),,,,, Satslogik : Satslogiska uttryck 7, Diskreta strukturer 15/37

16 Exempel på uttryck p q p (p q) (p q) (p q) (p q) ( p p) (p q) p (p (p q)) ( p (p q)) Satslogik : Satslogiska uttryck 7, Diskreta strukturer 16/37

17 Sanningstabeller P P F T T F P Q P Q P Q P Q P Q F F F F T T T F F T F F F T F T T F T T T T T T Satslogik : Satslogiska uttryck 7, Diskreta strukturer 17/37

18 Resonemang och härledningar Satser och bevis Logisk implikation Direkt härledning Indirekt härledning Satslogik : Resonemang och härledningar 7, Diskreta strukturer 18/37

19 En primtalssats Två tal är primtalstvillingar om båda är primtal och skillnaden mellan dem är 2. Låt P = det nns oändligt många primtalstvillingar Q = det nns oändligt många primtal Sats P Q Är P sann? Det vet ingen. P skulle kunna vara falsk. Är Q sann? Ja, det bevisade Euklides för 2300 år sedan. Är satsen sann, dvs är det en sats? Ja, det skall vi strax bevisa. Satslogik : Resonemang och härledningar 7, Diskreta strukturer 19/37

20 En primtalssats Direkt bevis Låt P = det nns oändligt många primtalstvillingar Q = det nns oändligt många primtal Sats P Q Bevis. Antag att det nns oändligt många primtalstvillingar. Alla par har olika första komponent. Alla förstakomponenter är primtal. Alltså nns det oändligt många primtal. Satslogik : Resonemang och härledningar 7, Diskreta strukturer 20/37

21 Det nns oändligt många primtal Motsägelsebevis (Indirekt bevis, reductio ad absurdum). Jag har lånat och översatt Euklides bild från hans presentation på en vetenskaplig konferens i Alexandria 280 f. Kr. Sats Det nns oändligt många primtal. Bevis. 1 Antag att det ej nns oändligt många primtal. 2 Då nns det ett största primtal. Kalla det p. 3 Låt q vara produkten av de första p talen, q = p!. 4 Då är q + 1 inte delbart med något av dem. 5 Alltså är q + 1 också ett primtal och större än p. 6 Men (5) motsäger (2). Alltså måste (1) vara falskt. Satslogik : Resonemang och härledningar 7, Diskreta strukturer 21/37

22 En primtalssats till P = det nns ändligt många primtalstvillingar Q = det nns ett största primtalstvillingpar Sats P Q Är P sann? Förmodligen inte Är Q sann? Om inte P så inte Q Är satsen sann, dvs är det en sats? Ja: en ändlig mängd har ett största element. Det är alltså så at både premiss och slutsats kan vara falska i en sats som vi kan bevisa. Satslogik : Resonemang och härledningar 7, Diskreta strukturer 22/37

23 När är P Q sann? När är P Q sann? P är sann och Q är sann P är falsk och Q är sann P är falsk och Q är falsk Det är bara fallet P är sann och Q är falsk som inte kan förekomma. Detta motiverar Denition P Q P Q T T T F T T F F T T F F Satslogik : Resonemang och härledningar 7, Diskreta strukturer 23/37

24 ,, eller När man använder i matematiken, P Q, så nns det alltid en orsaksrelation mellan P och Q. I satslogiken skriver vi P Q och det behöver inte nnas någon relation alls mellan P och Q. P och Q innehåller variabler som kan anta sanningsvärden, men vi bortser helt från vad variablerna står för. I satslogiska härledningar använder vi för logisk konsekvens (eller sekvent). När en mängd premisser P 1, P 2,..., P n leder till slutsatsen Q skrivs det {P 1, P 2,..., P n } Q. Tecknet kan utläsas alltså. Satslogik : Resonemang och härledningar 7, Diskreta strukturer 24/37

25 Tautologier Ett påstående som är sant för alla värden av ingående variabler kallas en tautologi. T ex p p. P är en tautologi skrivs ibland P Motsatsen till tautologi är motsägelse T ex p p. Satslogik : Resonemang och härledningar 7, Diskreta strukturer 25/37

26 Aktivitet Det är inte uppenbart att R = ( p q) (( p q) p) är en tautologi, men en sanningstabell verierar att så är fallet. p q p q p q p q ( p q) p R F F T T T F T T F T T F F T F T T F F T T T T T T T F F T T T T Satslogik : Resonemang och härledningar 7, Diskreta strukturer 26/37

27 Sats (Kommutativitet) P Q Q P P Q Q P Sats (Associativitet) (P Q) R P (Q R) (P Q) R P (Q R) Sats (Dubbel negation) P P Satslogik : Resonemang och härledningar 7, Diskreta strukturer 27/37

