Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad a) i) Nollställen för polynomet 2x 2 3x 1:

Storlek: px
Starta visningen från sidan:

Download "Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:"

Transkript

1 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse när man avrundar till ett visst antal gällande siffror eftersom de försvinner när man skriver om till tiopotensform. Därför säger man ofta att nollor i början av decimaltal inte är gällande siffror. Observera också att talet är ett specialfall. Det är inte relevant att tala om avrundning av talet till ett visst antal gällande siffror, eftersom talet inte kan skrivas i en tiopotensform där talet före tiopotensen ligger i intervallet [, [ (vilket gäller för alla andra tal). b) i) Eakta värdet är T = e och närmevärdet är L,6. Felet är T L e,6,78, absoluta felet är T T L,78 och relativa felet är T T,78 e,77,8,8 %. ii) Eakta värdet är T sin och närmevärdet är L,8. Felet är T L sin,8,7, absoluta felet är T T L,7 och relativa felet är T T,7 sin,7,7,7 %. Svar a) i) ii) 9,9 iii),7 b) i) felet,78, absoluta felet,78, relativa felet ungefär,8 % ii) felet,7, absoluta felet,7, relativa felet ungefär,7 % a) + + gemensam faktor = ( + + ) Nollställen för polynomet : ± ± = = =. ( )( ) Dvs. ( ) ( ) + + = ( + + ) = (+ )( + ). ( )( ), vilket ger b) Termerna i polynomet har inga gemensamma faktorer och man hittar inte på ett enkelt sätt några faktorer med hjälp av minnesreglerna eller gruppering. Därför försöker vi faktorisera med hjälp av nollställen. Faktorer i den konstanta termen är och faktorer i högsta grads termen är, och, vilket ger att möjliga rationella nollställen är, och. Test visar att är ett nollställe:. Polynomet är då delbart med binomet ( ). Vi dividerar polynomen med hjälp av trappan: ± ± ±

2 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Dvs. ( )( ). Minnesreglerna ger ytterligare att + + = ( )( ) ( ) = ( ) ( ) + + = ( )(+ ) Svar a) ( + )( + ) b) ( )( + ) Vi skall visa att funktionen f () 7 har eakt ett nollställe. Funktionen är en deriverbar och kontinuerlig polynomfunktion. Vi gör ett teckenschema för funktionens derivata. Derivatan är f () Derivatans nollställen och graf: + = = =±. Teckenschema: f + f Funktionsvärdena i etrempunkterna: f f () = + 7 =. ( ) =( ) + ( ) 7 = + f I intervallet [, [ finns inga nollställen, eftersom funktionens största värde i det här intervallet är enligt teckenschemat. Eftersom funktionen är strängt avtagande i intervallet ], [, så finns det högst ett nollställe i intervallet. Dvs. funktionen har högst ett nollställe i hela R. Eftersom f( ) = 8 > och f( ) = < och funktionen f är kontinuerlig överallt, så har funktionen f, enligt Bolzanos sats, åtminstone ett nollställe i intervallet ], [. Eftersom funktionen samtidigt enligt ovan har högst ett nollställe, så får vi att den har eakt ett nollställe. a) Vi löser ut roten ur ekvationen 7 på följande sätt: + = 7 = 7 = 7. Vår iterationsfunktion blir då g ( ) = 7. Vi väljer som startvärde och tabellerar resultatet: n n,779,879,7,767,7999 6,786 7,7 På räknare: ) EXE ) (Ans-7) Roten ser ut att vara,8 med tre decimalers noggrannhet.

3 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Vi visar också noggrannheten i svaret: Eftersom f f (,8) =, >, (,7) =9, < så ger Bolzanos sats att nollstället ligger i intervallet ],7;,8[. Ett närmevärde för nollstället med tre decimalers noggrannhet är då,8. b) Vi väljer t.e. utgående från grafen på en grafisk räknare intervallet [,;,]. f (,) =,7 > f (,) = < a) b) P( ) 7 7 = M( ) 7 7 = a+ b a b = + c c c ar as = P( ) = 77 = ( 7 7 ) Bolzanos sats ger att det finns ett nollställe i intervallet ],;,[. Med Genom att dividera polynomet med trinomet gaffelmetoden väljer vi ett nytt intervall, t.e. [,;,]. T( ) = + + t.e. med hjälp av trappan, ser vi att divisionen går jämnt ut och kvoten är +. Dvs. om vi dividerar polynomet P ( ) med f (,) =,9 > trinomet T( ), får vi polynomet ( + ) =. f (,) =,6 < Bolzanos sats ger att det finns ett nollställe i intervallet ],;,[. c) Utgående från punkterna a och b får vi att Vi fortsätter med gaffelmetoden. Slutligen hittar vi ett intervall som P ( ) = ( ) innehåller nollstället och vars tal avrundade till tre decimalers = ( + )( + + ), noggrannhet ger samma tal. T.e. intervallet ],7;,8[. Rotens närmevärde är då,8. vilket ger Svar a),8 b),8 P ( ) = ( + + ) =. + a-fallet r s = a Svar a) b) c)

