2D1240 Numeriska metoder gk II för T2, VT Störningsanalys

Storlek: px
Starta visningen från sidan:

Download "2D1240 Numeriska metoder gk II för T2, VT Störningsanalys"

Transkript

1 Olof Runborg ND 10 februari D1240 Numeriska metoder gk II för T2, VT 2004 Störningsanalys Indata till ett numeriskt problem innehåller i praktiken alltid (små) fel.felen kan bero på tex mätfel, avrundningsfel eller pga att indata kommer från andra numeriska beräkningar som innehåller trunkationsfel.en viktig frågeställning är därför hur lösningen till problemet påverkas av dessa fel.vi kan beskriva situationen såhär: Indata Problem Utdata x F y Här är F en abstrakt formulering av problemet.det kan tex vara en enkel funktion y = F (x), men i allmänhet är F mer komplicerad än så. Frågan är nu vad som händer med utdata y om vi stör indata x med ett litet fel ε x.istället för x skickar vi in x = x + ε x och istället för y får vi ut ỹ = y + ε y.hur beror då ε y på ε x? Störd indata Problem Störd utdata x=x+ε x F y=y+ ε y Ofta känner vi inte felet precis utan vet bara att det är mindre än en felgräns.felgränsen kan vara antingen absolut, betecknad E x, eller relativ, betecknad R x, och innebär att ε x E x, ε x R x. x Om felgränserna i utdata E y, R y är små när felgränserna i indata E x, R x är små brukar man säga att problemet är välkonditionerat eller stabilt; små fel i indata spelar ingen större roll. 1 F känd funktion Om F är en känd, snäll funktion kan vi analysera felfortplantningen från indata till utdata med hälp av lokal linärisering runt x.i detta fall är y = F (x) och ỹ = F ( x).via taylorutvecklingen får vi F (x) =F ( x ε x ) F ( x) ε x F ( x) ε y =ỹ y = F ( x) F (x) ε x F ( x) ε y ε x F ( x) Detta ger direkt motsvarande formel för absoluta felgränserna E x och E y, ε y ε x F ( x) E x F ( x) E y E x F ( x) 1

2 Om F beror på flera variabler, får man på samma sätt y = F (x 1,x 2,...,x n ), ỹ = F ( x 1, x 2,..., x n ), ε y ε x1 F( x 1,..., x n) x ε xn F( x 1,..., x n) x n, där ε x är felet i x,samt där E x är absoluta felgränsen för ε x. E y E x1 F( x 1,..., x n) x Exn F( x 1,..., x n) x n, Exempel 1: ntag att F (x) = 1 + cos x och att indata x är given som x =0.1 ± Med terminologin ovan är då x =0.1 och ε x 0.005, dvse x =0.005.Beräkna först ỹ, Enligt formeln ovan blir felgränsen för ỹ ỹ = 1 + cos(0.1) E y E x F ( x) =0.005 sin(0.1) Vi avrundar därför ỹ till tre decimaler och skriver y =0.050 ± Exempel 2: Låt x vara exakta roten till ekvationen f(x) =0.Låt x vara en approximation till roten given av Newtons metod med avbrottskriteriet f( x) δ, där toleransen δ är ett litet tal.beräkna felgränsen i x.i detta exempel är y = f(x) =0och ỹ = f( x).földaktligen är ε y = ỹ y = f( x) 0 δ, dvse y = δ.formeln för felgränserna ger då E y E x f ( x) E x δ f ( x). Notera att om f ( x) är liten kan felet i x vara stort även om toleransen δ är liten.det är därför normalt svårt att lösa ekvationer med dubbelrötter där f(x) =f (x) =0. 2 Experimentell störningsanalys I många fall är F inte känd, eller för komplicerad för att kunna deriveras.det är då svårt att använda analysen ovan.exempelvis skulle F (x) kunna vara given som lösningen till en ordinär differentialekvation vid en viss tid med begynnelsevärde x: dy = g(y), y(0) = x, F (x) :=y(10). dt I denna situation är det mer praktiskt att använda experimentell störningsanalys där F (x) betraktas som en svart låda.det enda vi antar är att F är deriverbar. Vi börar med att beräkna ỹ från störda indata x som tidigare.sedan gör vi en experimenträkning : en beräkning där vi medvetet stör indata ytterligare med värdet på indatafelgränsen E x. Resultatet kallar vi ȳ, ỹ = F ( x), ȳ = F ( x + E x ). 2

