Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2"

Transkript

1 Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt analys av osäkerheten i resultaten. Uppläggningen och schema framgår av utdelat kurs-pm. Löpande information finns på webbplatsen På de 14 föreläsningarna i period 1 behandlar jag såväl numeriska metoder som grunderna i MATLAB. På de 12 övningarna i period 1 i tre grupper (En&Mi A-J, En&Mi K-Ö, MatDes) behandlas numeriska exempel som analyseras och programmeras i MATLAB. Laborationer och projekt, se nästa sida. Yngve Sundblad Föreläsning 1 sid.1 SF 1518/19 ht aug.

2 Laborationer och Projekt De tre laborationerna och projektet upptar största delen av arbetet med kursen och belönas med vardera 1,5 hp. De görs i grupper om två teknologer, hitta partner snarast. Labbarna ligger helt i period 1 och består av flera moment. första på torsdag Redovisning i tid ger bonuspoäng på tentamen, max 1+1,5+1,5 = 4 p. Lab.1 redovisas muntligt i datorsal för handledare. Lab.2 redovisas vid lappskrivning. Lab.3 redovisas med skriftlig rapport. Projektet genomförs intensivt de två första veckorna i period 2 och redovisas muntligt inför några andra grupper och lärare. Yngve Sundblad Föreläsning 1 sid.2 SF 1518/19 ht aug.

3 Tentamen (3 hp) Tentamen (3 timmar) omfattar två delar. På del 1 krävs 14 poäng (av 20), inklusive bonuspoäng från labbarna, för godkänt (E). Del 2, som bara rättas om del 1 är godkänd, kan ge högre betyg. Tentamen testar kunskaper i Numeriska metoder men när algoritmer ska beskrivas kan MATLAB vara praktiskt. Läsanvisningar till kurslitteraturen finns på webbplatsen. Ordinarie tenta torsdag 29 oktober 8-11 i E-salar Omtenta 7 januari 8-11 i V-salar Yngve Sundblad Föreläsning 1 sid.3 SF 1518/19 ht aug.

4 Kurslitteratur beskriven och länkad på kurswebben Numeriska metoder: Antingen Gerd Erikssons häfte (finns på nätet, se kurs-pm) eller (hellre) Peter Pohls bok. Läsanvisningar till båda i kurs-pm / inför tentan (kurs-pm och på webben) Exempelsamling: Gerd Eriksson m.fl. (på nätet), används på alla övningar MATLAB: Antingen Hollys modernare (2015) bok eller Chapmans (2007) bok (om du har, användes tidigare) Carina Edlunds häfte Yngve Sundblad Föreläsning 1 sid.4 SF 1518/19 ht aug.

5 MATLAB Programmeringsmiljö för lösning av numeriska problem, utvecklad sedan 1970-talet av numeriker, spec. Cleve Moler, Univ. of New Mexico. Nu stor spridning. Behandlar framför allt data i matrisform (specialfall skalärer, strängar, vektorer). Även symbolisk matematik (nytt). Bred och stor uppsättning av operationer och funktioner för att lösa problem numeriskt: ekvationssystem, icke-linjära ekvationer, interpolation, integraler, differentialekvationer mm., dvs. alla typer av problem som ingår i numeriken i kursen. Dessutom paket för många tekniska specialområden, strömningsmekanik mm. Yngve Sundblad Föreläsning 1 sid.5 SF 1518/19 ht aug.

6 Tillgång till MATLAB I datorsalarna, starta med att klicka på Dash Home så kommer MATLAB-ikonen upp och kan dubbelklickas. Kan laddas ner till egna datorn från Nu live demo intmax (2 31-1), 32 bitars heltal med teckenbit realmax 1.797e+308, 53 bitars taldel, 11 bitars exponentdel, båda med teckenbit eps e-16 (2-52 ) Yngve Sundblad Föreläsning 1 sid.6 SF 1518/19 ht aug.

7 Analys av felkällor och osäkerhet Mer kommer senare i kursen Fel Vid numeriska beräkningar måste de flesta tal representeras av närmevärden. Om talet x representeras med x så är absolutfelet e x = x - x, relativfelet r x = (x - x) / x Närmevärdet c = km/s till c (ljushastigheten) har absolutfelet ca 208 och relativfelet ca 0,0007. Eftersom absolutfelet är mindre än 500 = 0,5*10^3, har c (6-3)=3 korrekta siffror, bör snarare skrivas 3,00*10^5. Närmevärdet 3,1416 till pi har 4 korrekta decimaler (absolut fel 0,5*10^(-4)) och 5 korrekta siffror. Felgränser / osäkerhet Normalt vet man inte felet (eftersom x inte är känd, bara närmevärdet) utan måste nöja sig med felgränser/osäkerhet (E, R): e x E x ; r x R x Yngve Sundblad Föreläsning 1 sid.7 SF 1518/19 ht aug.