28 Aktivitet Visa att p p q och p q p inte är ekvivalenta. p q p q p p q p q p F F F T T F T F T T T F F F T T T T T T Satslogik : Resonemang och härledningar 7, Diskreta strukturer 28/37

29 Sats (Distributivitet) P (Q R) P (Q R) (P Q) (P R) (P Q) (P R) Sats (de Morgans lagar) (P Q) (P Q) P Q P Q Satslogik : Resonemang och härledningar 7, Diskreta strukturer 29/37

30 Aktivitet Vilka uttryck är tautologier? p (q r) (p q) (p r) Ja (p q) r (p r) (q r) Nej Om inte, ge motexempel. p = F, q = T, r = F (p q) r (p r) (q r) F F T F T F F Samt de två fallen då p = T och q = F Satslogik : Resonemang och härledningar 7, Diskreta strukturer 30/37

31 Aktivitet När gäller det att (p q) r och p (q r) är olika? För p = q = r = F och p = F, q = T, r = F Satslogik : Resonemang och härledningar 7, Diskreta strukturer 31/37

32 Naturlig härledning, inferensregler En logisk härleding är att givet en mängd förutsättningar med hjälp av inferensregler härleda en slutsats För varje operator (konnektiv) nns regler som introducerar eliminerar Satslogik : Resonemang och härledningar 7, Diskreta strukturer 32/37

33 Inferensregler för P Q P [ E (modus ponens, MP )] Q P Q Q [modus tollens (MT )] P Satslogik : Resonemang och härledningar 7, Diskreta strukturer 33/37

34 Instanser av inferensregler för p p q [ E ] q (p q) (p q) r [ E ] r Satslogik : Resonemang och härledningar 7, Diskreta strukturer 34/37

35 Inferensregler för P Q [ E1 ] P P Q [ E2 ] Q P Q [ I ] P Q Satslogik : Resonemang och härledningar 7, Diskreta strukturer 35/37

36 Härledningar med Bevis av kommutativa lagen: P Q Q P p q [ E2 ] q q p p q [ E1 ] p [ I ] p q p q p p q q Satslogik : Resonemang och härledningar 7, Diskreta strukturer 36/37

37 Sammanfattning Satslogik begrepp sanningstabeller räknelagar Naturlig härledning direkt bevis indirekt bevis (mostägelsebevis) inferensregler Nästa föreläsning Mer om naturlig härledning och inferensregler Satslogikens begränsningar, predikatlogik Satslogik : Resonemang och härledningar 7, Diskreta strukturer 37/37

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2013 1 Inledning 2 Satslogik Inledning Satslogiska uttryck Resonemang och härledningar

Läs mer

8. Naturlig härledning och predikatlogik

8. Naturlig härledning och predikatlogik Objektorienterad modellering och diskreta strukturer 8. Naturlig härledning och predikatlogik Sven Gestegård Robertz Datavetenskap, LTH 2013 Outline 1 Inledning 2 Inferensregler 3 Predikatlogik 8. Naturlig

Läs mer

Semantik och pragmatik

Semantik och pragmatik Semantik och pragmatik OH-serie 4 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Om barnet har svårt att andas eller har ont i bröstet

Läs mer

Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section

Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section Föreläsning 1 Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section 1.1-1.3 i kursboken Definition En utsaga (proposition) är ett

Läs mer

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt,

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, Explorativ övning 1 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt matematiska språk,

Läs mer

9. Predikatlogik och mängdlära

9. Predikatlogik och mängdlära Objektorienterad modellering och diskreta strukturer 9. Predikatlogik och mängdlära Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik naturlig härledning predikatlogik

Läs mer

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden.

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden. MATEMATISK LOGIK Matematisk logik formaliserar korrekta resonemang och definierar formellt bindeord (konnektiv) mellan påståenden (utsagor, satser) I matematisk logik betraktar vi påståenden som antingen

Läs mer

Grundläggande logik och modellteori (5DV102)

Grundläggande logik och modellteori (5DV102) Tentamen 2013-10-31 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 11 Maximalt antal poäng 30 Krav för 3 i betyg 14 poäng Krav för 4 i betyg 19 poäng,

Läs mer

DD1350 Logik för dataloger. Fö 2 Satslogik och Naturlig deduktion

DD1350 Logik för dataloger. Fö 2 Satslogik och Naturlig deduktion DD1350 Logik för dataloger Fö 2 Satslogik och Naturlig deduktion 1 Satslogik En sats(eller utsaga)är ett påstående som kan vara sant eller falskt. I satslogik(eng. propositionallogic) representeras sådana