3 Skillnaden ȳ ỹ är då en bra uppskattning av felgränsen E y i utdata ỹ, ȳ ỹ = F ( x + E x ) F ( x) E x F ( x) E y. När F beror av två variabler stör vi dem en i sänder och beräknar, ȳ 1 = F (x 1 + E x1,x 2 ), ȳ 2 = F (x 1,x 2 + E x2 ). Felet i utdata uppskattas med E y ỹ ȳ 1 + ỹ ȳ 2. Etc.för fler variabler.se tex ENM uppgift 8.8 för exempel. 3 Rättställdhet Vi har hittills hela tiden antagit att F motsvarar en snäll funktion, i sälva verket en deriverbar funktion.om F istället tex är en diskontinuerlig funktion kan ε y bli stort även för godtyckligt små ε x.det betyder att även om vi har mycket små störningar i indata får vi ett utvärde som är helt fel.sådana problem kallas icke rättställda (ill-posed).omvänt kallas problem där F (x) är kontinuerlig för rättställda (well-posed) problem.det är viktigt att se konsekvensen av icke rättställdhet: Eftersom vi i praktiken alltid har små störningar i indata kan icke rättställda problem inte lösas med numeriska metoder även om problemet i teorin har en entydig lösning.begreppet rättställdhet är därför centralt inom tillämpad matematik.ett mycket enkelt exempel på ett icke rättställt problem är fölande.lös f(x) =0när x, x 0,x 20, f(x) = 20, x =0, 0, x =20. Det är uppenbart att lösningen är x =20, men en numerisk metod kommer inte kunna hitta den roten.den numeriska svårigheten är ganska tydlig i det här enkla fallet.den kan dock vara betydligt mer subtil i mer komplicerade problem.speciellt svår är frågan om rättställdhet för partiella differentialekvationer där även till synes enkla ekvationer kan vara icke rättställda.i det fallet är både in- och utdata funktioner snarare än skalära tal eller vektorer. 4 Linära ekvationssystem Vi gör nu en noggrannare störningsanalys för linära ekvationssystem x = b. (1) Här är högerledet b indata och lösningen x utdata.vi antar att är icke-singulär.som tidigare utgår vi från att b är behäftat med ett litet fel ε b och att den resulterande lösningen då får ett litet fel ε x.istället för (1) löser vi därför x = b, (2) där x = x+ε x och b = b+ε b.notera att data b, x och felen ε b, ε x nu är vektorer och inte skalära tal.för att mäta felen använder vi oss därför av normer, istället för absolutbelopp som tidigare. Vektor- och matrisnormer beskrivs kort i ppendix nedan.genom att subtrahera (2) från (1) får vi först ε x = ( x x) = b b = ε b, och eftersom inte är singulär, ε x = 1 ε b ε x = 1 ε b. 3