4 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. 6 f ( n ) n+ = n ln( + ) Newtons algoritm:. Vi undersöker funktionen f( ) =. f ( ) + n Eftersom = = =, Vi beräknar ett närmevärde för derivatan med hjälp av centraldifferensen: så är = det enda nollstället till funktionen f (). Vi tillämpar f ( + h) f( h) f ( ). h Newtons metod på denna funktion. Funktionens derivata är f (), vilket ger rekursionsformeln ln( + ) Nu är h =,; = och f( ) =, vilket ger + n n+ n n n n n n f ( +,) f (,) n f (), Vi väljer som startvärde. f(,) f(,) =, = + =,666 ln(,) ln(,999),,999 =,666 + =, =,666, =, =, =,977 Vi beräknar ett eakt värde för derivatan: Talet, ser ut att vara ett närmevärde för med fem decimalers ln( + ) f( ) = noggrannhet. Vi kontrollerar resultatet: eftersom + f (,) =,9 < ( + ) ln( + ) f (,) =,6 6 >, f ( ) = + = ( + ) så ligger nollstället, enligt Bolzanos sats, i intervallet ],;,[. Talet, är då ett närmevärde för nollstället med fem decimaler. ln f () = = ln. Svar,

5 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Absoluta felet är Δ = ( ln ) (,977 ) =, och relativa felet är Δ,68 = = = ln ln,7,7 %. Svar f (),97... ; relativa felet är,7 7 7 a) Taylorpolynomet är f () f () P ( ) f() f ()!! Vi beräknar derivatorna för funktionen f. = f( ) = e +, f() = f ( ) = e +, f () = f ( ) = e, f () = f ( ) = e, f () = b) Ekvationen e är ekvivalent med ekvationen e. Dvs. vi söker nollställen för den kontinuerliga och deriverbara funktionen g() e. Vi får att g () e < överallt, vilket ger att funktionen g har högst ett nollställe. Rekursionsformeln för Newtons metod är g ( ) e e n n n n n n+ = n = n = n + ( ) e n g e n n + Vi väljer som startvärde. Vi får e = + =,788 e + e,788,788 =,788 + =,6698 e,788 + =,67 =,67 Med fyra decimalers noggrannhet ser lösningen ut att vara,67. Vi kontrollerar resultatet: eftersom g är kontinuerlig (summan av en eponentialfunktion och den identiska funktionen) och g(,67) =,6 > g(,67) =, <, så ger Bolzanos sats att det finns ett nollställe i intervallet ],67;,67[. Avrundat till fyra decimaler är närmevärdet för nollstället,67. Vi får att Sedan löser vi ekvationen P (). Vi får att P ( ) = +. 6 = P ( ) = = 6 + 6=. ( 6).

6 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Dvs. vi söker nollställen för funktionen h() 6. Derivatan h () 6 ger att rekursionsformeln för Newtons metod är h ( n) n n + n 6 n n + 6 n+ = n = n = h n n n + n n +. ( ) 6 6 Vi väljer igen som startvärde. Vi får att,,677,679,679 Lösningen ser ut att vara,67 med fyra decimalers noggrannhet. Eftersom h är en kontinuerlig polynomfunktion och eftersom h(,66) 6,67 h(,67),9, så ger Bolzanos sats att h har ett nollställe i intervallet ],66;,67[. Dvs. ett närmevärde för lösningen med fyra decimalers noggrannhet är verkligen,67. c) T,67 är ett närmevärde med fyra decimalers noggrannhet för roten till ekvationen e och L,67 är ett närmevärde med fyra decimalers noggrannhet för ekvationen P (). Relativa felet är då T L T,67,67 = =,, %.,67 Svar a) P ( ) = + b),67;,67 c),% ( ) f( ) d, f() + f(,) + f() + + f(,) + f(6) =, (,7 +,6 +, + +,9 +,87) = 7, Svar 7,

7 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov Rötterna till ekvationen är samma som nollställena för funktionen f (). Funktionen är en kontinuerlig polynomfunktion. a) Anta att övre närmevärdet är L. Relativa felet är % och L, vilket ger ) Vi beräknar funktionens värde i ändpunkterna av intervallet [, ]: L =, L =, L =,6 L =,6. Relativa felet för närmevärdet f(l) L i jämförelse med det eakta värdet f() är då L,6 = =,68 6 %. f () f (). Eftersom värdena har olika tecken, så ger Bolzanos sats att funktionen har åtminstone ett nollställe i intervallet ], [. ) Funktionens derivata är f (). I intervallet ], [ är f (), vilket ger att f är strängt väande i intervallet [, ]. Funktionen f har då högst ett nollställe i intervallet [, ]. Punkterna och ger att funktionen f har eakt ett nollställe i intervallet [, ], dvs. ekvationen har eakt en rot i intervallet [, ]. b) Anta att det nedre närmevärdet är L. Relativa felet är % och L 8, vilket ger a) Vi bestämmer ett närmevärde för roten med hjälp av halveringsmetoden. 8 L =, Intervallets 8 Intervall f (c) mittpunkt c 8 L =, [, ],, 8 [,; ],7,9 8 L =, [,;,7],6,6 L = 7,6. [,;,6],6,7 Relativa felet för närmevärdet f(l) L i jämförelse med det eakta [,;,6],, värdet f(8) 8 är då [,;,6],687,6 8L 87,6 = =,6 %. [,;,687],96, 8 8 [,;,96],6, Anmärkning. Relativa felet för närmevärdet L L L L för produkten är ganska eakt tre gånger större än relativa felet när närmevärdet L jämförs med eakta värdet. [,;,6],, Svar a) ungefär,6 b) ungefär,6 [,;,],66, [,;,66],788, [,788;,66]