Läs mer

Semantik och pragmatik (Serie 3)

Semantik och pragmatik (Serie 3) Semantik och pragmatik (Serie 3) Satser och logik. Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 37 Logik: språk tanke (Saeed kapitel 4.) Satser uttrycker (ofta) tankar. Uttrycksrikedom

Läs mer

MATEMATIKENS SPRÅK. Avsnitt 1

MATEMATIKENS SPRÅK. Avsnitt 1 Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en

Läs mer

Semantik och pragmatik (Serie 4)

Semantik och pragmatik (Serie 4) Semantik och pragmatik (Serie 4) Satser och logik. Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 30 Så här långt (satslogik) Konjunktion (p q): att två enklare satser båda är uppfyllda.

Läs mer

p /\ q r DD1350 Logik för dataloger Kort repetition Fö 3 Satslogikens semantik

p /\ q r DD1350 Logik för dataloger Kort repetition Fö 3 Satslogikens semantik DD1350 Logik för dataloger Fö 3 Satslogikens semantik 1 Kort repetition Satslogik formellt språk för att uttrycka påståenden med variabler och konnektiv /\, \/,, t.ex. p /\ q r 1 Kort repetition Naturlig

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om logik och mängdlära Mikael Hindgren 5 september 2018 Utsagor Utsaga = Påstående som har sanningsvärde Utsagan kan vara sann (S) eller falsk (F) öppen eller

Läs mer

Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R

Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R Föreläsning Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen För att göra ett påstående av en öppen utsaga med flera variabler behövs flera kvantifierare.

Läs mer

Formell logik Kapitel 5 och 6. Robin Stenwall Lunds universitet

Formell logik Kapitel 5 och 6. Robin Stenwall Lunds universitet Formell logik Kapitel 5 och 6 Robin Stenwall Lunds universitet Kapitel 5 Bevismetoder för boolesk logik Visa att en sats är en tautologisk konsekvens av en mängd premisser! Lösning: sanningstabellmetoden

Läs mer

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss Explorativ övning 1 LMA100 vt 2003 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt

Läs mer

Vad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system

Vad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system Vad är det? Översikt Discrete structure: A set of discrete elements on which certain operations are defined. Discrete implies non-continuous and therefore discrete sets include finite and countable sets

Läs mer

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2.

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2. Logik Vid alla matematiskt resonemang måste man vara säker på att man verkligen menar det man skriver ner på sitt papper. Därför måste man besinna hur man egentligen tänker. Den vetenskap, som sysslar

Läs mer

Kap. 7 Logik och boolesk algebra

Kap. 7 Logik och boolesk algebra Ka. 7 Logik och boolesk algebra Satslogik Fem logiska konnektiv: ej, och, eller, om-så, omm Begre: sats, sanningsvärde, sanningsvärdestabell tautologi, kontradiktion Egenskaer: Räkneregler för satslogik

Läs mer

Diskreta strukturer. 1 Introduktion. 1.1 Konventioner

Diskreta strukturer. 1 Introduktion. 1.1 Konventioner Lunds tekniska högskola Datavetenskap Lennart Andersson Föreläsningsanteckningar EDAF10 2012-10-16 Diskreta strukturer 1 Introduktion När vetenskapsmän och ingenjörer gör modeller av verkligheten använder

Läs mer

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna?

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna? Avslutning Anmärkningar inför tentan Vad ska ni kunna? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna, inlämningsuppgifterna och gruppövningarna

Läs mer

Övningshäfte 1: Logik och matematikens språk

Övningshäfte 1: Logik och matematikens språk GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter

Läs mer

10. Mängder och språk

10. Mängder och språk Objektorienterad modellering och diskreta strukturer 10. Mängder och språk Sven Gestegård Robertz Institutionen för datavetenskap, LTH 2013 Rekaputilation Vi har talat om satslogik, predikatlogik och härledning

Läs mer

Diskret matematik: Övningstentamen 4

Diskret matematik: Övningstentamen 4 Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen

Läs mer

Formell logik Kapitel 3 och 4. Robin Stenwall Lunds universitet

Formell logik Kapitel 3 och 4. Robin Stenwall Lunds universitet Formell logik Kapitel 3 och 4 Robin Stenwall Lunds universitet Kapitel 3: De Booleska konnektiven Vi sade att predikaten och namnen kan variera mellan olika FOL Vi ska nu titta på några språkliga element

Läs mer

Satslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar)

Satslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Satslogik grundläggande definitioner Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Modeller, logisk konsekvens och ekvivalens Några notationella förenklingar Kompletta mängder

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 3: Bevissystem, Hilbertsystem Henrik Björklund Umeå universitet 8. september, 2014 Bevissystem och Hilbertsystem Teorier och deduktionsproblemet Axiomscheman

Läs mer

Semantik och pragmatik

Semantik och pragmatik Semantik och pragmatik OH-serie 5 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Så här långt Konjunktion (p q): att två enklare satser

Läs mer

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1.

