n Kap 4.1, 4.2, (4.3), 4.4, 4.5 n Numerisk beräkning av derivata med n Felen kan t ex vara avrundningsfel eller mätfel n Felet kan mätas
|
|
- Göran Sundberg
- för 6 år sedan
- Visningar:
Transkript
1 Datoraritmetik Beräkningsvetenskap I/KF Kursboken n Kap 4., 4., (4.3), 4.4, 4. n I kap 4.3 används Taylorutvecklingar. Om du ännu inte gått igenom detta i matematiken, kan du oppa över de delar som beandlar just detta n I kursboken används begreppet trunkeringsfel, vilket är detsamma som diskretiseringsfel Från labben Från labben n Två uvudtyper av fel: diskretiseringsfel (=trunkeringsfel) oc avrundningsfel n Olika sätt att mäta fel: relativt fel, absolut fel n Begrepp: ε M (maskinepsilon), Inf, NaN, overflow, underflow, diskretisering n Beräkningen A - A blev inte riktigt enetsmatrisen n Det lilla försvinner i det stora >> e-0 + e-3 ans = e-0 >> e-0 + e-36 ans = e-0 n Numerisk beräkning av derivata med f( x ) f( x) y + Några exempel Hur mäter man fel? Uttryck exakt i Matlab cos( π ) 0 6.3e e A A I Se lab n Det exakta talet betecknas x Samma tal men som inneåller fel betecknas n Felen kan t ex vara avrundningsfel eller mätfel n Felet kan mätas Absolut fel: Relativt fel: n Om x är en vektor blir det istället Absolut fel: kallas för norm. Relativt fel: x x ˆx
2 Hur mäter man fel? Exempel från labben: n Du köper varmkorv en lördagkväll. Den kostar kr, men av misstag betalar du 0 kr. Absolut fel: 0 = 0 Relativt fel: = 33.3% n Du köper en ny bil för 9999 kr, men betalar kr oc bryr dig inte om växeln. Absolut fel: = Relativt fel: % 9999 n Man förlorar lika mycket, men det känns sannolikt mindre i det andra fallet. Relativt fel upplevs ofta som mer korrekt än absolut fel Lagring av tal n Det finns oändligt många reella tal på den matematiska tallinjen n Datorns minne är ändligt oc tallinjen i datorns minne består av ändligt antal tal n Det måste finnas ett system för att representera tal i datorns minne matematisk tallinje Datorns tallinje Representation av tal i dator n Alla tal lagras i ett ändligt antal bitar i minnet, vanligen i binär form. Exempel: Exempel (bas β = 0) n Reella talet x= kan skrivas betyder (0000) = = (9) 0 n Lagring i dator Heltal Inga problem. Heltal upp till en viss storlek (beroende på antalet bitar) lagras exakt. Reella tal Kan inte lagras exakt utan måste avrundas. Representationen av reella tal kallas flyttalsrepresentation oc talen kallas flyttal. x = = = = ( ) 0 - d 0 d d d 3 β kallas mantissa m bas β Observation: 0 d i < 0 oc m < 0 Flyttal flytande decimalpunkt Slutsats n Reellt tal x kan skrivas i exakt representation x = m β e där β är den bas som används, e är exponenten oc m är mantissan. n För mantissan gäller att m = ±(d 0.d d ) = = ±(d 0 β 0 + d β - + d β - + ), 0 d i < β n Om man flyttar decimalpunkten så att första termen d 0 0 kallas detta normaliserad form. Då blir m < β n Hur ska reella talet kunna representeras i datorns begränsade antal bitar? Exponenten kan lagras exakt upp till en viss storlek Mantissa måste kapas på något sätt eftersom oändligt antal siffror görs genom avrundning n När det reella talet x avrundas oc lagras i datorn görs det som flyttal, betecknas fl(x) n Exemplet igen Antag plats för 4 tal i datorns mantissa oc bas 0 x= ger fl(x) = betyder ( ) 0 -