8 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Alla värden i det sista intervallet avrundas till talet, om man ger närmevärdet med fyra gällande siffror. Dvs. roten given med fyra gällande siffror är,. b) Vi bestämmer ett närmevärde för roten med hjälp av Newtons metod. Rekursionsformeln är f( n) n n + n n+ = n = n =. f ( n) n n Vi väljer t.e. som startvärde. Vi får = = =,666 9 =,86 =,9 =,8 Roten ser ut att vara,, givet med fyra gällande siffror. Vi kontrollerar noggrannheten: f (,) och f (,), vilket ger enligt Bolzanos sats att funktionen f har ett nollställe i intervallet ],;,[. Roten är då,, givet med gällande siffrors noggrannhet. Vi dividerar med trappan: Kvoten är då och resten. Dvs. + = +, vilket ger delningsekvationen + = ( )( ) +. Observera att: termernas ordningsföljd är ombytt i nämnaren de tomma platserna i täljaren Svar a), b), Svar kvoten resten delningsekvationen + = ( )( ) +

9 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. g(,), g(,), g(,), g(,), g(,), g(,), g(,). Vi får Vi ser att nollstället ligger i intervallet ],;,[, vilket ger att f( ) = nollstället givet med tre decimalers noggrannhet är, = Svar, ( ) = 7 = eller =. g( ) Funktionen f har åtminstone ett nollställe. Vi skall undersöka om funktionen g har några nollställen. Derivatan är a) g ( ) = 76 + = Rotformeln ger (7 + ). > = bara när = ± ( ) ± 6 = =. Derivatan är åtminstone noll överallt och noll endast i en enstaka punkt, vilket ger att g är strängt väande i hela R. Då har funktionen g högst ett nollställe, vilket ger att funktionen f har högst två nollställen. Eftersom Diskriminanten är negativ, vilket ger att det inte finns några reella rötter. De imaginära rötterna är 7 g( ) = ( ) + ( ) + 7 < ± i 6 ± i = = = ± i. < 7 < 7 g( ) = ( ) + ( ) + 7 = + 7 = > b) + = och g är kontinuerlig, ger Bolzanos sats att g har ett nollställe i intervallet ], [. Dvs. funktionen g har ett nollställe som är mindre än det nollställe för funktionen f som vi hittade tidigare. Funktionen f har då eakt två reella nollställen. + = Vi betecknar t, vilket ger t + t = Vi bestämmer ett närmevärde för det mindre nollstället för funktionen f, dvs. ± ( ) ± 6 ± det enda nollstället för funktionen g. Grafen till funktionen g är starkt t = = = fallande när man förflyttar sig från värdet till vänster. Tangenterna är t = eller t = nästan lodräta, vilket ger att iteration med Newtons metod konvergerar mycket långsamt mot nollstället. Vi hittar nollstället mycket snabbare genom = eller = att använda gaffelmetoden och räknaren. Gaffelmetoden kan tillämpas t.e. =± eller =± i. på följande sätt: Svar a) = ± i b) = ± eller =± i

10 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. 6 7, + +, = = Den senare ekvationen har endast heltalskoefficienter. Faktorer i den konstanta termen är ± och ±. Koefficienten för högsta grads term har faktorerna ± och ±. Möjliga rationella rötter till ekvationen är då ±, ±, ± och ±. Test visar att = är en rot: () 9() =. Eftersom = är ett nollställe till polynomet P() 9 8, så är polynomet delbart med binomet ( ) =. Vi dividerar med hjälp av trappan ± ± Ekvationen 9 8 kan skrivas om till produktformen ( )( ). Vi bestämmer de övriga rötterna: = ± ( ) ( ) ± 8 ± = = = = ±. Vi skall bestämma rötterna till ekvationen sin e, dvs. nollställena för funktionen f() sin e. Algoritmen för allmänna sekantmetoden är n n n+ = n f( n) f( n) f( n) (sin e n n n = n n ), n=,, sin e n sin + e n n Startvärdena och ger,98 På räknare (TI):,9 A ENTER,7 - B ENTER,7 B-(sin B-e^B)(B-A)/(sin B-e^B-sin A+e^A) C: B A:C B Vi trycker upprepade gånger på ENTERknappen. Roten ser ut att vara,, givet med fyra gällande siffror. Vi undersöker noggrannheten: Eftersom f är kontinuerlig och f (,), f (,),, så ger Bolzanos sats att funktionen har ett nollställe i intervallet ],;,[. Dvs. nollstället är,, givet med fyra gällande siffror. Svar, n Svar = =, = ±

11 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. 8 Vi beräknar först funktionsvärdena f () = cos = cos = och π f ( π ) = cos =. Dvs. interpolationslinjen går genom punkterna (, ) och (, riktningskoefficient är k = = π π, och interpolationslinjens ekvation är y = ( ) π y = +. π Linjär interpolering ger f (,), + =,9,9. π Relativa felet är, f (,),9 cos,9 = =,666 6,7 %. f (,) cos, Svar y = +, f (,),9, relativa felet 6,7 % π ). Linjens