8 Källor till fel och osäkerhet Beräkningsprocesser avbryts: Trunkeringsfel Osäkerhet i indata: Indatafel Fel under beräkningsprocessen: Beräkningsfel, tex avrundningar Avkortning av utdata: Presentationsfel Yngve Sundblad Föreläsning 1 sid.8 SF 1518/19 ht aug.

9 Trunkeringsfel Många beräkningsprocesser bygger på att en procedur upprepas och så småningom avbryts. Vi kommer att se många exempel i metoder för att lösa ekvationer mm. När processen avbryts är kvarvarande felet / osäkerheten trunkeringsfelet. Här nöjer vi oss med exemplet att använda en serieutveckling. I en konvergerande alternerande avtagande serie är felet / osäkerheten högst den första försummade termen. ln(1+x)=x-x^2/2+x^3/3-x^4/4+x^5/5-x^6/6+x^7/7-x^8/8+x^9/9- som konvergerar för -1<x 1. Om man tar med 8 termer för att beräkna ln(1,5) blir felet/ osäkerheten (0,5^9)/9 = 0,0002 Gör man det för att beräkna ln(2) blir osäkerheten 1/9=0,11 Yngve Sundblad Föreläsning 1 sid.9 SF 1518/19 ht aug.

10 Felfortplantning vid elementära operationer (för mer komplexa operationer kommer senare) När man räknar med tal med felgränser fortplantar sig dessa: Addition z = x + y : e z = e x + e y ; E z = E x + E y Subtraktion z = x - y : e z = e x - e y ; E z = E x + E y (Obs! tecknet) Absolutfelgränserna adderas vid + - Multiplikation z = x * y : r z r x + r y ; R z R x + R y, ty r z =e z /xy = ((x+e x )(y+e y )-xy)/xy = (xe y + ye x +e x e y )/xy, e x e y försumbar Division z = x / y : r z r x - r y ; R z R x + R y, visas analogt Relativfelgränserna adderas vid * / Skalning z = a x : e z = a e x ; r z = r x ; E z = ae x ; R z = R x Exponentiering z = x^n : r z = nr x ; R z = nr x, ty e z = (x + e x )^n x^n nx^(n-1)e x, r z ne x /x = nr x ; R z nr x Yngve Sundblad Föreläsning 1 sid.10 SF 1518/19 ht aug.

11 Linjära ekvationssystem ( ) ( ) ( ) 2x 1 + 3x 2 4x 3 = x 1 9x 1 2x 2 = 5 A = b = 5 x = x 2 5x 1 + x 2 x 3 = x 3 På matrisform A x = b Lösning x 1 =1 x 2 =2 x 3 = 3, t.ex. med Gausselimination I MATLAB: A = [2 3-4; 9-2 0; 5 1-1] b = [-4 5 4] (transponat-operatorn är ) eller b=[ -5 x = A \ b 4 ger x = [1 2 3] 5] Yngve Sundblad Föreläsning 1 sid.11 SF 1518/19 ht aug.

12 Normer ( storleksmått ) för vektorer och matriser Absolutbeloppet för tal : a Euklidisk norm ( längd ) för vektor: x 2 = (x x x n2 ) Motsvarande för matris är komplicerat, vi nöjer oss i kursen att använda Maxnorm ( oändlighetsnorm ): x oo = max (x k ); A oo = max k ( j a k,jj ), tyngsta raden För normerna gäller (med vektor som specialfall) Ax A * x ; AB A * B sa = s * A, s reellt A + B A + B (triangelolikheten) Yngve Sundblad Föreläsning 1 sid.12 SF 1518/19 ht aug.

13 Konditionstal och experimentell störningsräkning Konditionstalet för en beräkning är kvoten mellan relativfelgränsen för (osäkerheten i) indata och relativfelgränsen för utdata: K = R ut / R in För linjära ekvationssystem är det naturligt att använda normer för att ange osäkerheten. Ett sätt att mäta konditionstalet är att med experimentell störningsräkning modifiera indata lite och se hur mycket det påverkar utdata. Vid lösning av A x = b ger man b en störning e b och löser A y = b + e b Störningen i x är e x = y x R in = e b / b ; R ut = e x / x Yngve Sundblad Föreläsning 1 sid.13 SF 1518/19 ht aug.