3 Slutsats n Ett flyttal fl(x) kan skrivas (i normaliserad form) där fl(x) = ˆm β e, ˆm = ±(d 0.d d,,d p ) d i < β, d 0 0, l e u talet 0 representeras på särskilt sätt n Ett flyttalssystem karaktäriseras av (β,p,l,u) p kallas precision, mantissan rundas av Exponenten e är eltal oc lagras exakt inom undre oc övre gräns, l oc u. ˆm n Lagras i minnet: oc e. β är fixt oc lagras ej. Vanligen β = (binära tal) (β,p,l,u) = (,3,0,) Mantissan ˆm kan anta följande positiva värden (motsvarande för negativa tal): (.00) = 4 (.0) = (.0) = 6 (.) = 7 För olika värden på exponenten e fås då e = 0 4 =.0 =. 6 =. 7 =.7 min e = 8 = 0 =. = 3 4 = 3. e = 6 = 4 0 = 4 = 6 8 = 7 max e=0 underflow e= e= overflow Flyttalen ej jämnt representerade större tal ger glesare representation När ett reellt tal ska lagras i datorns minne, avrundas det oc amnar på närmaste tal på tallinjen. Ex) talet.6 blir fl(.6) = 6.0 Avrundningsregler, t ex:,, 3, 4 avrundas nedåt 6,7, 8, 9 avrundas uppåt till närmaste jämnt tal (inkl 0) * * + + * + Några tester : fl( fl(.) + fl(4.4) ) = fl( ) = fl(6.0) = 6.0 Exakt: 6.6 Absolut fel: = 0.6 Relativt fel: / 6.6 = = 9.09% ( ).6: fl( fl( fl(.3) + fl(4.) ) - fl(.6) ) = = fl( fl( ).) = fl( fl(6.).) = = fl(6.0-.) = fl(4.) = 4.0 Exakt: 4.8 Absolut fel: = 0.8 Relativt fel: / = 6.7% (4..6): fl( fl(.3) + fl(fl(4.) - fl(.6)) ) = = fl(. + fl(4.0 -.)) = fl(. + fl(.)) = = fl(. +.) = fl(.0) =.0 Exakt: 4.8 Absolut fel: = 0. Relativt fel: / = 4.% Samma beräkning, men i annan ordning gav olika svar 3
4 (4.6 -.): fl( fl(3.3) + fl(fl(4.6) - fl(.)) ) = = fl( 3. + fl(.0 -.) ) = = fl( 3. + fl(3.7) ) = fl( ) = Inf (pga overflow) Exakt: 6.6 n Om man amnar under min kan man släppa på normaliseringskravet (att d 0 0) Mantissan ˆm kan då anta följande positiva värden (0.0) = (0.0) = (0.) = subnormala tal n Ger en liten extraskala under min-gränsen, kallas subnormalt tal n I Matlab: realmin anger minsta normaliserade tal, går alltså att itta mindre subnormala tal Hur stort kan felet bli? Vi tittar först enbart på mantissan: Maximalt fel i mantissan då talet x ligger exakt mitt emellan två tal i ˆm. Mantissan består i exemplet av,.,.,.7. Maximalt fel blir då 0., dvs m - 0. Allmänna fallet gäller Stämmer det för vårt flyttalssystem? Test: ˆ (3 ) m m = 0. Stämmer! ˆm m mˆ β ( p ) Hur stort kan felet bli? Felet i ela talet fl(x) : n Absoluta felet fl(x) x = ˆmβ e mβ e = ( ˆm m)β e β ( p ) β e Felet beror av storleken på x: glesare representation ögre upp på flyttalslinjen. n Relativa felet fl(x) x = ˆmβ e mβ e β ( p ) e β x m β e m β e β p Beror inte på talets storlek! 0 m β = Hur stort kan felet bli? Felet i ela talet fl(x): n Alltså, vid avrundning gäller fl(x) x ε x M, där ε M = β p Talet ε M kallas maskinepsilon oc är en maskinberoende konstant n Maskinepsilon kan även definieras som det minsta positiva tal ε så att fl(+ε)> n I Matlab ger kommandot eps maskinepsilon, se lab Var finns maskinepsilon i flyttalssystemet? underflow ε M underflow n ε M är maximala relativa felet mellan ett tal x oc närmaste tal på tallinjen (dvs storleken på relativt storleken på talet x) n Ju tätare tallinje ju mindre ε M n ε M ar inget med underflow eller overflow, dvs ur stora/små tal som kan representeras, att göra 4
5 Avrundningsfel i beräkningsprocesser? n Maskinepsilon anger maximalt fel vid lagring av ett tal n Beräkningsprocesser, t ex Gausselimination eller A - A inneåller mängder av beräkningar oc lagringar, inklusive beräkning med tal som tidigare avrundats den sammanlagd effekten av felen brukar vara lite sämre än ε M n Vanligen är avrundningsfelen små i förållande till alla andra fel (diskretiseringsfel, mätnoggrannet etc) Kancellation n Problem vid subtraktion av nästan lika tal: Ex) Antag två tal med blandat avrundningsskräp långt ute i decimalerna. betecknar är avrundningsskräp fl( ) = = fl( ) =. 