12 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) Närmevärdet skrivet på formen,67 anger att svaret har avrundats till 6 decimalers noggrannhet. Enda sättet att skriva närmevärdet i tiopotensform så att informationen om noggrannheten bibehålls är,67 6,7. Koefficienten har siffror, vilket betyder att antalet gällande siffror är. ii) 67, 6,7, vilket ger att antalet gällande siffror är. iii) Närmevärdet är färdigt i tiopotensform, vilket ger att vi direkt ser att antalet gällande siffror är. b) i) När ett närmevärde är skrivet i tiopotensform anger antalet siffror i koefficienten avrundningsnoggrannheten. Antalet siffror i koefficienten är samma som antalet gällande siffror. Om man har avrundat till gällande siffror, så skriver man 67 6,7. ii) På motsvarande sätt med gällande siffror: 67 6,7. iii) På motsvarande sätt med 6 gällande siffror: 67 6,7. Svar a) i) ii) iii) b) i) 6,7 ii) 6,7 iii) 6,7 a) Funktionen f( ) = är deriverbar i intervallet > (och då också kontinuerlig) eftersom b f( ) = ab= = ln e = = e ln eln a ebln a b eln a = ebln a och eponentialfunktionen, kvadratrotsfunktionen, logaritmfunktionen och den konstanta funktionen är deriverbara i sin definitionsmängd. Vi söker ett heltalsintervall där funktionen byte tecken. Vi tabellerar några värden: f( ) = Funktionens tecken 9 negativ 7, negativ,9 negativ negativ, negativ 6, positiv Vi ser att den kontinuerliga funktionen f ( ) har olika tecken för och 6. Bolzanos sats ger då att det finns åtminstone ett nollställe (en rot) i intervallet < < 6.

13 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. f ( n ) n+ = n f ( n ) b) Funktionen f( ) = är strängt väande i intervallet > Rekursionsformeln för Newtons metod är, n,, eftersom båda basen > och eponenten väer (strängt) när väer. En strängt väande funktion har högst ett nollställe. Tillsammans med a-fallet ger detta att funktionen har eakt ett nollställe.,, vilket ger n n+ = n n n c) i) Vi tillämpar Bolzanos sats på allt mindre intervall: ln n + n Funktionens värde och Rotens läge Intervallets bredd tecken Vi väljer =,. som startvärde. Rekursionsformeln ger följande f (), < talföljd: ], 6[ 6 f (6), > n n f (,),<,97966 ],;,[, f (,),87 >,9779 f (,9),9 <,986 ],9;,[,,986 f (,),87 > Ett närmevärde för roten med två decimaler är då,9. f (,9),9 < ],9;,9[, Noggrannheten är kontrollerad redan i i-fallet. f (,9),9 > Svar a) talen och 6 c),9 Eftersom alla tal i intervallet,9 < <,9 avrundade till två decimaler ger talet,9, så är,9 ett närmevärde för den sökta roten med två decimalers noggrannhet. ii) I Newtons metod måste man känna funktionens derivata. ( ) f ( ) = D e ln s( ) s( ) De = e s ( ) = e ln ln+ = ln + = ln + n

14 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. gemensam faktor: a) + 9 ma + mb = m( a + b) a) Talen, och är nollställen för polynomet om ( ), ( ) och =( + 9) a ab + b = ( a b) (( ) ) = + =() b) Vi söker möjliga rationella rötter för den ekvation + = som svarar mot uttrycket +. Polynomet kan då faktoriseras med hjälp av nollställena. Ekvationens koefficienter är heltal. Faktorer i den konstanta termens koefficient a är,,, 8,, och faktorer i högsta grads termens koefficient a = är. Täljaren p i den möjliga rationella roten = p/ q är faktor i den konstanta termens koefficient och nämnaren q är faktor i högsta grads termens koefficient. Möjliga rationella rötter är då,,, 8,,. Genom att testa de möjliga rationella rötterna ser vi att = är en lösning, eftersom + = = är en lösning, eftersom ( ) ( ) ( ) + = = är en lösning, eftersom + =. Övriga möjliga rationella rötter lönar det sig inte att testa, eftersom en tredje grads ekvation har högst tre rötter. Eftersom P( ) = a( )( )( ), där, och är nollställen till polynomet, så är + = ( )( ( ))( ) = ( )( + )( ). Svar a) ( ) b) ( )( )( + ) ( ) är faktorer i polynomet. Vi söker dessutom en koefficient a för högsta grads termen, så att P ( ) = a( + )( )( ) antar värdet 8 för. P() = a( + )( )( ) = a = 8 a = Det sökta polynomet är P ( ) = ( + )( )( ) = ( )( ) = ( + ) = ( a+ b)( a b) = a b b) Vi tillämpar nollregeln för en produkt på ekvationen (+ )( ) =. ) + = = : = ingen reell rot Komplea rötter: = =± i =± i

15 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. ) Svar = = = =± a), ab = a b P ( ) = 8+ 8 b) reella rötter =±, komplea rötter =± i + 7 a) Vi utför divisionen med hjälp av trappan. Observera att termernas 7 ordningsföljd är ombytt i nämnaren. 7 6 Divisionen gick jämnt upp eftersom resten är noll. Divisionens kvoten blev +. + b) Vi utför divisionen med hjälp av trappan. 6 Termernas ordningsföljd måste bytas så att den blir fallande: 8 + = 6 = + 6 Divisionen gick inte jämnt upp eftersom resten är P( ) J( ) = V( ) + Q( ) Q( ). Vid division får man att, där V( ) är kvoten och J( ) Dvs. är resten. + = 6 +. Svar a) + b) 6 f () e, [, ] 6+ Funktionen f:s derivata är f () e, vilket ger att f är strängt avtagande. Den antar då sitt största värde i intervallet [, ] i och sitt minsta värde i. Eftersom f () e och f () e, så är f () i intervallet [, ].