4 Olikhet (6) i ppendix ger då ε x 1 ε b. (3) Vi går nu tillbaka till (1) och använder olikheten (6) igen, vilket efter division med b x blir b = x x, 1 x b. (4) Tillsammans ger (3) och (4) en övre begränsning på hur det relativa felet i indata kan förstärkas i utdata, ε x 1 ε b x b. Notera att ε x / x och ε b / b är relativfelet i utdata respektive indata.faktorn framför ε b / b kallas konditionstalet för matrisen och betecknas K, K() := 1. Konditionstalet visar hur det relativa felet i indata maximalt kan förstoras i utdata.speciellt får vi för de relativa felgränserna R x och R b, R x = K()R b. När konditionstalet är litet säger vi att matrisen är välkonditionerad.när konditionstalet är stort är matrisen illa konditionerad.matrisen är då nästan singulär. Några kommentarer: 1.Konditionstalet beror egentligen på val av norm.i praktiken spelar valet dock ingen större roll. 2.I det speciella fallet när är symmetrisk kan man också uttrycka K() (i 2-norm) med hälp av egenvärdena till.enligt uttrycket för 2-normen som ges i ppendix är 2 = max λ ( T ) = max λ ( 2 ) = max λ (). På samma sätt ges 1 2 = max λ ( 2 ) = max λ () 1. Därför är K() = λ max λ min, vilket även visas i Quarteroni/Saleri, s 117 på ett lite annat sätt. 3.I Matlab är R b minst lika med pga avrundningsfelen.om K() > blir därför lösningarna synnerligen opålitliga. Se tex ENM 3.4, 3.5 samt uppgift 3 i lab 1 för exempel på hur konditionstal används. 4

5 Vektor- och matrisnormer För att mäta storleken av en vektor eller matris använder vi normer.det kan ses som en generalisering av absolutbeloppet för skalära tal.normen av vektorn x skrivs x.flera olika val av normer är möliga för vektorer.vanligast är den euklidiska normen (även kallad 2-normen), n x 2 := x 2, x =(x 1,x 2,...,x n ) T R n, =1 som mäter längden av x i R n.ibland används också lla normer uppfyller 1. x > 0 för alla vektorer x 0, 2. αx = α x för alla skalära tal α R, 1-normen x 1 := n =1 x, max-normen x := max x. 3. x + y x + y för alla vektorer x och y (triangeolikheten). (Dessa tre villkor kan även ses som axiomen vilka definierar en norm i ett vektorrum.) Matrisnormer definieras vanligtvis i termer av vanliga vektornormer enligt := max x 0 x x. (5) Notera att normerna i högerledet båda är vektornormer.för vare vektornorm får man således en motsvarande matrisnorm.låt a i vara elementet på rad i och kolumn i.man kan visa att 1-, 2-, och max-normen ger fölande uttryck för matrisnormerna: 1-normen 1 = max n i=1 a i, (dvs max kolumnsumma ), 2-normen 2 = max λ ( T ), (där λ ( T ) är egenvärde till matrisen T ), max-normen = max i n =1 a i, (dvs max radsumma ). Matrisnormerna definierade enligt (5) uppfyller automatiskt punkterna 1-3 ovan.efter multiplikation med x på båda sidor ger dessutom (5) denna viktiga olikhet: x x. (6) 5

Fel- och störningsanalys

Fel- och störningsanalys Fel- och störningsanalys 1 Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis

Läs mer

Fel- och störningsanalys

Fel- och störningsanalys Fel- och störningsanalys Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis utan

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Föreläsning 3 Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på denna för att

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Standardform för randvärdesproblem

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Standardform för randvärdesproblem Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN8 09-03-30 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN7 (GNM kap 4, 6.3)! Bandmatrismetoden/Finita differensmetoden!

Läs mer

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20. Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0

Läs mer

Fö4: Kondition och approximation. Andrea Alessandro Ruggiu

Fö4: Kondition och approximation. Andrea Alessandro Ruggiu TANA21/22 HT2018 Fö4: Kondition och approximation Andrea Alessandro Ruggiu Kondition och approximation A.A.Ruggiu 13:e September 2018 1 Konditionstal Kondition och approximation A.A.Ruggiu 13:e September

Läs mer

Konvergens för iterativa metoder

Konvergens för iterativa metoder Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd

Läs mer

a = a a a a a a ± ± ± ±500

a = a a a a a a ± ± ± ±500 4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att

Läs mer

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Numerisk Analys, MMG410. Exercises 2. 1/33