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1. UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik I 1 Lite om satslogik 1.1

Läs mer

Lite om bevis i matematiken

Lite om bevis i matematiken Matematik, KTH Bengt Ek februari 2013 Material till kursen SF1662, Diskret matematik för CL1: Lite om bevis i matematiken Inledning Bevis är centrala i all matematik Utan (exakta definitioner och) bevis

Läs mer

Varför är logik viktig för datavetare?

Varför är logik viktig för datavetare? Varför är logik viktig för datavetare? 1. Datavetenskap handlar ofta om att automatisera processer som tidigare styrts av människor. Intuition, intelligens och mänskliga resonemang ersätts av beräkningar.

Läs mer

Logik och kontrollstrukturer

Logik och kontrollstrukturer Logik och kontrollstrukturer Flödet av instruktioner i ett programmeringsspråk bygger vi upp med hjälp av dess kontrollstrukturer. I C har vi exemplen if, if else, while, do while. Dessutom finns switch

Läs mer

FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS

FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS 729G06 Logik FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS 160309 Idag Sammanfattning*/uppsamling 2 Mer problemöversikt (och lite definitioner) Inte ersättning för andra föreläsningar! 3 Vad är enlogik? Syntax

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2

Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2 Föreläsning 1 Syntax 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 21 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 1.1 Innehåll Innehåll 1 Kursadministration 1 2 Introduktion

Läs mer

Formell logik Kapitel 7 och 8. Robin Stenwall Lunds universitet

Formell logik Kapitel 7 och 8. Robin Stenwall Lunds universitet Formell logik Kapitel 7 och 8 Robin Stenwall Lunds universitet Kapitel 7: Konditionalsatser Kapitlet handlar om konditionalsatser (om-så-satser) och deras logik Idag: bevismetoder för konditionalsatser,

Läs mer

Föreläsningsanteckningar och övningar till logik mängdlära

Föreläsningsanteckningar och övningar till logik mängdlära Inledande matematisk analys tma970, 010, logik, mängdlära Föreläsningsanteckningar och övningar till logik mängdlära Dessa öreläsningsanteckningar kompletterar mycket kortattat kap 0 och appendix B i Persson/Böiers,

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 4: Konjunktiv och disjunktiv normalform Henrik Björklund Umeå universitet 15. september, 2014 CNF och DNF Konjunktiv normalform (CNF) Omskrivning av en formel

Läs mer

MA 11. Hur starkt de binder. 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi

MA 11. Hur starkt de binder. 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi MA 11 Talteori och logik 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi propositionssymboler: bokstäver konnektiv Paranteser konnektiv

Läs mer

2 Matematisk grammatik

2 Matematisk grammatik MATEMATISK GRAMMATIK Matematisk grammatik.1 Skriva matematik Matematisk grammatik, minst lika kul som det låter, och hur man skriver matematik är nästan lika viktigt som vad man skriver. En grammatisk

Läs mer

En introduktion till logik

En introduktion till logik rasmus.blanck@gu.se FT1200, LC1510 och LGFI52 VT2017 Först: Tack till Martin Kaså, som gett mig tillstånd att använda och bearbeta dessa ljusbilder. Vad är logik? Slogan: Logik undersöker vilka argument

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 6: Binära beslutsdiagram (BDD) Henrik Björklund Umeå universitet 22. september, 2014 Binära beslutsdiagram Binära beslutsdiagram (Binary decision diagrams, BDDs)

Läs mer

DD1350 Logik för dataloger. Vad är logik?

DD1350 Logik för dataloger. Vad är logik? DD1350 Logik för dataloger Fö 1 - Introduktion Vad är logik? Vetenskapen som studerar hur man bör resoneraoch dra slutsatser utifrån givna påståenden (=utsagor, satser). 1 Aristoteles (384-322 f.kr) Logik

Läs mer

Grundläggande logik och modellteori (5DV102)

Grundläggande logik och modellteori (5DV102) Tentamen 2014-01-10 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 10 Maximalt antal poäng 30 Krav för 3 i betyg 1 Krav för 4 i betyg 19 poäng, vara minst

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 2 Strukturer 2 2.1 Domäner... 2 2.2 Tolkningar... 3