16 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Den andra derivatan är f () e, vilket ger att derivatan är strängt väande. Eftersom derivatan är negativ överallt, antar den sitt största absoluta värde i intervallet [, ] för. Vi får att Funktionen som skall integreras är f( ) = och delintervallens längd är f () e e,7,, h = =. Simpsons regel ger vilket ger att f (), i intervallet [, ]. Vi beräknar termerna i talföljden,,, med rekursionsformeln n d h ( f () + f () + f () ) = + + = =. 9 f ( n ) och startvärdet,. Vi får att 9 f ( ) f (,) e,,7 f ( ),8,78,789,788 6,787 7,786 Lösningen ser ut att vara,78, givet med fyra gällande siffror. Vi kontrollerar: eftersom f (,77),77 och f (,78),78 och eftersom funktionen f () är kontinuerlig, så ger Bolzanos sats att funktionen f () har ett nollställe, dvs. ekvationen f () en lösning, i intervallet ],77;,78[. Ett närmevärde för lösningen given med fyra gällande siffror är då,78. Anmärkning. De handlar naturligtvis om fipunktsmetoden. Villkoret f () garanterar att fipunkten eisterar eftersom villkoret ger att f () och f (). Detta ger i sin tur, enligt Bolzanos sats, att funktionen f () har ett nollställe, vilket är samma som att ekvationen f () har en lösning, dvs. funktionen f har en fipunkt i intervallet [, ]. Derivatavillkoret f (), garanterar att iterationen med funktionen f konvergerar mot fipunkten (se konvergensvillkoret i boken sid 7). Svar,78 7 Felformeln ger att () () ( ba) f () t () f () t E () f t t = 8 = 8 = 9 (), där < <. Vi bestämmer derivatorna: f ( ) = =, f ( ) =, f ( ) =, ( ) 6 f =, ()( ) f =. () Absolutbeloppet av fjärde derivatan, f ( ) =, är strängt avtagande i intervallet [, ]. Det är då mindre än () f () = = i intervallet ], [. Absoluta värdet av felet kan då uppskattas uppåt med () E = f ( t) < =, Integralens eakta värde är d / ln ln ln ln = = =, vilket ger att absoluta värdet av felet i närmevärdet är ln,. d Svar, absoluta felet <,667, eakta värdet ln, 9 verkliga absoluta felet ungefär, 9 9

17 Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. 8 c) Om h =, så ger centraldifferensen a) Ett närmevärde för derivatan får vi med vänsterdifferenskvoten: f () f() f( h) h ( h) = h h,99 6,99 =,97., Högerdifferenskvoten ger att h = =,, ( ) (), 6 f + h f f () =,9986 och h, centraldifferensen ger slutligen,,99 f( + h) f( h),,99 f () =,. h, T L b) Relativa felet är, där T är eakt värde och L närmevärdet. Nu är T T = f () = 8( + ln ),77. Om h =, så ger centraldifferensen ett närmevärde för derivatan:,,9 f( + h) f( h),,9 =,86, h, och motsvarande relativa fel är,77,86,77, =, %. Svar + f( + h) f( h) ( + ) ( ) = h Beräknad med en TI-86-räknare är centraldifferensen. Olika räknare ger olika resultat. Orsaken är att täljaren är skillnaden av två nästan lika stora tal, vilket gör att räknaren kan ge värdet noll pga. minnesutrymmet inte räcker till. (Räknaren kan inte ens skilja på talen h och h från varandra när h är tillräckligt litet. Du kan pröva detta genom att mata in värdena och i räknaren). Om räknaren ger värdet noll för centraldifferensen, så är absoluta felet T L = T = 8( + ln ) och relativa felet %. Enligt definitionen på derivata närmar sig centraldifferensen derivatan när h, och absoluta felet närmar sig då noll. Centraldifferensen, beräknad med räknaren, närmar sig inte nödvändigtvis alltid derivatan eftersom räknarens kapacitet tar slut för mycket små värden på h. a) f (),9986, f (), 97, f (), b), %;, % c) Beror på räknaren. Absoluta felet är troligtvis mycket stort.. Om h =, så ger närmevärdet från a-fallet att relativa felet är,77,,77, =,%.

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer

lim 1 x 2 lim lim x x2 = lim

lim 1 x 2 lim lim x x2 = lim Moment 8.-8. Viktiga eempel 8.,8.4-6,8.8,8.-,8.5,8.0 Övningsuppgifter Ö8.a, Ö8.cdef,Ö8.a,e,f, Ö8.4cde, Ö8.5d, Ö8.0- Gränsvärden Definition. Funktionen f har gränsvärdet G då går mot om vi kan få f) att

Läs mer

Tentamensuppgifter, Matematik 1 α

Tentamensuppgifter, Matematik 1 α Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,

Läs mer

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9 Ellips Integralkalkyl lösningar till övningsproven uppdaterad 9.5. Prov c a b 8+ d / 8 + / + 7 6 + + + + 5 d / 5 5 ( 5 5 8 8 + 5 5 5 6 6 5 9 8 5 5 5 5 7 7 5 5 d π sin d π sin d u( s s' π / cos U( s π cos

Läs mer

Avsnitt 3, introduktion.

Avsnitt 3, introduktion. KTHs Sommarmatematik Introduktion 3:1 3:1 Avsnitt 3, introduktion. Teckenstudium Här tränas teckenstudium av polynom och rationella funktioner (som är kvoter av polynom). Metoden går ut på att man faktoriserar

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer

Upphämtningskurs i matematik

Upphämtningskurs i matematik Upphämtningskurs i matematik C.J. 2013 Föreläsningsunderlaget är uppbyggt utgående från kurserna i den långa gymnasiematematiken, ellips-kursböckerna (Schilds förlag) har använts som förebild. Böckerna

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

Gruppuppgifter 1 MMA132, Numeriska metoder, distans

Gruppuppgifter 1 MMA132, Numeriska metoder, distans Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003

Läs mer

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2 Kapitel 4 Bisektionsalgoritmen Vi ska konstruera lösningar till algebraiska ekvationer av formen f(x) = 0 med hjälp av bisektionsalgoritmen (intervallhalveringsmetoden). På samma gång ska vi se hur man

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

G VG MVG Programspecifika mål och kriterier

G VG MVG Programspecifika mål och kriterier Betygskriterier Matematik C MA10 100p Respektive programmål gäller över kurskriterierna MA10 är en nationell kurs oc skolverkets kurs- oc betygskriterier finns på ttp://www.skolverket.se/ Detta är vår

Läs mer

Ekvationer och olikheter

Ekvationer och olikheter Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När

Läs mer

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x).

