Några historiska ekvationer

Storlek: px
Starta visningen från sidan:

Download "Några historiska ekvationer"

Transkript

1 Några historiska ekvationer av Seo Nurmi, 01 Inledning Jag sammanfattar här lösningarna till algebraiska andra-, tredje- och fjärdegrads ekvationer. Det här är ganska tidig matematisk historia, för de ursrungliga lösningarna är senast från 1500-talet. Några ännu mycket tidigare. Man får dock ha i åtanke att det fanns sällan några rigorösa rov å äldre tider. De tidigaste resultaten motiveras ofta med geometrisk resonemang. Kravet för formaliserade algebraiska rov ustår långt senare. Lösningarna kom genomgående från Italien, från handelsstäder som hade fasta förbindelser med Öst. De vetenskaliga idéerna kom österifrån, Euroa befann sig långt bak å den tiden. I och med renessanssen följer sedan den euroeiska vetenskaens gryning. De sätt lösningarna ges här har närmast bara historisk betydelse, med undantag kanske av andragardsekvationen. Numera navänds oftast numeriska metoder för att ta fram lösningar till ekvationer i högre grad. I undantagsfall kan en formell lösning behövas i matematisk analys. Då kan man ofta finna en seciell lösningmetod som bättre assar just den situationen. Det är bara till de fyra första graderna som kan ges en lösning i öen form (i formen x =...), och det är de som är föremålen i denna artikel. Ekvationerna har också historiskt betingade benämningar efter motsvarande olynomer. Första gradens (linjära) x a 0 kallas "monotisk, och högre grads olynomer i tur och ordning "kvadratisk", "kubisk", "kvartisk", och "kvintisk". Den monotiska lösningen är trivial, medan till den kvintiska, och högre därefter, såsom ovan antyddes, finns ingen generell lösning i öen form. Jag utgår här från de grunidéer som som fanns å den tiden lösningarna för tredje- och fjärdeggrads ekvationer blev allmänt kända. Jag är medveten om att det finns modernare metoder. Jag har utfört alla härledningarna själv (och är ensam ansvarig för eventuella fel). Jag har försökt göra det å ett enkelt och överkådligt sätt, och också utan sådan formalism som moderna matematiska rov skulle kräva. Syftet är att demonstrera lösningens idé sanare än strikt bevisa en matematisk tes. Andragradsekvationen Vi ska först lösa den generella andragradsekvationen. Vem som först löste den är inte känt. Lösningar till någon form av andragardsekvationer har förekommit sedan babylonisk tid. En allmän form för den är ax bx c 0 (1) Vi kan dividera med a för att skriva den i normalformen x x 0 där b c och () () a a Om vi inte hade här förstgradstermen skulle vi kunna lösa ekvationen omedelbart. Vi försöker därför göra en substitution som kunde föra ekvationen till en sådan form. Alltså substituera 1/8

2 x t z () Vi får nu (skuggade formler är fördtydligande mellanformer som man kan hoa över) ( t z) ( t z) 0 t t z z t z ( ) 0 z t z t t 0 (5) Vi sätter nu t 0 vilket ger oss: t Ekvationen blir nu (6) z 0 z 0 z 0 z (7) Vi kan nu lösa z z ± (8) och således också x genom att använda () och (6) x t z ± (9) Lösningen till ekvationen (1) får vi genom att här sätta in () och () b x ± a b a c a b ± b ac (10) a Tredjegradsekvationen Vi skriver tredjegradsekvationen direkt i normalformen x a x a 1 x a 0 0 (11) /8

3 Från lösningen till andragradsekvationen kan vi låna idén att försöka få bort en av termerna, den näst högsta, andragradstermen. Substitution x t z (1) i formel (11) ger ( t z) a ( t z) a 1 ( t z) a 0 0 t t z tz z a t tz z tz t z t a z z a 1 ( t z) a 0 0 ta z t a a 1 z ta 1 a 0 0 z tz a z t z ta z a 1 z t t a ta 1 a 0 0 z t a z t ta a 1 z t t a ta 1 a 0 0 (1) Vad vi vill åstadkomma är alltså att andragradstermen elimineras: t a 0 a t (1) Substituera detta i (1): a a z a a 1 z a a a 1 a 0 0 z a a a 1 z a a 1 a a a a a a z a z a a 1 a 1 z z a a a 1 a a a a 1 a a (15) Den första som veterligen löste en tredjegrads ekvation var Sciione dal Ferro (å 1500-talet). Tidigare betraktades de i rinci olösliga. Vi skriver om ekvationen (15) ovan i dal Ferros form (av historiska skäl lägger vi å högre sida, dvs. negativ jämfört med normal- formen; negativa talen, ufunna i Indien, var redan kända i Euroa, men undveks ännu oftast): z z (16) där a a 1 (17) och a 7 a 1 a a 0 (18) /8