14 Urartade ekvationssystem Flera ekvationer än obekanta (n): En lösning om bara n linjärt oberoende, t.ex. A =[1 2; 4 5; 5 7], b = [ ] x = A\b ger [1 2] Annars ingen lösning men kan minsta-kvadrat-anpassas. A A x = b (Nästa avsnitt i kursen) Färre ekvationer än obekanta Många lösningar, A\b ger en, oftast riktig, lösning A = [1 2 3; 4 5 6], b = [6 15] A\b ger [ ] Alla lösningar [ ] + k*[ ], bl.a. [1 1 1], [0 3 0] Yngve Sundblad Föreläsning 1 sid.14 SF 1518/19 ht aug.

SF1513 (tidigare DN1212) Numeriska metoder och grundläggande programmering. för Bio3, 9 hp (högskolepoäng)

SF1513 (tidigare DN1212) Numeriska metoder och grundläggande programmering. för Bio3, 9 hp (högskolepoäng) Kursöversikt numpbio, 2013. 1 Beatrice Frock KTH Matematik, 130620 SF1513 (tidigare DN1212) Numeriska metoder och grundläggande programmering för Bio3, 9 hp (högskolepoäng) Kursprogram 6 Design i Matlab

Läs mer

2D1210, Numeriska Metoder, GK I för V 2.

2D1210, Numeriska Metoder, GK I för V 2. Kursöversikt Numme för V, 2003. 1 Beatrice Frock NADA, KTH 030612 ANADA 2D1210, Numeriska Metoder, GK I för V 2. Kursprogram. Läsanvisningar. Om WWW: I World Wide Web på Internet finns aktuell information

Läs mer

SF Numeriska metoder, grundkurs

SF Numeriska metoder, grundkurs - Numeriska metoder, grundkurs Introduktionsföreläsning, September 1, 2014 KTH Royal Institute of Technology Dept. of Mathematics - NA division 1/16 Föreläsning 1 Om föreläsaren Om ämnet Om kursen Matlab

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Föreläsning 3 Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på

Läs mer

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på denna för att

Läs mer

Integration av numeriska metoder i kemiteknikutbildningen. Claus Führer, Matematikcentrum Michaël Grimsberg, Inst. för Kemiteknik

Integration av numeriska metoder i kemiteknikutbildningen. Claus Führer, Matematikcentrum Michaël Grimsberg, Inst. för Kemiteknik Integration av numeriska metoder i kemiteknikutbildningen Claus Führer, Matematikcentrum Michaël Grimsberg, Inst. för Kemiteknik 3:e pedagogiska inspirationskonferensen LTH, 31 maj 2005 Inledning Ny utbildningsplan

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Varför numeriska metoder? Vad är numeriska metoder?

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Varför numeriska metoder? Vad är numeriska metoder? Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN1 08-11-18 Hedvig Kjellström hedvig@csc.kth.se Om numeriska metoder Om programmering (Staffan Romberger) Information om kursen

Läs mer

SF1517 (tidigare DN1212) Numeriska metoder och grundläggande programmering. för P1, 9 hp (högskolepoäng)

SF1517 (tidigare DN1212) Numeriska metoder och grundläggande programmering. för P1, 9 hp (högskolepoäng) Kursöversikt numpp, 2014. 1 Beatrice Frock KTH Matematik 2013-12-01 SF1517 (tidigare DN1212) Numeriska metoder och grundläggande programmering för P1, 9 hp (högskolepoäng) Kursprogram 6 Design i Matlab

Läs mer

DN1212. Numeriska metoder och grundläggande programmering. för P1, 9 hp (högskolepoäng)

DN1212. Numeriska metoder och grundläggande programmering. för P1, 9 hp (högskolepoäng) Kursöversikt numpp, 2009. 1 Beatrice Frock och Kerstin Frenckner CSC (Nada), KTH 081215 DN1212 Numeriska metoder och grundläggande programmering för P1, 9 hp (högskolepoäng) Kursprogram Om WWW På nätet

Läs mer

DN1212. Numeriska metoder och grundläggande programmering. för T1, 9 hp (högskolepoäng)

DN1212. Numeriska metoder och grundläggande programmering. för T1, 9 hp (högskolepoäng) Kursöversikt numpt, 2008. 1 Beatrice Frock och Staffan Romberger A CSC (Nada), KTH 081101 DN1212 Numeriska metoder och grundläggande programmering för T1, 9 hp (högskolepoäng) Kursprogram Om WWW På nätet

Läs mer

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med

Läs mer

Numeriska metoder. Kompendiet. Lektor: Yury Shestopalov. e-mail: youri.shestopalov@kau.se Tel. 054-7001856. Karlstads Universitet

Numeriska metoder. Kompendiet. Lektor: Yury Shestopalov. e-mail: youri.shestopalov@kau.se Tel. 054-7001856. Karlstads Universitet Numeriska metoder Kompendiet Lektor: Yury Shestopalov e-mail: youri.shestopalov@kau.se Tel. 054-7001856 Hemsidan: www.ingvet.kau.se\ youri Karlstads Universitet 2002 1 Innehåll 1 Grundbegrepp av numeriska