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x). Konveitet En funktionsgraf, som inte är en rät linje, böjer ofta av åt ett bestämt håll i ett visst intervall. För en funktion som är deriverbar två gånger kan man med hjälp av andraderivatan ta reda på

Läs mer

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson ATT KUNNA TILL MA1203 Matte C 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov C1 Kunna kvadreringsreglerna! (...utan att titta i formelsamlingen) Kunna konjugatregeln! (...utan

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel

Läs mer

Teorifrå gor kåp

Teorifrå gor kåp Teorifrå gor kåp. 2.2 5.2 Funktioner och dess grafer 1) Vad är en funktion? 2) Vad är den naturliga definitionsmängden ge några eempel 3) Vad är en värdemängd? 4) Vad är en sammansatt funktion? 5) Varför

Läs mer

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med

Läs mer

Lösningar kapitel 10

Lösningar kapitel 10 Lösningar kapitel 0 Endimensionell analys Fabian Ågren, π Lösta uppgifter 0............................................... 0............................................... 0.6..............................................

Läs mer

LABORATION cos (3x 2 ) dx I =

LABORATION cos (3x 2 ) dx I = SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför

Läs mer

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVÄXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVÄXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER Stationära och infleionspunkter VÄXANDE OCH AVTAGANDE FUNKTIONER STATIONÄRA(KRITISKA) PUNKTER KONVÄXA OCH KONKAVA FUNKTIONER INFLEXIONSPUNKTER 3 VÄXANDE och AVTAGANDE FUNKTIONER i) Om funktionen y f ()

Läs mer

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x = UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24, 24-25 och 25-26 26-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C =

Läs mer

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7 TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Polynomekvationer (Algebraiska ekvationer)

Polynomekvationer (Algebraiska ekvationer) Polynomekvationer (Algebraiska ekvationer) Faktorsatsen 1. Pettersson: teori och exempel på sid. 21-22 Det intressanta är följande idé: Om man på något sätt (Vilket det är en annan fråga, se nedan!) har

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

Experimentversion av Endimensionell analys 1

Experimentversion av Endimensionell analys 1 Matematikcentrum Matematik Eperimentversion av Endimensionell anals Alternativ eamination Under lp 999 kommer för Bi 99, L 99 och V 99 att ges en något modifierad kurs i Endimensionell anals. Kursen avviker

Läs mer

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson Matematikcentrum Matematik BASPROBLEM I ENDIMENSIONELL ANALYS Jan Gustavsson. Algebraiska förenklingar.. Reella andragradsekvationer.. Enkla rotekvationer - eventuellt med falsk rot.. Enkla absolutbeloppsproblem.

Läs mer

Funktioner: lösningar

Funktioner: lösningar Funktioner: lösningar 6. Sätt 1 = t 7. Också strängt väande: f (t) = 1 (1 t) = = 1 1+t t = = t t 8. Återigen strängt väande: T.e. a < b g (a) < g(b) f (g (a)) < f (g (b)) a < b g (a) > g(b) f (g (a))

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

Uppföljning av diagnostiskt prov HT-2016

Uppföljning av diagnostiskt prov HT-2016 Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri

Läs mer

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel. MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra

Läs mer

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och

Läs mer

Välkommen till MVE340 Matematik B för Sjöingenjörer. Kursinnehåll i stora drag. Kurslitteratur MVE Carl-Henrik Fant MV, Chalmers 1

Välkommen till MVE340 Matematik B för Sjöingenjörer. Kursinnehåll i stora drag. Kurslitteratur MVE Carl-Henrik Fant MV, Chalmers 1 Välkommen till MVE340 Matematik B för Sjöingenjörer Carl-Henrik Fant E-post: carl-henrik.fant@chalmers.se Tel: 772 35 57 Kontor: L3037 i matematikhuset, Johanneberg Kursinnehåll i stora drag Funktioner

Läs mer

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Christo er Standar, Tel.:

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Christo er Standar, Tel.: MATEMATIK Datum: 0-0- Tid: förmiddag Chalmers Hjälmedel: inga A.Heintz Telefonvakt: Christo er Standar, Tel.: 070-0880 Lösningar till tenta i TMV06/TMV0 Analys och linjär algebra K/Bt/Kf, del A.. Sats.

