Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi"

Transkript

1 Beräkningsvetenskap Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska beräkningar Mer ingenjörsmässigt, förklarar hur man gör, men inte så mycket varför. Mindre teori. Beräkningsvetenskap (eng Scientific Computing) Num analys + programmering + datorarkitektur o likn, närmare datavetenskap än matematik Beräkning av satellitbanor Simulering av luftflöde kring flygplan Simulerad krocktest av bilar Hållfasthetsberäkningar Väderleksprognoser Simulering av förbränning, t ex i motor Simulering av föroreningstransport i naturen Bildanalys ( förbättra bilder, hitta mönster) Bestämning av molekylstrukturer hos proteiner Molekyldynamik och mycket mycket mer 1

2 Partitionering vid beräkning på parallelldator Simulering av blixtnedslag i SAAB 2000 Krocksimulering Simulering av proteinveckning Molekyldynamik Här: studier av utbytesmekanismer och utbyteshastigheter mellan vattenmolekyler runt en litiumjon (i vatten) Simulering av blixtnedslag 2

3 Veckning av HIV-virus Krocksimulering Tillämpningarna är exempel på problem som kan beskrivas med matematiska modeller Problem! Kan som regel inte lösas analytiskt, på vanligt sätt. Lösning: Lös problemet på dator måste använda numeriska lösningsmetoder. Resultat: Ger approximativ lösning. 3

4 Verkligheten Felkällor Matematisk modell Nej Numerisk metod Datorprogram Lösning OK? Ja Idealisering, förenkling Diskretisering, trunkering Avrundning, noggrannhet i indata Slutresultatet en approximation, uppnår en endast en viss noggrannhet Typiska begrepp och kännetecken Approximationer till den exakta lösningen Diskretisering endast ett ändligt antal punkter kan hanteras i dator Feluppskattning visar strikt matematiskt att felet ligger inom rimliga gränser Numerisk stabilitet lösningen ska ej explodera på ett ofysikaliskt sätt. Beror på val av numerisk metod Effektivitet hur lång tid tar det att lösa problemet med en viss metod och en viss dator Implementation vilken typ av dator, programmeringsspråk etc Ett (trivialt) exempel Beräkna arean på jorden med den matematiska modellen A=4πr 2 Innehåller flera approximationer och fel: Jorden approximeras av en sfär idealisering av jordens verkliga yta Värdet på radien baseras på empiriska mätningar och tidigare beräkningar Värdet på π kräver trunkering (avhuggning) av oändlig decimalutveckling Indata och resultat avrundas av datorn 4

5 Ett mer realistiskt exempel HIV-viruset bildar mutanter. Immunsystemet bildar en specifik lymfocyt för viruset och mutanterna. Dessutom finns en immunrespons för hela immunsystemet. Verkligheten Beräkna populationstillväxten för virus, lymfocyten och immunrespons med avseende på tid. Matematisk modell v = ( a bz( t) cx ) v = ( a bz( t) cx ) x = g kx ( + ) x = g kx ( + ) z = ( d kz( t))( + ) 1 2 v 1 = population av HIV-virus v 2 = population av 1:a mutanten x 1 = population av lymfocyt mot viruset x 2 = population av lymfocyt mot 1:a mutant z = immunrespons Matematisk modell Modellen är en förenkling av verkligheten Kan lägga in fler mutanter för att göra den mer realistisk blir då mer komplicerad Svårt bestämma parametrarna a, b, c,.... Kan variera med olika personer. Görs ofta empiriskt. Svårt eller omöjligt att göra en modell som helt överensstämmer med verkligheten Slutsats: Modellen en approximation av verkligheten! 5

6 Numerisk metod Problem! Kan ej lösas med vanliga matematiska (analytiska) metoder. Vi använder istället en numerisk metod. Alla numeriska metoder bygger på diskretisering, dvs kontinuerliga intervall ersätts med diskreta punkter. Beräkning sker endast i dessa punkter medför diskretiseringsfel Metoderna har olika egenskaper och kan vara bra ur en synvinkel men dålig ur en annan. Exempelvis kan en viss metod vara effektiv (snabb), men i vissa lägen vara instabil Datorprogram Implementera metoden, dvs skriv program för den numeriska metoden (C++, Java, MATLAB,...) eller Använd befintlig programvara, t ex MATLAB Ofta krävs en kombination av båda! Indata till programmet, t ex a, b, c,..., baseras vanligen på mätningar och är inte exakta Krävs ett initialtillstånd, t ex antal HIV-virus vid tiden t=0. Detta mäts ej exakt utan innehåller fel Datorn avrundar alla beräkningar Lösning Lösningen OK? Tolka resultat Tillräckligt effektivt och snabbt? Är felet tillräckligt litet? 6