0 -k Avrundningsfel ar nästan elt tagit över. Detta kallas kancellation. Kancellation n Exempel) f( x ) f( x) Från lab: y + p p + q Stora fel när blir litet Stora fel när q blir litet n Kan (i vissa fall) lösas genom att använda andra formler eller omskrivning f( x ) f( x ) y + fungerar bättre q (uttrycket ovan förlängt med p p konjugatet) + q Några konsekvenser n Ej meningsfullt med tester av typen if (x == y) end om x oc y är flyttal (dvs reella tal). Istället if abs(x-y)< tol eller if abs(x-y)< tol*abs(x) n Undvik subtraera nästan lika stora tal n Summera om möjligt termer i växande ordning (t ex när man summerar serier) n Under 60- oc 70-talen ade varje datortillverkare sitt eget flyttalssystem n En flyttalsstandard utvecklades under tidigt 80-tal oc följdes av tillverkare som Intel oc Motorola n Utvecklat av arbetsgrupp os Institute for Electrical and Electronics Enngineerings, IEEE (uttalas I-triple-E ) n IEEE-standarden ar tre viktiga krav: Konsistent flyttalsrepresentation Korrekt avrundningsaritmetik Konsistent antering av exceptionella situationer n Tre standartyper av flyttal: Single precision (enkel precision) Double precision (dubbel prec) Extended precision (utökad prec) n IEEE enkel precision ± e e e 8 d 0 d d d tecknet bit, exponent 8 bitar, mantissa 3 bitar => totalt 3 bitar n IEEE dubbel precision ± e e e d 0 d d d tecknet bit, exponent bitar, mantissa bitar => totalt 64 bitar
6 Hidden bit n Beöver d 0 lagras? Nej, Gäller alltid att d 0 =. Man vinner då en bit, en s k idden bit. n Får istället IEEE enkel precision IEEE dubbel precision ± e e e d d d ± e e e 8 d d d 3 n (β,p,l,u) i IEEE-standard IEEE single (,4,-6,8) IEEE double (,3,-0,04) Obs utnyttjat idden bit! n Maskinepsilon blir IEEE single ε M = IEEE double ε M = IEEE extended ε M = Diskretiseringsfel n IEEE definierar fem olika exceptions Invalid operation, t ex 0, 0 => ges värdet NaN (Not a Number) 0 Division med 0 => sätt till ± (dvs Inf i Matlab) overflow => sätt till ± eller största flyttal underflow => sätt till 0 (eller subnormalt tal) Korrekt avrundning av reella tal (inte exceptionell situation egentligen) n För den som vill veta mer ttp://en.wikipedia.org/wiki/ieee_floating-point_standard ttp:// n Förutom avrundningsfel finns även diskretiseringsfel Exempel) Numerisk derivering från lab f( x ) f( x) y + När blir mindre borde approximationen bli bättre mindre diskretiseringsfel Här dominerar avrundningsfel Här dominerar diskretiseringsfel Diskretiseringsfel Numerisk derivering Tolkning: n Det finns flera formler för derivering: n För stora dominerar diskretiseringsfelet, man kan bortse från avrundningsfelet n För små dominerar avrundningsfelet n Avrundningsfelet blir stort i det är fallet pga kancellation i täljaren för små division med litet tal förstärker felet i täljaren n Avrundningsfelet uppför sig kaotiskt, medan diskretiseringsfelet ger en jämn oc snygg kurva y y f (x+) f (x) f (x+) f () Framåtdifferens (se lab) Centraldifferens (se lab) f (x+)+8 f (x+) 8 f ()+ f () y Fempunktsformel 6
7 Numerisk derivering Samma test som i labben: Diskretiseringsfel oc avrundningsfel Sammanfattning Vilken metod ska man välja? Varför? n Diskretiseringsfelet spelar vanligen den dominerande rollen. Vanligt att man elt kan bortse från avrundningsfelen. n Avrundningsfelet får konsekvenser i vissa fall, t ex vid kancellation n Exakt noll existerar inte i praktiken för flyttal. Diverse avrundningar gör att tal som kan anses vara lika ändå skiljer sig ute i decimalerna n Ett relativt fel i sorleksordningen ε M efter beräkning med flyttal är enbart slumpmässigt skräp 7
Datoraritmetik. Från labben. Från labben. Några exempel