Numerisk Analys, MMG410. Exercises 2. 1/33 Numerisk Analys, MMG410. Exercises 2. 1/33 1. A är en kvadratisk matris vars alla radsummor är noll. Visa att A är singulär. Låt e vara vektorn av ettor. Då är Ae = 0 A har icke-trivialt nollrum. 2/33

Läs mer

TANA09 Föreläsning 5. Matrisnormer. Störningsteori för Linjära ekvationssystem. Linjära ekvationssystem

TANA09 Föreläsning 5. Matrisnormer. Störningsteori för Linjära ekvationssystem. Linjära ekvationssystem TANA9 Föreläsning Matrisnormer Linjära ekvationssystem Matrisnormer. Konditionstalet. Felanalys. Linjära minstakvadratproblem Överbestämda ekvationssystem. Normalekvationerna. Ortogonala matriser. QR faktorisering.

Läs mer

2 Matrisfaktorisering och lösning till ekvationssystem

2 Matrisfaktorisering och lösning till ekvationssystem TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan

Läs mer

Gruppuppgifter 1 MMA132, Numeriska metoder, distans

Gruppuppgifter 1 MMA132, Numeriska metoder, distans Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003

Läs mer

Sammanfattninga av kursens block inför tentan

Sammanfattninga av kursens block inför tentan FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,

Läs mer

2D1250 Tillämpade numeriska metoder II Läsanvisningar och repetitionsfrågor:

2D1250 Tillämpade numeriska metoder II Läsanvisningar och repetitionsfrågor: 1 Axel Ruhe NADA 10 mars 2005 2D1250 Tillämpade numeriska metoder II Läsanvisningar och repetitionsfrågor: Dessa frågor är till hjälp vid inläsning av Linjär Algebra momenten i kursen. Hänvisningar till

Läs mer

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u = Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Intro till vektorer, matriser och Gausselimination 8. Den euklidiska normen x = x 1 + x + x n och x 1 + x + ( ) x n = x 1 x x n 9. Vi ska

Läs mer

Tentamen, del 2 DN1240 Numeriska metoder gk II för F

Tentamen, del 2 DN1240 Numeriska metoder gk II för F Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Vilka metoder har vi tagit upp? Euler framåt Euler bakåt Trapetsmetoden y k+ = y k + hf(t k, y k ), explicit y k+ = y k + hf(t k+, y k+ ), implicit y k+ = y k + h (f(t

Läs mer

FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum

FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar

Läs mer

Numerisk Analys, MMG410. Lecture 1. 1/24

Numerisk Analys, MMG410. Lecture 1. 1/24 Numerisk Analys, MMG410. Lecture 1. 1/24 Lärare Kursansvarig och examinator: Larisa Beilina, larisa@chalmers.se, room 2089. Office hours: tisdagar, 15:00-16.00. Handledare för Datorlaborationer och övningar

Läs mer

Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394

Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394 Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, 2011-03-08 OBS: Kurskod 1TD394 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!)

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 22-8-3 DAG: Fredag 3 augusti 22 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:

Läs mer

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma

Läs mer

Vektorrum. EX. Plan och linjer i rummet genom origo. Allmänt; mängden av lösningar till AX = 0.

Vektorrum. EX. Plan och linjer i rummet genom origo. Allmänt; mängden av lösningar till AX = 0. Vektorrum Denna kurs handlar till stor del om s k linjära rum eller vektorrum. Dessa kan ses som generaliseringar av R n. Skillnaden består främst i att teorin nu blir mer abstrakt. Detta är själva poängen;

Läs mer

Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x).

Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x). Kapitel 5 Fixpunktsiteration 5.1 Fixpunktsekvation En algebraisk ekvation kan skrivas på följande två ekvivalenta sätt (vilket innebär att lösningarna är desamma). 1. f(x) = 0. En lösning x kallas en rot

Läs mer

Del I: Lösningsförslag till Numerisk analys,

Del I: Lösningsförslag till Numerisk analys, Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan

Läs mer

TMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1.

TMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1. MATEMATISKA VETENSKAPER TMA67 8 Chalmers tekniska högskola Datum: 8--8 kl - 8 Examinator: Håkon Hoel Tel: ankn 38 Hjälpmedel: inga TMA 67 Linjär Algebra Numerisk Analys Tentan består av 8 uppgifter, med

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, (ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden

Läs mer

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg

Läs mer

Oändligtdimensionella vektorrum

Oändligtdimensionella vektorrum Oändligtdimensionella vektorrum Vi har i den här kursen huvudsakligen studerat ändligtdimensionella vektorrum. Dessa är mycket användbara objekt och matriskalkyl ger en bra metod att undersöka dom med.

Läs mer

Tentamen i Teknisk-Vetenskapliga Beräkningar

Tentamen i Teknisk-Vetenskapliga Beräkningar Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67-8-5 DAG: Onsdag 5 augusti TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation

Komplettering till kursboken i Numeriska beräkningar. 1 Beräkningsfelsanalys. 1.1 Uttryck med kancellation Linköpings Universitet Kompletterande material Matematiska institutionen/beräkningsmatematik 5 februari 203 Ingegerd Skoglund IT Termin 6 Komplettering till kursboken i Numeriska beräkningar Beräkningsfelsanalys

Läs mer

Block 2: Lineära system

Block 2: Lineära system Exempel Från labben: Block : Lineära system Del 1 Trampolinens böjning och motsvarande matris (här 6060-matris) Matrisen är ett exempel på - gles matris (huvuddelen av elementen nollor) - bandmatris Från

Läs mer

Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att:

Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen,

Läs mer

Föreläsning 5. Approximationsteori

Föreläsning 5. Approximationsteori Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning

Läs mer

Interpolation Modellfunktioner som satisfierar givna punkter

Interpolation Modellfunktioner som satisfierar givna punkter Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation

Läs mer

Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long

Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long % Skapa matrisen A med alpha=1 A = [1 2 3; 2 4 1; 4 5 6]; b = [2.1; 3.4; 7.2];

Läs mer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37)

Läs mer

Absolutstabilitet. Bakåt Euler Framåt Euler

Absolutstabilitet. Bakåt Euler Framåt Euler Absolutstabilitet Introduktion För att en numerisk ODE-metod ska vara användbar måste den vara konvergent, dvs den numeriska lösningen ska närma sig den exakta lösningen när steglängden går mot noll. Det

Läs mer

KTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup

KTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars

Läs mer

SF1545 Laboration 1 (2015): Optimalt sparande

SF1545 Laboration 1 (2015): Optimalt sparande Avsikten med denna laboration är att: SF1545 Laboration 1 (215: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 4. Funktioner 1 Egna Funktioner Uppgift 1.1 En funktion f(x) ges av uttrycket 0, x 0, f(x)= sin(x), 0 < x π 2, 1, x > π 2 a) Skriv en Matlab funktion

Läs mer

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

BEGREPPSMÄSSIGA PROBLEM

BEGREPPSMÄSSIGA PROBLEM BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med

Läs mer

Datoraritmetik. Från labben. Från labben. Några exempel

Datoraritmetik. Från labben. Från labben. Några exempel Datoraritmetik Beräkningsvetenskap I Från labben Två huvudtyper av fel: diskretiseringsfel och avrundningsfel Olika sätt att mäta fel: relativt fel, absolut fel Begreppen ε M, Inf, NaN, overflow, underflow,

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:

Läs mer

Egenvärdesproblem för matriser och differentialekvationer

Egenvärdesproblem för matriser och differentialekvationer CTH/GU STUDIO 7 TMV36b - 14/15 Matematiska vetenskaper 1 Inledning Egenvärdesproblem för matriser och differentialekvationer Vi skall se lite på egenvärdesproblem för matriser och differentialekvationer.

Läs mer

TMV166 Linjär Algebra för M. Tentamen

TMV166 Linjär Algebra för M. Tentamen MATEMATISKA VETENSKAPER TMV66 6 Chalmers tekniska högskola 6 8 kl 8:3 :3 (SB Multisal) Examinator: Tony Stillfjord Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Telefonvakt: Olof Giselsson, ankn

Läs mer

Linjärisering, Jacobimatris och Newtons metod.