7 Kursen MATLAB innehåller många verktyg. Vi ska lyfta på locket och se hur de fungerar. Lära sig programmera och använda MATLAB Lära sig principer och idéer för datorberäkningar och numeriska metoder Förstå egenskaper, problem och begränsningar hos metoderna Förstå konstigheter i resultaten och vad man kan göra åt det 7

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Sara Zahedi Hanna Holmgren 29 oktober, 2012 Outline 1 2 Information om kursen 3 Introduktion

Läs mer

Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi

Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi Beräkningsvetenskap I Jarmo Rantakokko Josefin Ahlkrona Kristoffer Virta Katarina Gustavsson Vårterminen 2011 Beräkningsvetenskap: Hur man med datorer utför beräkningar och simuleringar baserade på matematiska

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1

Läs mer

7 november 2014 Sida 1 / 21

7 november 2014 Sida 1 / 21 TANA09 Föreläsning 2 Talrepresentation i datorer. Flyttalssystem. Datoraritmetik och Beräkningsfel. Beräkningsfelsanalys och Kancellation. Serier och Resttermsuppskattningar. Tillämpning - Beräkning av

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Målen för föreläsningen Stabilitet vid diskretisering av ODE med numeriska metoder Definition: Den analytiska lösningen till en ODE är begränsad. En numerisk metod för

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Varför numeriska metoder? Vad är numeriska metoder?

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Varför numeriska metoder? Vad är numeriska metoder? Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN1 08-11-18 Hedvig Kjellström hedvig@csc.kth.se Om numeriska metoder Om programmering (Staffan Romberger) Information om kursen

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Inledande matematik M+TD

Inledande matematik M+TD Introduktionsföreläsning p. 1/13 Introduktionsföreläsning Inledande matematik M+TD Stig Larsson http://www.math.chalmers.se/ stig Matematiska vetenskaper Chalmers tekniska högskola Göteborgs universitet

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Vilka metoder har vi tagit upp? Euler framåt Euler bakåt Trapetsmetoden y k+ = y k + hf(t k, y k ), explicit y k+ = y k + hf(t k+, y k+ ), implicit y k+ = y k + h (f(t

Läs mer

Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering

Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering Eddie Wadbro 5 november 2014 Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (1 : 21) Innehåll Datoraritmetik

Läs mer

13 1MA302 Automatateori DV1 4 A D, M 1TD442 Algoritmer och datastrukturer DV1 6 A D

13 1MA302 Automatateori DV1 4 A D, M 1TD442 Algoritmer och datastrukturer DV1 6 A D 4.2 Årskurs 1 Studierna inleds med en frivillig introduktion till utbildningen omfattande två veckor. Därefter enligt nedanstående lista. Period Kurskod Kursnamn Poäng Nivå Ämne 11 1MA316 Introduktionskurs

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr

Läs mer

Newtons metod och arsenik på lekplatser

Newtons metod och arsenik på lekplatser Newtons metod och arsenik på lekplatser Karin Kraft och Stig Larsson Beräkningsmatematik Chalmers tekniska högskola 1 november 2004 Introduktion Denna övning ingår i Lärardag på Chalmers för kemilärare

Läs mer

Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation

Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation Linköpings Universitet Kompletterande material Matematiska institutionen/beräkningsmatematik 5 februari 203 Ingegerd Skoglund IT Termin 6 Komplettering till kursboken i Numeriska beräkningar Beräkningsfelsanalys

Läs mer

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi

Läs mer

Historiskt moment i Numerisk analys 1 Monte Carlo-metoden

Historiskt moment i Numerisk analys 1 Monte Carlo-metoden Historiskt moment i Numerisk analys 1 Monte Carlo-metoden Grupp 2 Jonas Haulin Kathrin Mattiasson Mateo Tarazona Elin Vinger Bakgrund och teori Monte Carlo-metoden är en metod för statistisk simulering.