Tommy Färnqvist, IDA, Linköpings universitet. 2 Strukturer 2 2.1 Domäner... 2 2.2 Tolkningar... 3 Föreläsning 2 Semantik 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 27 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 2.1 Innehåll Innehåll 1 Lite mer syntax 1 2 Strukturer

Läs mer

K3 Om andra ordningens predikatlogik

K3 Om andra ordningens predikatlogik KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K3 Om andra ordningens predikatlogik Vi presenterar på dessa sidor kortfattat andra ordningens predikatlogik, vilket

Läs mer

Abstrakt algebra för gymnasister

Abstrakt algebra för gymnasister Abstrakt algebra för gymnasister Veronica Crispin Quinonez Sammanfattning. Denna text är föreläsningsanteckningar från föredraget Abstrakt algebra som hölls under Kleindagarna på Institutet Mittag-Leffler

Läs mer

Sats. Om t är en rätvinklig triangel så är summan av kvadraterna på kateterna i t lika med kvadraten på hypotenusan.

Sats. Om t är en rätvinklig triangel så är summan av kvadraterna på kateterna i t lika med kvadraten på hypotenusan. Lunds tekniska högskola Datavetenskap Lennart Andersson Föreläsningsanteckningar EDAF10 3 Predikatlogik 3.1 Motivering I satslogiken är de minsta beståndsdelarna satslogiska variabler som kan anta värdena

Läs mer

Diskret matematik. Gunnar Bergström

Diskret matematik. Gunnar Bergström Diskret matematik Gunnar Bergström 20 september 2005 ii INNEHÅLL iii Innehåll 1 Logik och mängdlära 1 1.1 Satslogik........................... 1 1.1.1 Utsagor....................... 1 1.1.2 Konnektiv......................

Läs mer

Objektorienterad modellering och diskreta strukturer. 13. Problem. Sven Gestegård Robertz. Datavetenskap, LTH

Objektorienterad modellering och diskreta strukturer. 13. Problem. Sven Gestegård Robertz. Datavetenskap, LTH Objektorienterad modellering och diskreta strukturer 13. Problem Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik och härledning predikatlogik och substitution mängder

Läs mer

Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf

Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik II 1 Predikatlogik, generella

Läs mer

DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik

DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik DD1350 Logik för dataloger Fö 7 Predikatlogikens semantik 1 Kryssprodukt av mängder Om A och B är två mängder så är deras kryssprodukt A B mängden av alla par (a,b), där a A och b B. Ex: A={1,2}, B={3,4},

Läs mer

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29 Numeriska serier Andreas Rejbrand, april 2014 1/29 1 Inledning Författarens erfarenhet säger att momentet med numeriska serier är ganska svårt för många studenter i inledande matematikkurser på högskolenivå.

Läs mer

Logik. Dr. Johan Hagelbäck.

Logik. Dr. Johan Hagelbäck. Logik Dr. Johan Hagelbäck johan.hagelback@lnu.se http://aiguy.org Vad är logik? Logik handlar om korrekta och inkorrekta sätt att resonera Logik är ett sätt att skilja mellan korrekt och inkorrekt tankesätt

Läs mer

Kimmo Eriksson 12 december 1995. Att losa uppgifter av karaktaren \Bevisa att..." uppfattas av manga studenter

Kimmo Eriksson 12 december 1995. Att losa uppgifter av karaktaren \Bevisa att... uppfattas av manga studenter Kimmo Eriksson 12 december 1995 Matematiska institutionen, SU Att genomfora och formulera ett bevis Att losa uppgifter av karaktaren \Bevisa att..." uppfattas av manga studenter som svart. Ofta ar det

Läs mer

729G06 Logik FÖRELÄSNING 1 ANDERS MÄRAK LEFFLER IDA/HCS

729G06 Logik FÖRELÄSNING 1 ANDERS MÄRAK LEFFLER IDA/HCS 729G06 Logik FÖRELÄSNING 1 ANDERS MÄRAK LEFFLER IDA/HCS 160127 Vad är logik? Som ämne, område... 2 Läran om korrekta resonemang Följer slutsatserna av ens antaganden? 3 Alla hundar är djur. Alla enhörningar

Läs mer

Föreläsning 5. Deduktion

Föreläsning 5. Deduktion Föreläsning 5 Deduktion Hur ett deduktivt system fungerar Komponenter - Vokabulär Ett deduktivt system använder ett visst slags språk som kan kallas för systemets vokabulär. I mindre formella fall är kanske

Läs mer

Logik. Boolesk algebra. Logik. Operationer. Boolesk algebra

Logik. Boolesk algebra. Logik. Operationer. Boolesk algebra Logik F4 Logik Boolesk algebra EDAA05 Roger Henriksson Jonas Wisbrant Konsten att, och vetenskapen om, att resonera och dra slutsatser. Vad behövs för att man ska kunna dra en slutsats? Hur kan man dra