Läs mer

Funktionsstudier med derivata

Funktionsstudier med derivata Funktionsstudier med derivata Derivatan ett kraftfullt verktyg för att studera och tolka funktioner Det här avsnittet handlar om att man kan använda derivatan till att bestämma en funktions egenskaper

Läs mer

Lösningar och kommentarer till uppgifter i 3.1

Lösningar och kommentarer till uppgifter i 3.1 Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

Kapitel 4. Funktioner. 4.1 Definitioner

Kapitel 4. Funktioner. 4.1 Definitioner Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet

Läs mer

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

TATA42: Föreläsning 6 Potensserier

TATA42: Föreläsning 6 Potensserier TATA4: Föreläsning 6 Potensserier Johan Thim januari 7 Vi ska nu betrakta serier där termerna inte längre är konstanter. Speciellt ska vi studera så kallade potensserier. Dessa definieras som a k x k a

Läs mer

en primitiv funktion till 3x + 1. Vi får Integralen blir

en primitiv funktion till 3x + 1. Vi får Integralen blir Avsnitt, Integraler 6b Beräkna integralen 4 + 3 Integranden är en rationell funktion som vi kan skriva som 4 + 3. 4 3 + 3 + 3. Vi delar upp integralen i två delar och integrerar delarna var för sig, 4

Läs mer

Växande och avtagande

Växande och avtagande Växande och avtagande Innehåll 1 Växande och avtagande 1 Andraderivatan.1 Andraderivatan och acceleration................... Andrederivatans tecken.........................1 Andraderivatans nollställen:

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag 0.0.05 08.0 0.0 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

MATEMATIK Datum: 2014-01-14 Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel.

MATEMATIK Datum: 2014-01-14 Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel. MATEMATIK Datum: -- Tid: förmiddag Chalmers Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel.: 7-88 Lösningar till tenta i TMV Analys och linjär algebra K/Bt/Kf,

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

Studieanvisning till Matematik 3000 kurs C/Komvux

Studieanvisning till Matematik 3000 kurs C/Komvux Studieanvisning till Matematik 3000 kurs C/Komvu ISBN 91-27-51027-1 Förord Vår ambition med denna studiehandledning är att den skall guida dig genom boken Matematik 3000 kurs C/Komvu av Lars-Eric Björk,

Läs mer

Läsanvisningar till kapitel 4 i Naturlig matematik

Läsanvisningar till kapitel 4 i Naturlig matematik Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här

Läs mer

Gränsvärden. Joakim Östlund Patrik Lindegrén Pontus Nyrén 4 december 2003

Gränsvärden. Joakim Östlund Patrik Lindegrén Pontus Nyrén 4 december 2003 Gränsvärden Joakim Östlund Patrik Lindegrén Pontus Nyrén 4 december 2003 Innehåll Introduktion 3 2 Gränsvärden 4 2. Gränsvärden då går mot.................... 4 2.2 Gränsvärden då går mot a.....................

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 49, 966 Årgång 49, 966 Första häftet 2555. Visa att 4 n + n + 8 ej kan vara primtal för något heltal n 0. 2556. Man vill göra en behållare utan lock, som rymmer m 3, i form av en rätvinklig

Läs mer

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde)

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde) GRAFRITNING För att skissera (rita) grafen till en funktion y f () undersöker vi först några viktiga egenskaper: definitionsmängd, eventuella skärningspunkter med och y-aeln, gränsvärdena f ( ), f ( )

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1 TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

Lösningsförslag och svar Övningsuppgifter inför matte 3 1. 10. 11. 12. 13. 15.

Lösningsförslag och svar Övningsuppgifter inför matte 3 1. 10. 11. 12. 13. 15. Lösningsförslag och svar Övningsuppgifter inför matte........... =.... Multiplicera i valfri ordning. Man kan t.e. börja med att multiplicera in. Multiplicera i valfri ordning. Den här gången kan vi börja

Läs mer

polynomfunktioner potensfunktioner exponentialfunktioner

polynomfunktioner potensfunktioner exponentialfunktioner Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,

Läs mer

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013 SF625 Envariabelanalys Tentamen Onsdagen den 5 juni, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIKPROV KORT LÄROKURS..0 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte

Läs mer

Något om Taylors formel och Mathematica

Något om Taylors formel och Mathematica HH/ITE/BN Taylors formel och Mathematica Något om Taylors formel och Mathematica Bertil Nilsson 207-0-0 I am the best Ett av Brooks många ödmjuka inlägg i den infekterade striden som under början av 700

Läs mer

2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat

2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat 2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat A Punkten P har koordinaterna x och y P = (x, y) i enhetscirkeln gäller att { x = cos x y = sin x P = (cos x, sin x) För vinkeln

Läs mer

M0038M Differentialkalkyl, Lekt 15, H15

M0038M Differentialkalkyl, Lekt 15, H15 M0038M Differentialkalkyl, Lekt 15, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 15 Repetition Lekt 14 Bestäm följande gränsvärden cos x tan x lim x 0 x x + ln ( e 2x

Läs mer

TATM79: Föreläsning 6 Logaritmer och exponentialfunktioner

TATM79: Föreläsning 6 Logaritmer och exponentialfunktioner TATM79: Föreläsning 6 Logaritmer och eponentialfunktioner Johan Thim augusti 06 Den naturliga logaritmen Vi börjar med att introducera den naturliga logaritmen. Definition. Den naturliga logaritmen ln

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Övningshäfte 3: Polynom och polynomekvationer

Övningshäfte 3: Polynom och polynomekvationer LMA100 VT2005 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 3: Polynom och polynomekvationer Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med

Läs mer

Tal och polynom. Johan Wild

Tal och polynom. Johan Wild Tal och polynom Johan Wild 14 augusti 2008 Innehåll 1 Inledning 3 2 Att gå mellan olika typer av tal 3 3 De hela talen och polynom 4 3.1 Polynom........................... 4 3.2 Räkning med polynom...................

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

Kapitel 7. Kontinuitet. 7.1 Definitioner

Kapitel 7. Kontinuitet. 7.1 Definitioner Kapitel 7 Kontinuitet 7.1 Definitioner Vi har sett på olika typer av funktioner. Vi skall fortsätta att undersöka dem, men ur en ny synvinkel. Vår utgångspunkt är nu att försöka undersöka om de är sammanhängande.