4 Metoden att lösa tredjegrads ekvationen generellt ufanns av Nicolo från Brescia, också känt med öknamnet Tartaglia ('stammaren'). Han delade kunskaen vidare till Giorolamo Cardan från Milano, som ublicerade lösningen (155). Lösningen här följer fritt dessa idéer. Notera först att ( u v) u u v uv v ( u v) uvu ( v) u v (19) om nu uv och u v (0) (1) då är u v en lösning till ekvationen (16). Men nu fås från (0) v u () så (1) ger u 7 u () Vilket kan skrivas, genom att multilicera () med u och flytta allting till samma sida: u 6 u 0 (1) Detta är, märk väl, en andragrads ekvation av u, som vi redan kan lösa. Vi behöver bara ta den ena av lösningarna (den andra blir v som synes): från (1) u () v u () Och slutgiltigen u () v (5) Nu blir alltså en lösning till (16): z 1 u v (6) /8

5 Redan Cardan utäckte att lösningarna ibland kunde få en märklig form. Ta t.ex ekvationen z 15 z Man kan lätt se att z är en lösning. (På den tiden skrev man inte gärna ut negativa utryck, utan man satte dem å den sidan av ekvationen där de blev ositiva; i själva verket hände det ofta att ekvationerna delades i olika tyer efter detta, och för varje ty utarbetades sin egen lösningsformel. Vi använder här en något modernare metod). Formlerna ovan ger oss för 15 och : u v Trots kvadratroten av ett negativt tal, som å den tiden ansågs att vara ett ogiltigt uttryck, kunde man utan vidare räkna resultatet efter algebrans regler: u för att 1 v för att 1 1 vilket ger z u v Cardan fann detta märkligt, och kunde inte förklara hur det kunde komma sig. För oss är det ganska begriligt, för efter Cardans tid, till en del tack vare Cardans utäckt, ufanns de imaginära talen, vars enhet nu brukar anges som: i 1. Anmärkingsvärt nog så ufanns inte de imaginära talen från adragradsekvationen (tvärtom än vad man kanske ofta tror). Man brukade bara förkasta kvadratrötter av negativa tal som "ogiltiga" lösningar. När det gällde tredjegradsekvationen blev det dock nödvändigt att accetera kavdratrötter från negativa tal, eftersom de nu kunde reresentera delar till "giltiga" lösningar. Vi vet numera från modern komlex analys att det är generellt tre lösningar, och att en del av dem kan vara komlexvärda. Minst en är dock alltid reell för en ekvation med reella koefficienter. Två ytterligare lösningar kan bildas med u och v : u v z u v i (7) u v z u v i (8) Att dessa är lösningar kan enkelt ses med en substitution i (16), och sedan tilläma formlerna (0) och (1). Man brukar också skriva diskriminanten, utrycket under kvadratroten: D (9) 5/8

6 Från (1) får vi nu lösningarna till (11), sammanfattningsvis x 1 u v t u v x u v i t (0) u v x u v i t där vi betecknar u D v D D a a 1 a 7 a 1 a a 0 a t Fjärdegradsekvation I normalformen kan fjärdegradsekvationen skrivas x a x a x a 1 x a 0 0 (1) Åter igen sätter vi x z t () ( z t) a ( z t) a ( z t) a 1 ( z t) a 0 0 z tz 6 t z t z t a z tz t z t... a 1 z t... a z tzt ( ) a 0 0 z t a z 6 t a t a z t a t a t a 1 z t a t a t a 1 t a 0 0 () För att få bort tredjegradstermen sätter vi a t () Ekvationen reduceras nu till formen z z z r 0 (5) 6/8