Läs mer

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19 Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium IV v. 2.0, den 29/4 2013 III. Metalogik 17-19 Modeller för satslogiken 18.1 Vi har tidigare sagt att en modell är en tolkning av en teori

Läs mer

Den matematiska analysens grunder

Den matematiska analysens grunder KTH:s Matematiska Cirkel Den matematiska analysens grunder Katharina Heinrich Dan Petersen Institutionen för matematik, 2012 2013 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Innehåll 1 Grundläggande

Läs mer

Explorativ övning 11 GEOMETRI

Explorativ övning 11 GEOMETRI Explorativ övning 11 GEOMETRI Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

INDUKTION OCH DEDUKTION

INDUKTION OCH DEDUKTION AVSNITT 3 INDUKTION OCH DEDUKTION Med induktion menar man vanligen en mycket vanlig resonemangsmetod: man gör flera observationer, upptäcker ett mönster (eller något som man tror är ett mönster) och därefter

Läs mer

ANDREAS REJBRAND NV3ANV Matematik Matematiskt språk

ANDREAS REJBRAND NV3ANV Matematik   Matematiskt språk ANDREAS REJBRAND NV3ANV 2006-02-14 Matematik http://www.rejbrand.se Matematiskt språk Innehållsförteckning MATEMATISKT SPRÅK... 1 INNEHÅLLSFÖRTECKNING... 2 INLEDNING... 3 MÄNGDER... 4 Att uttrycka en mängd...

Läs mer

Föreläsning 6. pseudokod problemlösning logik algoritmer

Föreläsning 6. pseudokod problemlösning logik algoritmer Föreläsning 6 pseudokod problemlösning logik algoritmer Inledning Logik är läran om korrekt resonemang att kunna dra korrekta slutledningar utifrån det man vet. Vi gör detta ständigt utan att tänka på

Läs mer

KRITISKT TÄNKANDE I VÄRDEFRÅGOR. 8: Repetition

KRITISKT TÄNKANDE I VÄRDEFRÅGOR. 8: Repetition KRITISKT TÄNKANDE I VÄRDEFRÅGOR 8: Repetition TRE CENTRALA BEGREPP (i) Sanning: en egenskap som tillkommer utsagor, inte slutledningar. (ii) Logisk styrka: en egenskap som tillkommer slutledningar, inte

Läs mer

Vad är semantik? LITE OM SEMANTIK I DATORLINGVISTIKEN. Språkteknologi semantik. Frågesbesvarande

Vad är semantik? LITE OM SEMANTIK I DATORLINGVISTIKEN. Språkteknologi semantik. Frågesbesvarande LITE OM SEMANTIK I DATORLINGVISTIKEN (FORMELL SEMANTIK) Vad är semantik? Form (abstrakt struktur): grammatik Innehåll (betydelse): semantik Användning: pragmatik/diskurs Mats Dahllöf Språkteknologisk motivation

Läs mer

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska kunnas?

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska kunnas? Avslutning Anmärkningar inför tentan Vad ska kunnas? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna och gruppövningarna räcker i princip.

Läs mer

Tentamen i TTIT07 Diskreta Strukturer

Tentamen i TTIT07 Diskreta Strukturer Tentamen i TTIT07 Diskreta Strukturer 2004-10-28, kl 8 13, TER1 och TERC Inga hjälpmedel är tillåtna Kom ihåg att svaren på samtliga uppgifter måste MOTIVERAS, och att motiveringarna skall vara uppställda

Läs mer

Utveckling av undervisningen i matematik och datateknik i gymnasiet

Utveckling av undervisningen i matematik och datateknik i gymnasiet Utveckling av undervisningen i matematik och datateknik i gymnasiet Ralph-Johan Back Åbo Akademi, Avdelningen för Informationsteknologi CREST Learning and Reasoning laboratoriet 22 mars 2007 Gymnasieundervisning

Läs mer

FTEA12:2 Filosofisk Metod. Grundläggande argumentationsanalys II

FTEA12:2 Filosofisk Metod. Grundläggande argumentationsanalys II TEA12:2 ilosofisk Metod Grundläggande argumentationsanalys II Dagens upplägg 1. Kort repetition. 2. Logisk styrka: några intressanta specialfall. 3. ormalisering: översättning från naturligt språk till

Läs mer

Matematik F Ett försök till kursmaterial

Matematik F Ett försök till kursmaterial Matematik F Ett försök till kursmaterial Olle the Greatest Donnergymnasiet, Sverige Skrivet i L A TEXε juni 005 Innehåll Inledning 4 Matematisk grammatik 5. Skriva matematik...........................