Linjärisering, Jacobimatris och Newtons metod. Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning, Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv

Läs mer

2D1240 Numeriska metoder gk II för T2, VT 2004 LABORATION 1. Ekvationslösning

2D1240 Numeriska metoder gk II för T2, VT 2004 LABORATION 1. Ekvationslösning 1 Olof Runborg NADA 15 januari 2004 2D1240 Numeriska metoder gk II för T2, VT 2004 A LABORATION 1 Ekvationslösning Sista dag för bonuspoäng, se kursplanen. Kom väl förberedd och med välordnade papper till

Läs mer

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi

Läs mer

Omtentamen i DV & TDV

Omtentamen i DV & TDV Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2005-06-07 Skrivtid: 9-15 Hjälpmedel: inga

Läs mer

Repetitionsfrågor: 5DV154 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem

Repetitionsfrågor: 5DV154 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem Institutionen för datavetenskap Umeå universitet december 06 Teknisk beräkningsvetenskap I Repetitionsfrågor: 5DV54 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem Del

Läs mer

Omtentamen i DV & TDV

Omtentamen i DV & TDV Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga

Läs mer

TANA19 NUMERISKA METODER

TANA19 NUMERISKA METODER HT2/2016 LINJE+ÅK+KLASS : TANA19 NUMERISKA METODER Laboration 2. Linjär algebra Namn : Personnummer : E-post : @student.liu.se Namn : Personnummer : E-post : @student.liu.se Godkänd datum : Sign : Retur

Läs mer

1 Konvexa optimeringsproblem grundläggande egenskaper

1 Konvexa optimeringsproblem grundläggande egenskaper Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av

Läs mer

Föreläsning 9. Absolutstabilitet

Föreläsning 9. Absolutstabilitet Föreläsning 9 Absolutstabilitet Introduktion För att en numerisk ODE-metod ska vara användbar måste den vara konvergent, dvs den numeriska lösningen ska närma sig den exakta lösningen när steglängden går

Läs mer

Matrisavbildningar. Kirsti Mattila K T H

Matrisavbildningar. Kirsti Mattila K T H 246 Matrisavildningar Kirsti Mattila K T H 1. Inledning. I denna uppgift etraktas matriser som avildningar på planet R 2 ; speciellt etraktas projektioner och isometrier. En projektion är en avildning

Läs mer

Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde?

Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde? Numeriska metoder, grundkurs II Övning 1 för I2 Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum 163:006, Roslagstullsbacken 35 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1240/numi07

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I/KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-01-11 Skrivtid: 14 00 17 00 (OBS! Tre timmars

Läs mer

Normer och Kondition

Normer och Kondition Norm Kondition Normer och Kondition Carmen Arévalo 2010-02-08 Carmen Arévalo Normer och Kondition 2010-02-08 1 / 12 Definition Norm Kondition Vanliga vektornorm Matrisnormer En norm på V (V kan vara R

Läs mer

TMV142/186 Linjär algebra Z/TD

TMV142/186 Linjär algebra Z/TD MATEMATIK Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Chalmers tekniska högskola Datum: 2018-08-27 kl 1400 1800 Tentamen Telefonvakt: Anders Hildeman ank 5325 TMV142/186 Linjär algebra Z/TD Skriv

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

Laboration 1. Ekvationslösning

Laboration 1. Ekvationslösning Laboration 1 Ekvationslösning Sista dag för bonuspoäng, se kursplanen. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen

Läs mer

Lösningsförslag till tentamensskrivningen i Numerisk analys

Lösningsförslag till tentamensskrivningen i Numerisk analys Lösningsförslag till tentamensskrivningen i Numerisk analys 160526 Del I: (1) (a) Heuns metod för numerisk lösning av differentialekvationer har noggrannhetsordning 2. Detta betyder att Felet avtar med

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:

Läs mer

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.