Datoraritmetik Beräkningsvetenskap I Från labben Två huvudtyper av fel: diskretiseringsfel och avrundningsfel Olika sätt att mäta fel: relativt fel, absolut fel Begreppen ε M, Inf, NaN, overflow, underflow,
Läs merTeknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering
Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering Eddie Wadbro 5 november 2014 Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (1 : 21) Innehåll Datoraritmetik
Läs mer7 november 2014 Sida 1 / 21
TANA09 Föreläsning 2 Talrepresentation i datorer. Flyttalssystem. Datoraritmetik och Beräkningsfel. Beräkningsfelsanalys och Kancellation. Serier och Resttermsuppskattningar. Tillämpning - Beräkning av
Läs merSammanfattninga av kursens block inför tentan
FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,
Läs merFöreläsning 8: Aritmetik och stora heltal
2D1458, Problemlösning och programmering under press Föreläsning 8: Aritmetik och stora heltal Datum: 2006-11-06 Skribent(er): Elias Freider och Ulf Lundström Föreläsare: Per Austrin Den här föreläsningen
Läs merLAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M
TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma
Läs merFel- och störningsanalys
Fel- och störningsanalys 1 Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis
Läs merBeräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Användningsområden. Vad är MATLAB? Grunderna i Matlab. Beräkningsvetenskap == Matlab?
Beräkningsvetenskap och Matlab Beräkningsvetenskap == Matlab? Grunderna i Matlab Beräkningsvetenskap I Institutionen för, Uppsala Universitet 1 november, 2011 Nej, Matlab är ett verktyg som används inom
Läs merFeluppskattning och räknenoggrannhet
Vetenskapliga beräkningar III 10 Kapitel 2. Feluppskattning och räknenoggrannhet Sedan datorerna togs i bruk på 1950 talet, har det blivit möjligt att utföra beräkningar i långt större skala än tidigare.
Läs merFel- och störningsanalys
Fel- och störningsanalys Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis utan
Läs merTentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, 2011-03-08 OBS: Kurskod 1TD394 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!)
Läs mera n β n + a n 1 β n a 0 + a 1 β 1 + a 2 β , x = r β e ; 0.1 r < 1; e = heltal.
De iakttagna fenomenen beror på avrundningsfel, och vi skall därför studera talframställningen i datorer. Vid beräkningar för hand är det vanligt att man uttrycker tal i tiopotensframställningen, men i
Läs merKapitel 2. Feluppskattning och räknenoggrannhet
Kapitel 2. Feluppskattning och räknenoggrannhet Sedan datorerna togs i bruk på 1950 talet, har det blivit möjligt att utföra beräkningar i långt större skala än tidigare. Liksom vid beräkningar för hand
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:
Läs mera = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Läs merKomplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation
Linköpings Universitet Kompletterande material Matematiska institutionen/beräkningsmatematik 5 februari 203 Ingegerd Skoglund IT Termin 6 Komplettering till kursboken i Numeriska beräkningar Beräkningsfelsanalys
Läs merFöreläsning 8: Aritmetik och stora heltal
DD2458, Problemlösning och programmering under press Föreläsning 8: Aritmetik och stora heltal Datum: 2007-11-06 Skribent(er): Martin Tittenberger, Patrik Lilja Föreläsare: Per Austrin Denna föreläsning
Läs merDatorsystemteknik DVG A03 Föreläsning 3
Datorsystemteknik DVG A03 Föreläsning 3 Datoraritmetik Större delen av materialet framtaget av :Jan Eric Larsson, Mats Brorsson och Mirec Novak IT-inst LTH Hur stora tal kan vi få med N bitar? Största
Läs merF2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Datorer i system! Roger Henriksson!