Läs mer

12. Relationer och funktioner

12. Relationer och funktioner Objektorienterad modellering och diskreta strukturer 12. Relationer och funktioner Sven Gestegård Robertz Institutionen för datavetenskap, LTH 2013 Laboration 4 Syntaxanalys Grammatik för (vår delmängd

Läs mer

Föreläsning 8: Intro till Komplexitetsteori

Föreläsning 8: Intro till Komplexitetsteori Föreläsning 8: Intro till Komplexitetsteori Formalisering av rimlig tid En algoritm som har körtid O(n k ) för någon konstant k är rimligt snabb. En algoritm som har körtid Ω(c n ) för någon konstant c>1

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

Logik för datavetare DVK:Log Tisdagen 28 oktober 2014. Institutionen för dataoch systemvetenskap David Sundgren

Logik för datavetare DVK:Log Tisdagen 28 oktober 2014. Institutionen för dataoch systemvetenskap David Sundgren Institutionen för dataoch systemvetenskap David Sundgren Logik för datavetare DVK:Log Tisdagen 28 oktober 2014 Skrivtid: 9 00-13 00. Inga hjälpmedel utom formelsamlingen på nästa sida är tillåtna. För

Läs mer

Viktiga frågor att ställa när ett argument ska analyseras och sedan värderas:

Viktiga frågor att ställa när ett argument ska analyseras och sedan värderas: FTEA12:2 Föreläsning 2 Grundläggande argumentationsanalys II Repetition: Vid förra tillfället började vi se närmre på vad som utmärker filosofisk argumentationsanalys. Vi tittade närmre på ett arguments

Läs mer

12. Relationer och funktioner

12. Relationer och funktioner Objektorienterad modellering och diskreta strukturer 12. Relationer och funktioner Sven Gestegård Robertz Datavetenskap, LTH 2014 Laboration 4 Syntaxanalys Grammatik för (vår delmängd av) satslogiska uttryck

Läs mer

INDUKTION OCH DEDUKTION

INDUKTION OCH DEDUKTION Explorativ övning 3 INDUKTION OCH DEDUKTION Syftet med övningen är att öka Din problemlösningsförmåga och bekanta Dig med olika bevismetoder. Vårt syfte är också att öva skriftlig framställning av matematisk

Läs mer

A B A B A B S S S S S F F S F S F S F F F F

A B A B A B S S S S S F F S F S F S F F F F Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 17. Logik När man utför matematiska resonemang så har man alltid vissa logiska spelregler att förhålla

Läs mer

1 Suddig logik och gitter

1 Suddig logik och gitter UPPSALA UNIVERSITET Matematiska institutionen Erik Palmgren Kompletterande material Algebra DV2 ht-2000 1 Suddig logik och gitter Suddig logik (engelska: fuzzy logic) är en utvidgning av vanlig boolesk

Läs mer

Om semantisk följd och bevis

Om semantisk följd och bevis Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om semantisk följd och bevis Logik handlar bla om studiet av korrekta slutledningar, dvs frågan om när det är riktigt

Läs mer

Matematik med lite logik

Matematik med lite logik Ralph-Johan Back Joakim von Wright Matematik med lite logik Strukturerade härledningar i gymnasiematematiken Turku Centre for Computer Science IMPEd Resource Centre TUCS Lecture Notes No 1, Oct 2008 Matematik

Läs mer

Föreläsningsanteckningar och övningar till logik mängdlära Boolesk algebra

Föreläsningsanteckningar och övningar till logik mängdlära Boolesk algebra Föreläsningsantekningar oh övningar till logik mängdlära Boolesk algebra I kursen matematiska metoder, del A (TMA04 behandlar vi i lv logik, mängdlära oh Boolesk algebra I satslogik oh mängdalgebra, två

Läs mer

EDA Digital och Datorteknik 2009/2010

EDA Digital och Datorteknik 2009/2010 EDA45 - Digital och Datorteknik 29/2 EDA 45 - Digital och Datorteknik 29/2, lärobokens kapitel 3 Ur innehållet: Satslogik och Boolesk algebra Grindar Funktionstabell Binär evaluering Normal orm/förenklad

Läs mer

I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental.