Läs mer

Laboration 1. x = 1±0.01, y = 2±0.05. a) Teoretiskt med hjälp av felfortplantningsformeln (Taylor-utveckling).

Laboration 1. x = 1±0.01, y = 2±0.05. a) Teoretiskt med hjälp av felfortplantningsformeln (Taylor-utveckling). Laboration 1 Sista dag för bonuspoäng är 18 mars. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen ska kunna redogöra för

Läs mer

Lösningsförslag, tentamen, Differentialekvationer och transformer II, del 1, för CTFYS2 och CMEDT3, SF1629, den 19 oktober 2011, kl. 8:00 13:00.

Lösningsförslag, tentamen, Differentialekvationer och transformer II, del 1, för CTFYS2 och CMEDT3, SF1629, den 19 oktober 2011, kl. 8:00 13:00. Lösningsförslag, tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 9 oktober 20, kl. 8:00 3:00 av 8 3 poäng. Svar: i. sant, ii. falskt, iii. sant, iv. sant, v.

Läs mer

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014 MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA32 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 204 Examinator: Karl Lundengård Skrivtid:

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-10-17 Skrivtid: 8 00 11 00 (OBS!

Läs mer

12. SINGULÄRA VÄRDEN. (u Av) u v

12. SINGULÄRA VÄRDEN. (u Av) u v . SINGULÄRA VÄRDEN Vårt huvudresultat sen tidigare är Sats.. Varje n n matris A kan jordaniseras, dvs det finns en inverterbar matris S sån att S AS J där J är en jordanmatris. Om u och v är två kolonnvektorer

Läs mer

SF Numeriska metoder, grundkurs Föreläsning 5: Felanalys, felkalkyl och kondition KTH - SCI

SF Numeriska metoder, grundkurs Föreläsning 5: Felanalys, felkalkyl och kondition KTH - SCI - Numeriska metoder, grundkurs Föreläsning 5: Felanalys, felkalkyl och kondition Oktober 13, 2014 KTH Royal Institute of Technology Dept. of Mathematics - NA division 1/5 1 Exempel: Newtons metod f=@(x)

Läs mer

x 1(t) = x 2 (t) x 2(t) = x 1 (t)

x 1(t) = x 2 (t) x 2(t) = x 1 (t) Differentialekvationer II Modellsvar till räkneövning 4 16.4. 218 (kl 12-14 B222) 1. Lös det linjära homogena DE-systemet x 1(t) = x 2 (t) x 2(t) = x 1 (t) med matrismetoden. Påminnelse: egenvärden och

Läs mer

n Kap 4.1, 4.2, (4.3), 4.4, 4.5 n Numerisk beräkning av derivata med n Felen kan t ex vara avrundningsfel eller mätfel n Felet kan mätas

n Kap 4.1, 4.2, (4.3), 4.4, 4.5 n Numerisk beräkning av derivata med n Felen kan t ex vara avrundningsfel eller mätfel n Felet kan mätas Datoraritmetik Beräkningsvetenskap I/KF Kursboken n Kap 4., 4., (4.3), 4.4, 4. n I kap 4.3 används Taylorutvecklingar. Om du ännu inte gått igenom detta i matematiken, kan du oppa över de delar som beandlar

Läs mer

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel. MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 009-08-7 DAG: Torsdag 7 augusti 009 TID: 8.30 -.30 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 0

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars

Läs mer

A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p)

A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p) SF1624 Algebra och geometri Tentamen med lösningsförslag fredag, 21 oktober 216 1 Låt A = [ ] 4 2 7 8 3 1 (a) Bestäm alla lösningar till det homogena systemet Ax = [ ] T (3 p) (b) Bestäm alla lösningar

Läs mer

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Del A Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på

Läs mer

NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem

NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem NUMPROG, 2D1212, vt 2005 Föreläsning 9, Numme-delen Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem Då steglängden h är tillräckligt liten erhålles en noggrann

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 017-05-09 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.

Läs mer