F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Roger Henriksson Von Neumann-arkitekturen Gemensamt minne för programinstruktioner och data. Sekventiell exekvering av instruktionerna.
Läs merBeräkningsvetenskap introduktion. Beräkningsvetenskap I
Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de grundläggande begreppen algoritm, numerisk metod, diskretisering maskinepsilon,
Läs merF2 Datarepresentation talbaser, dataformat och teckenkodning
F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Roger Henriksson Jonas Wisbrant Datarepresentation I en dator lagras och behandlas all information i form av binära tal ettor och nollor.
Läs merFlyttal kan också hantera vanliga tal som både 16- och 32-bitars dataregister hanterar.
FLYTTAL REAL Flyttal används i datorsystem för s k flytande beräkning vilket innebär att decimalkommat inte har någon fix (fast) position. Flyttal består av 2 delar (mantissa och exponent). När ett datorsystem
Läs merDigital- och datorteknik
Digital- och datorteknik Föreläsning #24 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Allmänt Behovet av processorinstruktioner för multiplikation
Läs merDOP-matematik Copyright Tord Persson. Gränsvärden. Uppgift nr 10 Förenkla bråket h (5 + h) h. Uppgift nr 11 Förenkla bråket 8h + h² h
DOP-matematik Copyrigt Tord Persson Gränsvärden Uppgift nr 1 f(x) x². Gör denna värdetabell komplett genom att i tur oc ordning ersätta x i funktionen med de olika talen / uttrycken i tabellen. Första
Läs merVälkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2
Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt
Läs merf(x + h) f(x) h f(x) f(x h) h
NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp
Läs merLösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Lösningsförslag Tentamen i Beräkningsvetenskap I, 5. hp, 14-6-4 Kursmål (förkortade), hur de täcks i uppgifterna och maximalt
Läs merOrdinära differentialekvationer,
Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1
Läs merProv 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:
Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse
Läs merBeräkningsvetenskap introduktion. Beräkningsvetenskap I
Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de nyckelbegreppen som ingår i kursen* utföra enklare analys av beräkningsproblem och
Läs merLösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Läs merLösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Läs mer2D1240 Numeriska metoder gk II för T2, VT Störningsanalys
Olof Runborg ND 10 februari 2004 2D1240 Numeriska metoder gk II för T2, VT 2004 Störningsanalys Indata till ett numeriskt problem innehåller i praktiken alltid (små) fel.felen kan bero på tex mätfel, avrundningsfel
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Läs merFöreläsning 8: Aritmetik I
DD2458, Problemlösning och programmering under press Föreläsning 8: Aritmetik I Datum: 2009-11-03 Skribent(er): Andreas Sehr, Carl Bring, Per Almquist Föreläsare: Fredrik Niemelä 1 Flyttal Att representera
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-01-11 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14
Läs merEnvariabelanalys: Vera Koponen. Envariabelanalys, vt Uppsala Universitet. Vera Koponen Föreläsning 5-6
Envariabelanalys: Föreläsning 5-6 Vera Koponen Uppsala Universitet Envariabelanalys, vt 2011 Derivata: allmänt Antag att f (x) är en funktion. Derivata: allmänt Antag att f (x) är en funktion. Derivatan
Läs merLösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Intro till vektorer, matriser och Gausselimination 8. Den euklidiska normen x = x 1 + x + x n och x 1 + x + ( ) x n = x 1 x x n 9. Vi ska
Läs merBlandade uppgifter om tal
Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.