Läs mer

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Sara Zahedi Hanna Holmgren 29 oktober, 2012 Outline 1 2 Information om kursen 3 Introduktion

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Första föreläsningen Mats Boij Institutionen för matematik KTH 26 oktober, 2009 Översikt Kurspresentation Komplexa tal Kursmålen Efter genomgången kurs ska studenten vara förtrogen

Läs mer

Linjär algebra och geometri 1

Linjär algebra och geometri 1 UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Ryszard Rubinsztein Oswald Fogelklou Linjär algebra och geometri 1 för K1, W1, KandKe1 Höstterminen 2008 Kurslitteratur H.Anton, C.Rorres, Elementary Linear

Läs mer

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

SF1511. Numeriska metoder och grundläggande programmering. för M1, 9 hp (högskolepoäng)

SF1511. Numeriska metoder och grundläggande programmering. för M1, 9 hp (högskolepoäng) Kursöversikt numpm, 2014 2015 1 Erik Dalsryd KTH Matematik 2014-12-16 SF1511 Numeriska metoder och grundläggande programmering för M1, 9 hp (högskolepoäng) Kursprogram Om WWW På nätet finns aktuell information

Läs mer

Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation

Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation Linköpings Universitet Kompletterande material Matematiska institutionen/beräkningsmatematik 5 februari 203 Ingegerd Skoglund IT Termin 6 Komplettering till kursboken i Numeriska beräkningar Beräkningsfelsanalys

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 1 Institutionen för matematik KTH 31 oktober 2016 Kurstart för Algebra och geometri Välkomen till kursen, CELTE och CMETE och COPEN!, kursansvarig LFN@KTH.SE Idag ska vi se hur kursen funkar

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6.

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6. Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN6 09-03-17 Hedvig Kjellström hedvig@csc.kth.se Repetition av FN5 (GNM kap 6.1-2B) Differentialekvationer Standardform för begynnelsevärdesproblem

Läs mer

2D1210, Numeriska Metoder, GK I för Bio 3 och BM2.

2D1210, Numeriska Metoder, GK I för Bio 3 och BM2. Kursöversikt Numme för Bio och BM, 2004. 1 Beatrice Frock NADA, KTH 040705 A NADA 2D1210, Numeriska Metoder, GK I för Bio 3 och BM2. Kursprogram. Läsanvisningar. Kursen samläses med kursen Numeriska metoder,

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

7 november 2014 Sida 1 / 21

7 november 2014 Sida 1 / 21 TANA09 Föreläsning 2 Talrepresentation i datorer. Flyttalssystem. Datoraritmetik och Beräkningsfel. Beräkningsfelsanalys och Kancellation. Serier och Resttermsuppskattningar. Tillämpning - Beräkning av

Läs mer

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20. Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0

Läs mer

MATLAB-modulen Programmering i MATLAB. Höstterminen 2015 3hp. Vad är MATLAB

MATLAB-modulen Programmering i MATLAB. Höstterminen 2015 3hp. Vad är MATLAB MATLAB-modulen Programmering i MATLAB Höstterminen 2015 3hp Vad är MATLAB MatrixLaboratory Avancerad miniräknare. Maskinoberoende programmeringsspråk högnivåspråk (Python, Javascript) - interaktivt Behöver

Läs mer

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen.

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. 2008 10 14 A. Talsystemen. (Adams P.1. Anteckningar från introkursen.) N de naturliga talen Z de hela talen Q de rationella

Läs mer

Vektorrum. EX. Plan och linjer i rummet genom origo. Allmänt; mängden av lösningar till AX = 0.

Vektorrum. EX. Plan och linjer i rummet genom origo. Allmänt; mängden av lösningar till AX = 0. Vektorrum Denna kurs handlar till stor del om s k linjära rum eller vektorrum. Dessa kan ses som generaliseringar av R n. Skillnaden består främst i att teorin nu blir mer abstrakt. Detta är själva poängen;

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning MATEMATISKA VETENSKAPER TMV66 07 Chalmers tekniska högskola Datorlaboration Examinator: Tony Stillfjord TMV66 Linjär algebra för M Datorlaboration : Matrisalgebra och en mekanisk tillämpning Allmänt Den

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

MMA132: Laboration 2 Matriser i MATLAB

MMA132: Laboration 2 Matriser i MATLAB MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen

Läs mer

Kursinformation Grundkurs i programmering med Python

Kursinformation Grundkurs i programmering med Python Hösten 2009 Två kurser i en 5DV105 - Programmeringsteknik med Python och MATLAB Programmeringsteori Föreläsningar om Python Färdighetsövning Laborationer i Python 5DV106 - Programmering i Python Praktisk