Läs mer

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter TM-Matematik Mikael Forsberg 074-42 Pär Hemström 026-648962 För ingenjörs och distansstudenter Envariabelanalys ma04a 202 06 04 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

Övning log, algebra, potenser med mera

Övning log, algebra, potenser med mera Övning log, algebra, potenser med mera Uppgift nr 1 Förenkla uttrycket x 3 + x 3 + x 3 + x 3 + x 3 Uppgift nr 2 Förenkla x x x+x x x Uppgift nr 3 Skriv på enklaste sätt x 2 x x x 8 x x x Uppgift nr 4 Förenkla

Läs mer

Checklista för funktionsundersökning

Checklista för funktionsundersökning Linköpings universitet Matematiska institutionen TATA41 Envariabelanalys 1 Hans Lundmark 2015-02-10 Checklista för funktionsundersökning 1. Vad är definitionsmängden D f? 2. Har funktionen några uppenbara

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR ABSOLUTBELOPP Några eempel som du har gjort i gymnasieskolan: a) b) c) 5 5 Alltså et av ett tal är lika med själva talet om talet är positivt eller lika med et av är lika med det motsatta talet om är negativt

Läs mer

601. (A) Bestäm MacLaurinutvecklingarna av ordning 2 till följande uttryck. Resttermen ges på ordoform.

601. (A) Bestäm MacLaurinutvecklingarna av ordning 2 till följande uttryck. Resttermen ges på ordoform. Kap 4.8 4.9. Taylors formel, Lagranges restterm, stort ordo, entydigheten, approimationer, uppskattning av felet, Maclaurins formel, l'hospitals regel. 60. (A) Bestäm MacLaurinutvecklingarna av ordning

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

Matematik C (MA1203)

Matematik C (MA1203) Matematik C (MA103) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma C (MA103) Matematik 03-08- Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1

Instuderingsfrågor för Endimensionell analys kurs B1 Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande

Läs mer

Tisdag v. 2. Speglingar, translationer och skalningar

Tisdag v. 2. Speglingar, translationer och skalningar 1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

ger rötterna till ekvationen x 2 + px + q = 0.

ger rötterna till ekvationen x 2 + px + q = 0. KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 2.1 Introduktion Introduktion Avsnitt 2 handlar om den enklaste typen av algebraiska uttryck, polynomen. Eftersom polynom i princip

Läs mer

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium. Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter

Läs mer

Sommarmatte. del 2. Matematiska Vetenskaper

Sommarmatte. del 2. Matematiska Vetenskaper Sommarmatte del 2 Matematiska Vetenskaper 7 april 2009 Innehåll 5 Ekvationer och olikheter 1 5.1 Komplea tal.............................. 1 5.1.1 Algebraisk definition, imaginära rötter............. 1

Läs mer

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet är följande: SATS. (Intervallinkapslingssatsen) Låt I k = [a k, b k ], k = 1, 2,... vara en avtagande följd av slutna

Läs mer

Matematik 4 Kap 3 Derivator och integraler

Matematik 4 Kap 3 Derivator och integraler Matematik 4 Kap 3 Derivator och integraler Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande

Läs mer

Gränsvärdesberäkningar i praktiken

Gränsvärdesberäkningar i praktiken Gränsvärdesberäkningar i praktiken - ett komplement till kapitel i analsboken Jonas Månsson När man beräknar gränsvärden använder man sig av en rad olika strategier beroende på det givna problemet. Avsikten

Läs mer

1.2 Polynomfunktionens tecken s.16-29

1.2 Polynomfunktionens tecken s.16-29 Detta avsnitt handlar om olikheter. < mindre än > större än mindre än eller lika med (< eller =) större än eller lika med (> eller =) Vilka tal finns mellan 2 och 5? Alla tal som är större än 2. Och samtidigt

Läs mer

Matematik E (MA1205)

Matematik E (MA1205) Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND

Läs mer

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3, Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5

Läs mer

Ma3bc. Komvux, Lund. Prov kap

Ma3bc. Komvux, Lund. Prov kap Ma3bc. Komvux, Lund. Prov kap1-3.1. 150513 (Lärare: Ingemar Carlsson) Anvisningar Del B, C och Del D Provtid Hjälpmedel Del A Del B Del C och D Kravgränser Övrigt 140 minuter för Del B, C och Del D. Du

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................

Läs mer

Kapitel 1. y 4. Pythagoras: Se facit. b 2, 4 (3,2; 2, 4) bh A = 2 Q =? Samma metod som i a). Se facit. Sök höjden: h = sin 41 8,2. Se facit.

Kapitel 1. y 4. Pythagoras: Se facit. b 2, 4 (3,2; 2, 4) bh A = 2 Q =? Samma metod som i a). Se facit. Sök höjden: h = sin 41 8,2. Se facit. Kapitel 8 9 b A Sök öjden: sin 8,, cm (,7968),, A cm cm Se viktigruta i eempel s. >. Den undre vinkeln u är tan, 8 u + v är tan v,8 9, v 9 y sin7 y sin7, Pytagoras:, P (,;, ) Q? Samma metod som i. Kalla

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Kapitel 8. Derivata. 8.1 Inledning till derivata

Kapitel 8. Derivata. 8.1 Inledning till derivata Kapitel 8 Derivata 8.1 Inledning till derivata Vi vill nu bestämma riktningskoefficienten för tangenten 1 till en given kurva i punkten x. För att få en approximation av tangenten ritas en linje genom

Läs mer