Läs mer

NUMERISKA METODER HT01. Energiteknik & Teknisk fysik HT01. Institutionen för Datavetenskap Umeå Universitet

NUMERISKA METODER HT01. Energiteknik & Teknisk fysik HT01. Institutionen för Datavetenskap Umeå Universitet NUMERISKA METODER HT01 för Energiteknik & Teknisk fysik HT01 Institutionen för Datavetenskap Umeå Universitet Dagens pass (föreläsning 1-2) Allmän info del 1 (kursens poäng, utlåning av Matlab, Matlab

Läs mer

Analys av elektriska nät med numeriska metoder i MATLAB

Analys av elektriska nät med numeriska metoder i MATLAB Analys av elektriska nät med numeriska metoder i MATLAB Joel Nilsson Martin Axelsson Fredrik Lundgren 28-2-12 Kurs DN1215 - Numeriska metoder för ME Moment Laboration 1 - Bli bekväm med MATLAB Handledare

Läs mer

Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1

Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1 Algoritmer Lars Larsson VT 2007 Lars Larsson Algoritmer 1 1 2 3 4 5 Lars Larsson Algoritmer 2 Ni som går denna kurs är framtidens projektledare inom mjukvaruutveckling. Som ledare måste ni göra svåra beslut

Läs mer

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01

1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser I denna laboration modelleras värmeförlusten i ett kraftverk

Läs mer

Något om Taylors formel och Mathematica

Något om Taylors formel och Mathematica HH/ITE/BN Taylors formel och Mathematica Något om Taylors formel och Mathematica Bertil Nilsson 207-0-0 I am the best Ett av Brooks många ödmjuka inlägg i den infekterade striden som under början av 700

Läs mer

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna. Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean

Läs mer

Praktisk beräkning av SPICE-parametrar för halvledare

Praktisk beräkning av SPICE-parametrar för halvledare SPICE-parametrar för halvledare IH1611 Halvledarkomponenter Ammar Elyas Fredrik Lundgren Joel Nilsson elyas at kth.se flundg at kth.se joelni at kth.se Martin Axelsson maxels at kth.se Shaho Moulodi moulodi

Läs mer

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering

Läs mer

Räkna F. Petter Wallentén. Lund University Dep. of Building Physics

Räkna F. Petter Wallentén. Lund University Dep. of Building Physics Räkna F Petter Wallentén Lund University Dep. of Building Physics Problemet Användningen av byggnadsfysikaliska beräkningsverktyg ökar ständigt i Sverige, främst hos tekniska konsulter. I Sverige är den

Läs mer

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska

Läs mer

Lipschitz-kontinuitet

Lipschitz-kontinuitet Kapitel 2 Lipschitz-kontinuitet Vi börjar med att presentera den formella definitionen av gränsvärde och kontinuitet. Vi presenterar sedan en variant av kontinuitet som är lättare att använda och som ger

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

KURSPLAN Matematik för Gy, 61-90 hp (ingår i Lärarfortbildningen), 30 högskolepoäng

KURSPLAN Matematik för Gy, 61-90 hp (ingår i Lärarfortbildningen), 30 högskolepoäng 1(5) KURSPLAN Matematik för Gy, 61-90 hp (ingår i Lärarfortbildningen), 30 högskolepoäng Mathematics for Teachers in Senior High School, 30 credits Kurskod: UMGN11 Fastställd av: VD 2011-04-18 Gäller fr.o.m.:

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

Lennart Carleson. KTH och Uppsala universitet

Lennart Carleson. KTH och Uppsala universitet 46 Om +x Lennart Carleson KTH och Uppsala universitet Vi börjar med att försöka uppskatta ovanstående integral, som vi kallar I, numeriskt. Vi delar in intervallet (, ) i n lika delar med delningspunkterna

Läs mer

GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden. Utbildningsplan för Matematikprogrammet (N1MAT) 1. Beslut om fastställande. 2.

GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden. Utbildningsplan för Matematikprogrammet (N1MAT) 1. Beslut om fastställande. 2. GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden Utbildningsplan för Matematikprogrammet (N1MAT) 180 högskolepoäng Grundnivå Bachelor Program in Mathematics 1. Beslut om fastställande Utbildningsplanen

Läs mer

Symboler och abstrakta system

Symboler och abstrakta system Symboler och abstrakta system Warwick Tucker Matematiska institutionen Uppsala universitet warwick@math.uu.se Warwick Tucker, Matematiska institutionen, Uppsala universitet 1 Vad är ett komplext system?

Läs mer

Introduktion till programmering D0009E. Föreläsning 1: Programmets väg

Introduktion till programmering D0009E. Föreläsning 1: Programmets väg Introduktion till programmering D0009E Föreläsning 1: Programmets väg 1 Vad är en dator? En maskin vars beteende styrs av de innehållet (bitmönster) som finns lagrade i datorns minne (inte helt olikt förra

Läs mer

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med

Läs mer

CIVILINGENJÖRSEXAMEN MASTER OF SCIENCE IN ENGINEERING

CIVILINGENJÖRSEXAMEN MASTER OF SCIENCE IN ENGINEERING Lokal examensbeskrivning Dnr: 541-2072-10 Sid 1 (5) CIVILINGENJÖRSEXAMEN MASTER OF SCIENCE IN ENGINEERING INRIKTNING: TEKNISK DATAVETENSKAP SPECIALISATION: COMPUTING SCIENCE AND ENGINEERING 1 Fastställande

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar

Läs mer

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Del A Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på

Läs mer

Att välja kurser på Datateknik år 4-5

Att välja kurser på Datateknik år 4-5 Att välja kurser på Datateknik -5 Inledning På D-programmet är alla kurser i årskurs 1-3 obligatoriska. Efter det är alla kurser valfria. Det skapar möjligheter för dig att sätta din egen prägel på utbildningen

Läs mer

Laboration i datateknik

Laboration i datateknik KUNGLIGA TEKNISKA HÖGSKOLAN Laboration i datateknik Programmering av LEGO-robot Rickard Eriksson 2012-09-06 rieri@kth.se Introduktionskurs i datateknik II1310 Sammanfattning Denna rapport är till följd

Läs mer

Två gränsfall en fallstudie

Två gränsfall en fallstudie 19 november 2014 FYTA11 Datoruppgift 6 Två gränsfall en fallstudie Handledare: Christian Bierlich Email: christian.bierlich@thep.lu.se Redovisning av övningsuppgifter före angiven deadline. 1 Introduktion

Läs mer

Interpolation. 8 december 2014 Sida 1 / 20

Interpolation. 8 december 2014 Sida 1 / 20 TANA09 Föreläsning 7 Interpolation Interpolationsproblemet. Introduktion. Polynominterpolation. Felanalys. Runges fenomen. Tillämpning. LED display. Splinefunktioner. Spline Interpolation. Ändpunktsvillkor.

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

2D1210, Numeriska Metoder, GK I för V 2.

2D1210, Numeriska Metoder, GK I för V 2. Kursöversikt Numme för V, 2003. 1 Beatrice Frock NADA, KTH 030612 ANADA 2D1210, Numeriska Metoder, GK I för V 2. Kursprogram. Läsanvisningar. Om WWW: I World Wide Web på Internet finns aktuell information

Läs mer

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte Sammanfattning Vi har i kursen Modelleringsprojekt TNM085 valt att simulera ett geléobjekt i form av en kub. Denna består av masspunkter som är sammankopplade med tre olika typer av fjädrar med olika parametrar.

Läs mer

Räkna F. Petter Wallentén. Lund University Dep. of Building Physics

Räkna F. Petter Wallentén. Lund University Dep. of Building Physics Räkna F Petter Wallentén Lund University Dep. of Building Physics Problemet Användningen av byggnadsfysikaliska beräkningsverktyg ökar ständigt i Sverige, främst hos tekniska konsulter. I Sverige är den

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Laboration 3. Funktioner, vektorer, integraler och felskattning

Laboration 3. Funktioner, vektorer, integraler och felskattning 1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,