Läs mer

TMV166/186 Linjär Algebra M/TD 2009/2010

TMV166/186 Linjär Algebra M/TD 2009/2010 TMV166/186 Linjär Algebra M/TD 2009/2010 Examinator och föreläsare Carl-Henrik Fant E-post: carl-henrik.fant@chalmers.se Tel: 772 3557, kontor: Matematik L 3037 Övningsledare: ML11: Staffan Hägglund ML12:

Läs mer

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson Introduktion till MATLAB Introduktion till MATLAB sid. 2 av 12 Innehåll 1 Vad är MATLAB? 3 1.1 Textens syfte..................................... 3 2 Grundläggande

Läs mer

Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2016.

Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2016. LINKÖPINGS UNIVERSITET Matematiska Institutionen Vladimir Tkatjev Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2016. Kursperiod: 18 januari 18 maj Examinator och föreläsare: Vladimir Tkatjev: B-huset,

Läs mer

Föreläsning 1. Numeriska metoder grundkurs II, DN1240. Carina Edlund Mottagningstid i rum 4516: onsdagar kl.

Föreläsning 1. Numeriska metoder grundkurs II, DN1240. Carina Edlund Mottagningstid i rum 4516: onsdagar kl. Föreläsning 1 Numeriska metoder grundkurs II, DN1240 Carina Edlund carina@nada.kth.se Mottagningstid i rum 4516: onsdagar kl. 13-15 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/dn1240/numi09/

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Laboration 1. "kompilera"-ikonen "exekvera"-ikonen

Laboration 1. kompilera-ikonen exekvera-ikonen Programmerade system I1 Syfte Laboration 1. Syftet med denna laboration är dels att göra dej bekant med de verktyg som kan vara aktuella i programmeringsarbetet, dels ge en första inblick i att skriva

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 6 Institutionen för matematik KTH 11 november 2016 Feedback Innan vi börjar: En liten feedback-övning Vad menas med rangen av en matris? Vad menas med ett homogent linjärt ekvationssystem?

Läs mer

Analys av elektriska nät med numeriska metoder i MATLAB

Analys av elektriska nät med numeriska metoder i MATLAB Analys av elektriska nät med numeriska metoder i MATLAB Joel Nilsson Martin Axelsson Fredrik Lundgren 28-2-12 Kurs DN1215 - Numeriska metoder för ME Moment Laboration 1 - Bli bekväm med MATLAB Handledare

Läs mer

Laboration: Vektorer och matriser

Laboration: Vektorer och matriser Laboration: Vektorer och matriser Grundläggande om matriser Begreppet matris är en utvidgning av vektorbegreppet, och det används bl a när man löser linjära ekvationssystem. Namnet Matlab står för MATrix

Läs mer

Välkommen till MVE340 Matematik B för Sjöingenjörer. Kursinnehåll i stora drag. Kurslitteratur MVE Carl-Henrik Fant MV, Chalmers 1

Välkommen till MVE340 Matematik B för Sjöingenjörer. Kursinnehåll i stora drag. Kurslitteratur MVE Carl-Henrik Fant MV, Chalmers 1 Välkommen till MVE340 Matematik B för Sjöingenjörer Carl-Henrik Fant E-post: carl-henrik.fant@chalmers.se Tel: 772 35 57 Kontor: L3037 i matematikhuset, Johanneberg Kursinnehåll i stora drag Funktioner

Läs mer

Matematik och statistik NV1, 10 poäng

Matematik och statistik NV1, 10 poäng UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 2006 Matematik och statistik NV1, 10 poäng Välkommen till Matematiska institutionen och kursen Matematik och statistik NV1, 10p. Kursen består

Läs mer

Matematiska modeller

Matematiska modeller Matematiska modeller Kompendium Lektor: Yury V. Shestopalov e-post: youri.shestopalov@kau.se Tel. 054-700856 Hemsidan: www.ingvet.kau.se\ youri Karlstads Universitet 2002 Contents Inledning 5. Descartes

Läs mer

Laboration 1. "kompilera"-ikonen "exekvera"-ikonen

Laboration 1. kompilera-ikonen exekvera-ikonen Syfte Laboration 1. Objektorienterad programmering, Z1 Syftet med denna laboration är dels att göra dej bekant med de verktyg som kan vara aktuella i programmeringsarbetet, dels ge en första inblick i

Läs mer

Mer om analytisk geometri

Mer om analytisk geometri 1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare

Läs mer

LABORATION cos (3x 2 ) dx I =

LABORATION cos (3x 2 ) dx I = SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför

Läs mer

IF1611 Ingenjörsmetodik (Engineering Fundamentals)