Läs merInstitutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar
Institutionen för Matematik Göteborg F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Heath 1: a) -01416 resp -0046 b) -0001593 resp -000051 c) 000165
Läs merGruppuppgifter 1 MMA132, Numeriska metoder, distans
Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003
Läs merTentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Läs merIE1205 Digital Design: F6 : Digital aritmetik 2
IE1205 Digital Design: F6 : Digital aritmetik 2 Talrepresentationer Ett tal kan representeras binärt på många sätt. De vanligaste taltyperna som skall representeras är: Heltal, positiva heltal (eng. integers)
Läs merDel I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Läs merTentamen i: Beräkningsvetenskap I och KF
Tentamen i: Beräkningsvetenskap I och KF Skrivtid: december 2014 kl 14 00 17 00 OBS! 3 timmar! Hjälpmedel: Penna, suddgummi, miniräknare och linjal får användas. Formler finns i bifogad formelsamling.
Läs mer8 + h. lim 8 + h = 8
Nu ar vi kretsat kring oc förberett oss på begreppet derivata i två föreläsningar. Nu är tiden inne! Men innan dess ska vi diskutera gränsvärde, ett annat begrepp. Om vi ar uttrycket 8 + oc låter gå mot
Läs merTANA19 NUMERISKA METODER
HT2/2016 LINJE+ÅK+KLASS : TANA19 NUMERISKA METODER Laboration 1 Felanalys Namn : Personnummer : E-post : @student.liu.se Namn : Personnummer : E-post : @student.liu.se Godkänd datum : Sign : Retur : 1
Läs mer4 Fler deriveringsregler
4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-10-17 Skrivtid: 8 00 11 00 (OBS!
Läs merM0038M Differentialkalkyl, Lekt 7, H15
M0038M Differentialkalkyl, Lekt 7, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 21 Tentamen M0038M Tentamensdatum 2015-10-28 Sista anmälningsdag 2015-10-08 Tentamensanmälan
Läs merTMA226 datorlaboration
TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,
Läs merTentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 010-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Läs merTekniska beräkningar. Vad är tekn beräkningar? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi
Tekniska beräkningar stefan@it.uu.se Vad är tekn beräkningar? Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska
Läs merMaclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning
Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon
Läs merVarning!!! Varning!!!
Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H04 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-01-15 Skrivtid: 14 00 17 00 (OBS!
Läs merTisdag v. 2. Speglingar, translationer och skalningar
1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger
Läs merFallstudie: numerisk integration Baserad på läroboken, Case Study 19.9
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 30 september, 2013 Att beräkna arbete Problem:
Läs merLAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2010-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Läs merSammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Läs meröversiktskurs (5DV031)
Programmeringsteknisk översiktskurs (5DV031) Föreläsning 10 kallin@cs.umu.se Innehåll Ändlig aritmetik Fler exempel på funktioner med arrayer som parametrar Läsanvisningar: Dessa bilder, kapitel 11 kallin@cs.umu.se
Läs merLinjära ekvationssystem
Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på denna för att
Läs merRepetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter
Läs merIntroduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet
Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Sara Zahedi Hanna Holmgren 29 oktober, 2012 Outline 1 2 Information om kursen 3 Introduktion
Läs merIntroduktionsföreläsning
Introduktionsföreläsning Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 29 oktober, 2012 Lärare Emanuel Rubensson (föreläsningar, lektioner) Martin Tillenius (lektioner)
Läs merBlock 2: Lineära system
Exempel Från labben: Block : Lineära system Del 1 Trampolinens böjning och motsvarande matris (här 6060-matris) Matrisen är ett exempel på - gles matris (huvuddelen av elementen nollor) - bandmatris Från
Läs merIteration while-satsen
Datatypen double TDA143 I1 Programmerade system Föreläsning 3 (OH-bilder 3) Iteration while-satsen Christer Carlsson I en dator kan man inte lagra hur stora eller hur små tal som helst. De enkla datatyperna,
Läs merInterpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
Läs merNumeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Lokalt trunkeringsfel och noggrannhetsordning Definition: Det lokala trunkeringsfelet är det fel man gör med en numerisk metod när man utgår från det exakta värdet vid
Läs merSekant och tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren).