Läs mer

GRUNDLÄGGANDE EKVATION SOM ANGER EKVIVALENSEN MELLAN DELS LÅ- NENS, DELS ÅTERBETALNINGARNAS OCH OMKOSTNADERNAS VÄRDE

GRUNDLÄGGANDE EKVATION SOM ANGER EKVIVALENSEN MELLAN DELS LÅ- NENS, DELS ÅTERBETALNINGARNAS OCH OMKOSTNADERNAS VÄRDE 1568 Nr 608 Bilaga GRUNDLÄGGANDE EKVATION SOM ANGER EKVIVALENSEN MELLAN DELS LÅ- NENS, DELS ÅTERBETALNINGARNAS OCH OMKOSTNADERNAS VÄRDE K m K 1 A K m K t (1 ' K ' (1 K t K ' K 1 A Bokstävernas och symbolernas

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 22-8-3 DAG: Fredag 3 augusti 22 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:

Läs mer

Inledande programmering med C# (1DV402) Tärningarna ska kastas

Inledande programmering med C# (1DV402) Tärningarna ska kastas Tärningarna ska kastas Upphovsrätt för detta verk Detta verk är framtaget i anslutning till kursen Inledande programmering med C# vid Linnéuniversitetet. Du får använda detta verk så här: Allt innehåll

Läs mer

TATA42: Föreläsning 6 Potensserier

TATA42: Föreläsning 6 Potensserier TATA4: Föreläsning 6 Potensserier Johan Thim januari 7 Vi ska nu betrakta serier där termerna inte längre är konstanter. Speciellt ska vi studera så kallade potensserier. Dessa definieras som a k x k a

Läs mer

Flervariabelanlys och Matlab Kapitel 3

Flervariabelanlys och Matlab Kapitel 3 Flervariabelanlys och Matlab Kapitel 3 Thomas Wernstål Carl-Henrik Fant Matematiska Vetenskaper 17 september 2009 1 3 Multipelntegraler 3.1 ubbelintegraler Exempel. Vi skall beräkna dubbelintegralen (y

Läs mer

AD-DA-omvandlare. Mätteknik. Ville Jalkanen. ville.jalkanen@tfe.umu.se 1

AD-DA-omvandlare. Mätteknik. Ville Jalkanen. ville.jalkanen@tfe.umu.se 1 AD-DA-omvandlare Mätteknik Ville Jalkanen ville.jalkanen@tfe.umu.se Inledning Analog-digital (AD)-omvandling Digital-analog (DA)-omvandling Varför AD-omvandling? analog, tidskontinuerlig signal Givare/

Läs mer

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett

Läs mer

LABORATION cos (3x 2 ) dx I =

LABORATION cos (3x 2 ) dx I = SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför

Läs mer

Nr 4 GRUNDLÄGGANDE EKVATION SOM ANGER EKVIVALENSEN MELLAN DELS LÅNENS, DELS ÅTERBETALNINGARNAS OCH OMKOSTNADERNAS VÄRDE

Nr 4 GRUNDLÄGGANDE EKVATION SOM ANGER EKVIVALENSEN MELLAN DELS LÅNENS, DELS ÅTERBETALNINGARNAS OCH OMKOSTNADERNAS VÄRDE BIAGA GRUNDÄGGANDE EKVATION SOM ANGER EKVIVAENSEN MEAN DES ÅNENS, DES ÅTERBETANINGARNAS OCH OMKOSTNADERNAS VÄRDE. P. $. P. W.. W.. $ Bokstävernas och symbolernas betydelse: K är numret på ett lån K är

Läs mer

Repetitionsfrågor: 5DV154 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem

Repetitionsfrågor: 5DV154 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem Institutionen för datavetenskap Umeå universitet december 06 Teknisk beräkningsvetenskap I Repetitionsfrågor: 5DV54 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem Del

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå

Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå Naturvetenskapliga fakulteten Dnr G 2015/59 Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå 1. Utbildningsprogrammets benämning och omfattning Programmet benämns

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 2011-12-21 Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 Kurs 1a och 2a i Gy 2011 jämfört med kurs A och B i Gy 2000 Poängomfattningen har ökat från 150 poäng

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Byggnationen av Cheopspyramiden - ett visualiseringsprojekt. Mathias Bergqvist, Rikard Gehlin, Henrik Gunnarsson

Byggnationen av Cheopspyramiden - ett visualiseringsprojekt. Mathias Bergqvist, Rikard Gehlin, Henrik Gunnarsson Byggnationen av Cheopspyramiden - ett visualiseringsprojekt Mathias Bergqvist, Rikard Gehlin, Henrik Gunnarsson 25 April 2010 0.1 Förord Gruppen vill tacka Adam Grudzinski för att ha fått tillåtelse att