IF1611 Ingenjörsmetodik (Engineering Fundamentals) IF1611 Ingenjörsmetodik (Engineering Fundamentals) 7.5 hp HT 2007 KursPM Kursens hemsida http://www.kth.se/student/program-kurser/kurshemsidor/ict/map/if1611/ HT07-1 Mål, Krav, Innehåll och Schemaunderlag

Läs mer

Kursprogram för Elektronik E, ESS010, 2013/2014

Kursprogram för Elektronik E, ESS010, 2013/2014 Institutionen för elektro- och informationsteknik Kursprogram för Elektronik E, ESS010, 2013/2014 Kurslitteratur och kursmaterial 1. A. R. Hambley Electrical engineering 6th ed. Säljes av KF-Sigma. 2.

Läs mer

Inledande matematik M+TD

Inledande matematik M+TD Introduktionsföreläsning p. 1/13 Introduktionsföreläsning Inledande matematik M+TD Stig Larsson http://www.math.chalmers.se/ stig Matematiska vetenskaper Chalmers tekniska högskola Göteborgs universitet

Läs mer

Laboration 1: Linjär algebra

Laboration 1: Linjär algebra MALMÖ HÖGSKOLA Centrum för teknikstudier MA119A VT 2010, Yuanji Cheng Viktigt information om labb Vid laborationen gäller följande: 1. Labben görs i grupp av två studenter, och redovisningsuppgifterna

Läs mer

NUMERISKA METODER HT01. Energiteknik & Teknisk fysik HT01. Institutionen för Datavetenskap Umeå Universitet

NUMERISKA METODER HT01. Energiteknik & Teknisk fysik HT01. Institutionen för Datavetenskap Umeå Universitet NUMERISKA METODER HT01 för Energiteknik & Teknisk fysik HT01 Institutionen för Datavetenskap Umeå Universitet Dagens pass (föreläsning 1-2) Allmän info del 1 (kursens poäng, utlåning av Matlab, Matlab

Läs mer

2 Matrisfaktorisering och lösning till ekvationssystem

2 Matrisfaktorisering och lösning till ekvationssystem TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan

Läs mer

Varning!!! Varning!!!

Varning!!! Varning!!! Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H04 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat

Läs mer

Inbyggda funktioner i MATLAB

Inbyggda funktioner i MATLAB Inbyggda funktioner i MATLAB MATLAB innehåller som vi redan sett ett stort antal inbyggda funktioner (se Holly Moore: Appendix A, Chapman avsn. 2.14, MATLAB 8 avsn. 2.3, 2.6): Elementär matematik: abs,exp,log10,rem,sqrt,sum,

Läs mer

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:

Läs mer

LINJÄR ALGEBRA II LEKTION 6

LINJÄR ALGEBRA II LEKTION 6 LINJÄR ALGEBRA II LEKTION 6 JOHAN ASPLUND INNEHÅLL 1 Inre produktrum 1 2 Cauchy-Schwarz olikhet 3 3 Ortogonala projektioner och Gram-Schmidts process 3 4 Uppgifter 4 61:13(a) 4 61:23(a) 4 61:29 5 62:7

Läs mer

Hållfasthetslära Z2, MME175 lp 3, 2005

Hållfasthetslära Z2, MME175 lp 3, 2005 Hållfasthetslära Z2, MME175 lp 3, 2005 Examinator: Magnus Ekh (mekh@am.chalmers.se), tele: 7723479 Kurspoäng: 3 Kurslitteratur: "Grundläggande hållfasthetslära", Hans Lundh, KTH, Stockholm. "Exempelsamling

Läs mer

MAM283 Introduktion till Matlab

MAM283 Introduktion till Matlab Rum: A3446 E-post: ove.edlund@ltu.se Hemsida: www.math.ltu.se/ jove Översikt: Matlab i MAM283 Några fakta Introduktion till Matlab. Omfattning: 0,4 p En föreläsning och tre datorövningar Examineras genom

Läs mer

Dagens program. Linjära ekvationssystem och matriser

Dagens program. Linjära ekvationssystem och matriser Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,

Läs mer

Laboration 3. Funktioner, vektorer, integraler och felskattning

Laboration 3. Funktioner, vektorer, integraler och felskattning 1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,

Läs mer

Linjär algebra och geometri I

Linjär algebra och geometri I UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Anders Johansson Linjär algebra och geometri I för Energi, Ma-kand., Frist. Höstterminen 2010 Kurslitteratur H. Anton, C. Rorres, Elementary Linear Algebra

Läs mer

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga . Lösningsmängden till homogena ekvationssystem I denna första föreläsning börjar vi med att repetera det grunnläggande begreppet inom linjär algebran. Linjär algebra är studiet av lösningsmängden till

Läs mer

Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med :

Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med : 1 Onsdag v 1 Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av Vi delar båda led i trig 1:an med : Detta ger också att vi kan uttrycka : Formeln ger också en formel

Läs mer

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2 . Tisdagen 35 Igår visade vi att lösningsmängden W R 5 till ekvationssystemet 3x + x 2 + 3x 3 + 2x 4 x 5 = (..) 2x 2 + x 3 + 4x 4 + 2x 5 = 3x 3x 2 + x 3 6x 4 5x 5 = har bas u och u 2 och u 3 där 5 2 6

Läs mer

LINKÖPINGS TEKNISKA HÖGSKOLA Matematiska institutionen Ulf Janfalk 18 september 2014

LINKÖPINGS TEKNISKA HÖGSKOLA Matematiska institutionen Ulf Janfalk 18 september 2014 LINKÖPINGS TEKNISKA HÖGSKOLA Matematiska institutionen 18 september 2014 Kursinformation Linjär Algebra för I1 och Ii1. Examinator: Kurslitteratur: Janfalk, Ulf: Linjär algebra, 2014 Examination: Efter

Läs mer

Linjär algebra. 1 Inledning. 2 Matriser. Analys och Linjär Algebra, del B, K1/Kf1/Bt1. CTH/GU STUDIO 1 TMV036b /2013 Matematiska vetenskaper

Linjär algebra. 1 Inledning. 2 Matriser. Analys och Linjär Algebra, del B, K1/Kf1/Bt1. CTH/GU STUDIO 1 TMV036b /2013 Matematiska vetenskaper CTH/GU STUDIO 1 TMV06b - 2012/201 Matematiska vetenskaper Linjär algebra Analys och Linjär Algebra, del B, K1/Kf1/Bt1 1 Inledning Vi fortsätter även denna läsperiod att arbete med Matlab i matematikkurserna

Läs mer

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska Matlab-föreläsning 3 (4), 17 september, 2015 Innehåll Sekvenser (från förra föreläsningen) Upprepning med for-slingor och while-slingor Villkorssatser med if - then -else - Logik Sekvenser - repetion från

Läs mer

Kursinformation, ETE499 8 hp MATEMATIK H Högskoleförberedande matematik

Kursinformation, ETE499 8 hp MATEMATIK H Högskoleförberedande matematik Kursinformation, ETE499 8 hp MATEMATIK H Högskoleförberedande matematik Fristående matematikkurs vid ITN (Institutionen för Teknik och Naturvetenskap i Norrköping) en förberedande matematikkurs inför kurser

Läs mer

Kursanalys DD1312 hösten 2008

Kursanalys DD1312 hösten 2008 Kursanalys DD1312 hösten 2008 Författare: Vahid Mosavat Nedan följer en kursanalys av kursen programmeringsteknik och matlab för I1. Kursanalysen är framtaget av kursledarens anteckningar under kursens

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom

Läs mer

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = 62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader

Läs mer

LINJÄR ALGEBRA OCH DIFFERENTIALEKVATIONER, M0031M VT-16

LINJÄR ALGEBRA OCH DIFFERENTIALEKVATIONER, M0031M VT-16 LINJÄR ALGEBRA OCH DIFFERENTIALEKVATIONER, M0031M VT-16 Denna kurs innehåller fyra olika delar: komplexa tal, linjär algebra, differentialekvationer och en laboration i Matlab. Vi börjar med en introduktion

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

GRUNDKURS I C-PROGRAMMERING

GRUNDKURS I C-PROGRAMMERING SAMMANSTÄLLNING 1 (9) Inst för informationsteknologi GRUNDKURS I C-PROGRAMMERING del av 1TD442 ALGORITMER OCH DATASTRUKTURER DV1/ 1IT022 PROGRAMKONSTRUKTION II Period 3, 2006 DV/IT Sammanfattning: Vad

Läs mer

TATA42: Föreläsning 5 Serier ( generaliserade summor )

TATA42: Föreläsning 5 Serier ( generaliserade summor ) TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 0 januari 207 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Besökstider: ca och 17.00

Besökstider: ca och 17.00 MATEMATIK Chalmers tekniska högskola och Göteborgs universitet Tentamen i Matematisk analys, fortsättningskurs F/TM, TMA976, 2015-01-14, TID(14.00-18.00) Inga hjälpmedel, förutom penna och linjal, är tillåtna,

Läs mer

Innehåll. 1 Linjärt ekvationssystem (ES) 5. 2 Grundläggande algebra 13

Innehåll. 1 Linjärt ekvationssystem (ES) 5. 2 Grundläggande algebra 13 LINJÄR ALGEBRA Innehåll Linjärt ekvationssstem (ES) 5 Grundläggande algebra 3 3 Matrisalgebra 5 3 Addition av matriser 5 3 Multiplikation mellan matriser 7 33 Enhetsmatris 34 Invers matris 34 Nollmatris