Derivata Sekant oc tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren). I figuren ovan finns även en tangent inritad. Som nästa ska vi titta på
Läs merBlock 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen
Läs merNumerisk Analys, MMG410. Lecture 1. 1/24
Numerisk Analys, MMG410. Lecture 1. 1/24 Lärare Kursansvarig och examinator: Larisa Beilina, larisa@chalmers.se, room 2089. Office hours: tisdagar, 15:00-16.00. Handledare för Datorlaborationer och övningar
Läs merStudieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning
Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:
Läs merkl Tentaupplägg
Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer
Läs merTalmängder N = {0,1,2,3,...} C = {a+bi : a,b R}
Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att
Läs merLinjär algebra med tillämpningar, lab 1
Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt
Läs merLaboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Läs merInstitutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Torsdag 28 aug 2008 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 8-8-8 DAG: Torsdag 8 aug 8 TID: 8.3 -.3 SAL: M Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Läs merApproximation av funktioner
Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner
Läs merDatorsystem. Övningshäfte. Senast uppdaterad: 22 oktober 2012 Version 1.0d
Datorsystem Övningshäfte Senast uppdaterad: 22 oktober 2012 Version 1.0d Innehåll Innehåll i 1 Introduktion 1 1.1 Errata............................................... 1 2 Datorns grunder 2 2.1 Övningsuppgifter.........................................
Läs merLösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
Läs merBinär addition papper och penna metod
EDA4 - Digital och Datorteknik 9/ EDA 4 - Digital och Datorteknik 8/9 Dagens föreläsning: Aritmetik, lärobok kapitel 6 Ur innehållet: hur man adderar och subtraherar tal i det binära talsystemet hur man
Läs merArbetsblad 1:1. Tiondelar på tallinjen 0,1 0,5 0,9 0,2 0,8 0,3 0,8 1,1 1,5 1,6 2,1 2,4 1,1 1,4 2,6 3,2 3,8
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,1 0,5 0,9 1,2 0 1 2 0,3 0,8 1,1 1,5 0 1 3 1,1 1,6 2,1 2,4 1 2 4 5 0,2 0,8 1,4 2,6 0 1 2 3 1,4 2,6 3,2 3,8 1 2 3 4 6 Sätt ut pilar som
Läs merArbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar
Läs merArbetsblad 1:1. Tiondelar på tallinjen. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0 1 2 0 1 3 1 2 4 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar på talen:
Läs merFöreläsning 3. Iteration while-satsen
Föreläsning 3 Iteration while-satsen Datatypen double I en dator kan man inte lagra hur stora eller hur små tal som helst. De enkla datatyperna, som används för att lagra tal (t.ex. int och double), har
Läs merEnklare matematiska uppgifter
Elementa Årgång 49, 966 Årgång 49, 966 Första häftet 2555. Visa att 4 n + n + 8 ej kan vara primtal för något heltal n 0. 2556. Man vill göra en behållare utan lock, som rymmer m 3, i form av en rätvinklig
Läs merFunktioner: lösningar
Funktioner: lösningar 6. Sätt 1 = t 7. Också strängt väande: f (t) = 1 (1 t) = = 1 1+t t = = t t 8. Återigen strängt väande: T.e. a < b g (a) < g(b) f (g (a)) < f (g (b)) a < b g (a) > g(b) f (g (a))
Läs merBeräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi
Beräkningsvetenskap stefan@it.uu.se Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska beräkningar Mer ingenjörsmässigt,
Läs merDra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller =
n se ta l l ta al u at sen nt al rat l r l d d n iotu se hun tiot a ent a hu t tu + + 7 tiotusental tusental 7 tiotal 7 7 7 7 Ju längre till höger, desto större är talet. 7 > 7 Siffran betyder tiotusental
Läs merDenna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk)
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-24 SÄL 1-10p Avsnitt 1.1 Grundläggande begrepp Detta avsnitt behandlar de symboler som används
Läs merDatoraritmetik. Binär addition papper och penna metod. Binär subtraktion papper och penna metod. Binär multiplikation papper och penna metod
inär addition papper och penna metod Dagens föreläsning: Lärobok, kapitel rbetsbok, kapitel Ur innehållet: hur man adderar och subtraherar tal i det binära talsystemet hur man kan koda om negativa binära
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap II Tentamen i Beräkningsvetenskap II, 5.0 hp, 2017-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Läs merFacit Tentamen i Beräkningsvetenskap I, STS ES W K1
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.
Läs merTENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns
Läs merLaboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 VT2017 NA, KTH 16 januari 2017 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Läs merFacit Tentamen i Beräkningsvetenskap I, STS ES W K1
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.
Läs mer