I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental. Lunds tekniska högskola Datavetenskap Lennart ndersson Föreläsningsanteckningar EDF10 4 Mängder 4.1 Motivering Mängden är den mest grundläggande diskreta strukturen. Nästan alla matematiska begrepp går

Läs mer

FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS

FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS 729G06 Logik FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS 160208 Idag C-regeln, informell (och formell) inledning till predikatlogik (Bevis kommer senare.) 2 3 Vår (Snöfritt Cykla) (Vår Snöfritt) Cykla Lätt

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Logikgrindar Från data till digitala byggblock: Kursens

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas, såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Jesper Carlström 2008 (reviderad 2009)

Jesper Carlström 2008 (reviderad 2009) Jesper Carlström 2008 (reviderad 2009) Jesper Carlström Matematiska institutionen Stockholms universitet 106 91 Stockholm http://www.math.su.se/ jesper/logikbok/ c 2009 Jesper Carlström Typsatt av L A

Läs mer

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6 Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Avsikten med de ledtrådar som ges nedan är att peka på

Läs mer

KRITISKT TÄNKANDE I VÄRDEFRÅGOR. 8: Repetition

KRITISKT TÄNKANDE I VÄRDEFRÅGOR. 8: Repetition KRITISKT TÄNKANDE I VÄRDEFRÅGOR 8: Repetition TRE CENTRALA BEGREPP (i) Sanning: en egenskap som tillkommer utsagor, inte slutledningar. (ii) Logisk styrka: en egenskap som tillkommer slutledningar, inte

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

LMA033/LMA515. Fredrik Lindgren. 4 september 2013

LMA033/LMA515. Fredrik Lindgren. 4 september 2013 LMA033/LMA515 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 4 september 2013 F. Lindgren (Chalmers&GU) Matematik 4 september 2013 1 / 25 Outline 1 Föreläsning

Läs mer

formler Centralt innehåll

formler Centralt innehåll Trigonometri och formler Centralt innehåll Trigonometriska uttrck. Bevis och användning av trigonometriska formler. Olika bevismetoder inom matematiken. Algebraiska metoder för att lösa trigonometriska

Läs mer

F. Drewes Datavetenskapens grunder, VT02. Lite logik

F. Drewes Datavetenskapens grunder, VT02. Lite logik F Drewes 2002-05-23 Datavetenskapens grunder, VT02 Lite logik Den här texten är en sammanfattning av logikdelen i kursen Datavetenskapens grunder Den handlar om satslogik och predikatlogik, några av deras

Läs mer

Semantik och logik. Semantik: Föreläsning 3 Lingvistik: 729G08 HT 2012 IKK, Linköpings universitet

Semantik och logik. Semantik: Föreläsning 3 Lingvistik: 729G08 HT 2012 IKK, Linköpings universitet emantik och logik emantik: Föreläsning 3 Lingvistik: 729G08 HT 2012 IKK, Linköpings universitet 1 Dagens föreläsning aeed 2009, kap.4 Introduktion till formell semantik Betydelse i sammansatta satser Betydelserelationer

Läs mer

Lösningar för tenta i TMV200 Diskret matematik kl. 14:00 18:00

Lösningar för tenta i TMV200 Diskret matematik kl. 14:00 18:00 Lösningar för tenta i TMV200 Diskret matematik 2018-08-31 kl 1:00 18:00 1 Om argumentet inte är giltigt går det att hitta ett motexempel, dvs en uppsättning sanningsvärden för vilka alla hypoteserna är

Läs mer

9. Beräkna volymen av det område som begränsas av planet z = 1 och paraboloiden z = 5 x 2 y 2.

9. Beräkna volymen av det område som begränsas av planet z = 1 och paraboloiden z = 5 x 2 y 2. Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 3 juni, 15, V-huset. Examinator: Marina Axelson-Fisk. Tel: 7-88113 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte

Läs mer

T1-modulen Lektionerna 10-12. Radioamatörkurs OH6AG - 2011 OH6AG. Bearbetning och översättning: Thomas Anderssén, OH6NT Heikki Lahtivirta, OH2LH

T1-modulen Lektionerna 10-12. Radioamatörkurs OH6AG - 2011 OH6AG. Bearbetning och översättning: Thomas Anderssén, OH6NT Heikki Lahtivirta, OH2LH T1-modulen Lektionerna 10-12 Radioamatörkurs OH6AG - 2011 Bearbetning och översättning: Thomas Anderssén, OH6NT Original: Heikki Lahtivirta, OH2LH 1 Logikkretsar Logikkretsarna är digitala mikrokretsar.

Läs mer

EDA Digital och Datorteknik 2010/2011

EDA Digital och Datorteknik 2010/2011 EDA45 - Digital och Datorteknik 2/2 EDA 45 - Digital och Datorteknik 2/2, lärobokens kapitel 3 Ur innehållet: Satslogik och Boolesk algebra Grindar Funktionstabell Binär evaluering Normal orm/förenklad

Läs mer