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

Quiz name: FV4 Date: 10/03/2015 Question with Most Correct Answers: #2 Total Questions: 11 Question with Fewest Correct Answers: #3

Quiz name: FV4 Date: 10/03/2015 Question with Most Correct Answers: #2 Total Questions: 11 Question with Fewest Correct Answers: #3 Quiz name: FV4 Date: 10/03/2015 Question with Most Correct Answers: #2 Total Questions: 11 Question with Fewest Correct Answers: #3 1. Vilka av följande påståenden är sanna för en dubbelintegral av en

Läs mer

TMV036 Analys och linjär algebra K Kf Bt, del C

TMV036 Analys och linjär algebra K Kf Bt, del C MATEMATIK Chalmers tekniska högskola Tentamen 20-0-, kl. 4.00-8.00 TMV036 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Richard Lärkäng, telefon: 0703-088304 Hjälpmedel: Inga, bara papper och penna.

Läs mer

f (a) sin

f (a) sin Hur kan datorn eller räknedosan känna till värdet hos till exempel sin0.23 eller e 2.4? Denna fråga är berättigad samtidigt som ingen tror att apparaterna innehåller en gigantisk tabell. Svaret på frågan

Läs mer

Räkna med C# Inledande programmering med C# (1DV402)

Räkna med C# Inledande programmering med C# (1DV402) Räkna med C# Upphovsrätt för detta verk Detta verk är framtaget i anslutning till kursen Inledande programmering med C# vid Linnéuniversitetet. Du får använda detta verk så här: Allt innehåll i verket

Läs mer

Schemaunderlag för Programmering, grundkurs (TDDB18)

Schemaunderlag för Programmering, grundkurs (TDDB18) Allmänt Schemaunderlag för Programmering, grundkurs (TDDB18) Under VT1 håller jag (Torbjörn) tre kurser. Detta gör att det inte är lätt att få till ett optimalt schema för er studenter (tyvärr). En variant

Läs mer

Newtons metod och arsenik på lekplatser

Newtons metod och arsenik på lekplatser Newtons metod och arsenik på lekplatser Karin Kraft och Stig Larsson Beräkningsmatematik Chalmers tekniska högskola 1 november 2004 Introduktion Denna övning ingår i Lärardag på Chalmers för kemilärare

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

Datoraritmetik. Binär addition papper och penna metod. Binär subtraktion papper och penna metod. Binär multiplikation papper och penna metod

Datoraritmetik. Binär addition papper och penna metod. Binär subtraktion papper och penna metod. Binär multiplikation papper och penna metod inär addition papper och penna metod Dagens föreläsning: Lärobok, kapitel rbetsbok, kapitel Ur innehållet: hur man adderar och subtraherar tal i det binära talsystemet hur man kan koda om negativa binära

Läs mer

Kapitel 3. Approximation av funktioner

Kapitel 3. Approximation av funktioner Kapitel 3. Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner. I allmänhet kan inte ens elementära funktioner såsom sinus- och cosinusfunktionerna

Läs mer

Kort sammanfattning av Beräkningsvetenskap I. Varning!!! Varning!!!

Kort sammanfattning av Beräkningsvetenskap I. Varning!!! Varning!!! Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H4 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista

Läs mer

Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander)

Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Böiers 5.3 Relationer. Vi har definierat en funktion f: A B som en regel som kopplar ihop ett element a A, med ett element

Läs mer

SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008.

SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008. SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008. Anders Karlsson, Inst för Matematik, KTH January 22, 2008 Kursinnehåll: Grundläggande kurs i di erential- och integralkalkyl i era variabler.

Läs mer

Subtraktion. Räkneregler

Subtraktion. Räkneregler Matriser En matris är en rektangulär tabell av tal, 1 3 17 4 3 2 14 4 0 6 100 2 Om matrisen har m rader och n kolumner så säger vi att matrisen har storlek m n Index Vi indexerar elementen i matrisen genom

Läs mer

Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt

Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt Föreläsning 8.15-10.00 Lektioner 10.15-12.00 Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt ons-3-dec Hörsal G C: 5.1-5.2 tor-4-dec Hörsal G N210 A302 A303 MC413 C: 5.3-5.4 fre-5-dec Hörsal G C: 2.10,

Läs mer

Regression med Genetiska Algoritmer

Regression med Genetiska Algoritmer Regression med Genetiska Algoritmer Projektarbete, Artificiell intelligens, 729G43 Jimmy Eriksson, jimer336 770529-5991 2014 Inledning Hur många kramar finns det i världen givet? Att kunna estimera givet

Läs mer