Läs mer

Anders Logg. Människor och matematik läsebok för nyfikna 95

Anders Logg. Människor och matematik läsebok för nyfikna 95 Anders Logg Slutsatsen är att vi visserligen inte kan beräkna lösningen till en differentialekvation exakt, men att detta inte spelar någon roll eftersom vi kan beräkna lösningen med precis den noggrannhet

Läs mer

Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt

Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt Föreläsning 8.15-10.00 Lektioner 10.15-12.00 Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt ons-3-dec Hörsal G C: 5.1-5.2 tor-4-dec Hörsal G N210 A302 A303 MC413 C: 5.3-5.4 fre-5-dec Hörsal G C: 2.10,

Läs mer

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4 Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa

Läs mer

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen.

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. 2008 10 14 A. Talsystemen. (Adams P.1. Anteckningar från introkursen.) N de naturliga talen Z de hela talen Q de rationella

Läs mer

Prissättning av optioner

Prissättning av optioner TDB,projektpresentation Niklas Burvall Hua Dong Mikael Laaksonen Peter Malmqvist Daniel Nibon Sammanfattning Optioner är en typ av finansiella derivat. Detta dokument behandlar prissättningen av dessa

Läs mer

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Facit Tentamen i Beräkningsvetenskap I (1TD9) STS ES W K1 Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på ett kladdpapper,

Läs mer

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT

Läs mer

Kommer rå datorkapacitet att klå människohjärnan i att beskriva naturen?

Kommer rå datorkapacitet att klå människohjärnan i att beskriva naturen? Kommer rå datorkapacitet att klå människohjärnan i att beskriva naturen? Kai Nordlund Professor i beräkningsmaterialfysik 17.11.2009? Matematisk-naturvetenskapliga fakulteten Institutionen för fysik Avdelning

Läs mer

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2 Kapitel 4 Bisektionsalgoritmen Vi ska konstruera lösningar till algebraiska ekvationer av formen f(x) = 0 med hjälp av bisektionsalgoritmen (intervallhalveringsmetoden). På samma gång ska vi se hur man

Läs mer

Vad beror benägenheten att återvinna på? Annett Persson

Vad beror benägenheten att återvinna på? Annett Persson Vad beror benägenheten att återvinna på? Annett Persson 12 mars 2011 Innehåll 1 Inledning 2 1.1 Bakgrund............................... 2 1.2 Syfte.................................. 2 1.3 Metod.................................

Läs mer

Hantering av osäkerheter vid riskbedömningar

Hantering av osäkerheter vid riskbedömningar Hantering av osäkerheter vid riskbedömningar Tomas Öberg Högskolan i Kalmar Vårmöte Renare Mark -24 mars 2009 - Hållbar riskbedömning Vad är osäkerhet? Stokastisk osäkerhet el. variabilitet naturlig variation

Läs mer

Ickelinjära ekvationer

Ickelinjära ekvationer Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

TANA81: Simuleringar med Matlab

TANA81: Simuleringar med Matlab TANA81: Simuleringar med Matlab - Textsträngar och Texthantering. - Utskrifter till fil eller skärm. - Exempel: Slumptal och Simulering. - Exempel: Rörelseekvationerna. - Vanliga matematiska problem. Typeset

Läs mer

Föreläsning 1: Intro till kursen och programmering

Föreläsning 1: Intro till kursen och programmering Föreläsning 1: Intro till kursen och programmering Kursens hemsida http:www.it.uu.se/edu/course/homepage/prog1/vt11 Studentportalen http://www.studentportalen.uu.se Lärare: Tom Smedsaas, Tom.Smedsaas@it.uu.se

Läs mer

Algoritm för uppskattning av den maximala effekten i eldistributionsnät med avseende på Nätnyttomodellens sammanlagringsfunktion

Algoritm för uppskattning av den maximala effekten i eldistributionsnät med avseende på Nätnyttomodellens sammanlagringsfunktion Algoritm för uppskattning av den maximala effekten i eldistributionsnät med avseende på Nätnyttomodellens sammanlagringsfunktion Carl Johan Wallnerström December 2005 Kungliga Tekniska Högskolan (KTH),

Läs mer

Platser för att skriva och testa kod online. Workshop om programmering i matematikkurser, version 0.7 senast sparat

Platser för att skriva och testa kod online. Workshop om programmering i matematikkurser, version 0.7 senast sparat Cheat sheets Nedan finns referensblad för fyra olika programmeringsspråk, som kan bli aktuella att använda i matematikundervisning. MATLAB är en välkänd programvara för att göra matematiska beräkningar,

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

SVANTE JANSON OCH SVANTE LINUSSON

SVANTE JANSON OCH SVANTE LINUSSON NORMLPPROXIMTION FÖR SNNOLIKHETEN FÖR TT FELKTIGT HNTERDE RÖSTER PÅVERKR MNDTFÖRDELNINGEN SVNTE JNSON OCH SVNTE LINUSSON. Inledning ntag att det är nästan jämnt mellan två partier och B vid fördelningen

Läs mer

Välkomna till kursen i grundläggande programmering DVGA08, ISGA04

Välkomna till kursen i grundläggande programmering DVGA08, ISGA04 Välkomna till kursen i grundläggande programmering DVGA08, ISGA04 Presentation av personal på kursen Kerstin Andersson lärare i datavetenskap Johan Öfverberg lärare i informatik Inger Bran kurssekreterare

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

Faktorisering med hjälp av kvantberäkningar. Lars Engebretsen

Faktorisering med hjälp av kvantberäkningar. Lars Engebretsen Faktorisering med hjälp av kvantberäkningar Lars Engebretsen 003-11-18 Bakgrund Vanliga datorer styrs av klassiska fysikens lagar. Vanliga datorer kan simuleras av turingmaskiner i polynomisk tid. Kanske

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

Lärare 4. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum

Lärare 4. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum 1 Lärare 4 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag

Läs mer

SF Numeriska metoder, grundkurs

SF Numeriska metoder, grundkurs - Numeriska metoder, grundkurs Introduktionsföreläsning, September 1, 2014 KTH Royal Institute of Technology Dept. of Mathematics - NA division 1/16 Föreläsning 1 Om föreläsaren Om ämnet Om kursen Matlab

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade

Läs mer

Kristoffer Mattisson, Yrkes och Miljöhygieniker, Doktorand folkhälsovetenskap Arbets och Miljömedicin, Lund

Kristoffer Mattisson, Yrkes och Miljöhygieniker, Doktorand folkhälsovetenskap Arbets och Miljömedicin, Lund Modellering av trafikbuller Metoder, Osäkerhet och Felkällor Kristoffer Mattisson, Yrkes och Miljöhygieniker, Doktorand folkhälsovetenskap Arbets och Miljömedicin, Lund Upplägg 1. Vad är buller? 2. Hur

Läs mer

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Iterationer på ett intervall av Fredrik Bratt 2011 - No 3 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Läs mer

SF1513 (tidigare DN1212) Numeriska metoder och grundläggande programmering. för Bio3, 9 hp (högskolepoäng)

SF1513 (tidigare DN1212) Numeriska metoder och grundläggande programmering. för Bio3, 9 hp (högskolepoäng) Kursöversikt numpbio, 2013. 1 Beatrice Frock KTH Matematik, 130620 SF1513 (tidigare DN1212) Numeriska metoder och grundläggande programmering för Bio3, 9 hp (högskolepoäng) Kursprogram 6 Design i Matlab

Läs mer

CIVILINGENJÖRSEXAMEN MASTER OF SCIENCE IN ENGINEERING

CIVILINGENJÖRSEXAMEN MASTER OF SCIENCE IN ENGINEERING Lokal examensbeskrivning Dnr: 541-2076-10 Sid 1 (5) CIVILINGENJÖRSEXAMEN MASTER OF SCIENCE IN ENGINEERING INRIKTNING: TEKNISK KEMI SPECIALISATION: ENGINEERING CHEMISTRY 1 Fastställande Denna examensbeskrivning

Läs mer

Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT. Övning A

Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT. Övning A Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT Första delen av övningen handlar om begreppet funktion. Syftet är att bekanta sig med funktionsbegreppet som en parbildning. Vi koncentrerar oss på tre viktiga

Läs mer