7 där vi har 6 t a t a a a 8 (6) t a t 11 a t a 1 a a a a 1 (7) 6 r t a t a t a a a a 1 a a 1 t a 0 a 0 (8) En av de tidigaste i Euroa som diskuterade algebraiska lösningar till fjärdegradsekvation var Luca Pacioli runt år Det verkar dock ha resenterats lösningar redan långt tidgare. I öst ger till exemel Al-Khwarizimi (800-talet) geometeriska bevis för lösningsmetoder, och Abraham bar Hiyya Ha-Nasi (Savasorda) ubliserar år 115 sin bok "Liber embadorum", som bla. innehåller en fullkomlig usättning av lösningar till fjärdegrads ekvationer. Fjärdegradsekvationen verkar man alltså ha löst innan tredjegradsekvationen, även om man å den tiden motiverade lösningarna geometriskt. Algebraiska bevis var ännu bristfälliga, eller så gavs inga. Det kan vara intressant att se hur man skrev matematisk text å 1000-talet. Till exemel 6..R.10 betyder 6 10, och 18.m.R.90 skriver vi numera Skrivsättet som användes då skulle assat vår tids datoriserad symbolisk behandling mycket bättre än vår nuvarande matematiska skrivsätt. Cardans elev Lodovico Ferrari gav en elegant algebraisk härledning, baserad å tredjegrads ekvationen, som alltså å hans tid redan var löst. Följande metod följer Ferraris tankegångar. Vi kan nu alltså begränsa oss att lösa ekvationer av ty: z z z r (9) Vilket kan skrivas så att vi kvadrat-komletterar vänstersidan till binomiaform z z z z z r (0) Här kommer ett smart drag: för ett valt värde y kan vi skriva ekvationen så, att den fortvarande är kvadratisk till vänster z z z y y y z z r z y y y (1) z y y z z r y y () Men nu kan vi välja y så att också högra sidan kan skrivas som kvadrat. Detta krav ufylls om andragrads ekvationen som vi får från högra sidan har två identiska rötter, dvs om dess diskriminant är noll. Det var den ursrungliga tankegången, fast det låter kanske lite krågligt. Vi gör det något mer överskådligt genom att betrakta binomialkvadraten, som är lätt atta "gissa" från högra sidan av (): yz r y y () Denna blir lika med högersidan av (), om vi har ufyllt r y y y (5) 7/8

8 vilket ger kvadrerat r y y y 0 () Det blir i själva verket samma villkor som från den avsedda diskriminanten. Vad vi vinner med att göra å det här sättet är att vi också direkt ser hur kvadraten å högersidan ser ut (). Här är () nu en ekvation som ger oss y. Vi kan skriva om den r16 y 0 y 8 y 8 ry0 r 8 ry16 y 0 y 8 y 0 r 8 r y 0 y 8 y 0 y 5 y r r y 0 (5) 8 Det är en tredjegradsekvation av y, vilken vi redan vet hur man löser. För varje lösning y kan vi nu skriva, genom att ta roten av båda sidorna å (), med högersidan ersatt med () z y yz r y y (6) Och vi får z yz r y y y (7) Därmed kan vi sammanfatta lösningen till (1) x yz r y y y t (8) a a 8 11 a a a a 1 6 r a a 16 a 56 a 1 a a 0 a t där y är en lösning till y 5 y r r y o - 8/8

Allmänna Tredjegradsekvationen - version 1.4.0

Allmänna Tredjegradsekvationen - version 1.4.0 Allmänna Tredjegradsekvationen - version 1.4.0 Lars Johansson 0 april 017 Vi vet hur man med rotutdragning löser en andragradsekvation med reella koecienter: x + px + 0 1) Men hur gör man för att göra

Läs mer

Andragradsekvationer möter elever under sitt första år på gymnasiet.

Andragradsekvationer möter elever under sitt första år på gymnasiet. Christoph Kirfel Komplettera kvadraten och kuben med bilder Elever som för första gången ställs inför att lösa andragradsekvationer kan få hjälp att förstå kvadratkomplettering med hjälp av väl uttänkta

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

Föreläsning 3: Ekvationer och olikheter

Föreläsning 3: Ekvationer och olikheter Föreläsning 3: Ekvationer och olikheter En ekvation är en likhet som innehåller en flera obekanta storheter. Exempel: x = 9, x är okänd. t + t + 1 = 7, t är okänd. Vi säger att ett värde på den obekanta

Läs mer

Ekvationslösning genom substitution, rotekvationer

Ekvationslösning genom substitution, rotekvationer Sidor i boken -3, 70-73 Ekvationslösning genom substitution, rotekvationer Rotekvationer Med en rotekvation menas en ekvation, i vilken den obekanta förekommer under ett rotmärke. Observera att betecknar

Läs mer

Sidor i boken

Sidor i boken Sidor i boken 0- Dagens mängdträning gäller ekvationer. Med den algebraträning vi nu har i ryggen bör även de mest komplicerade ekvationerna gå att reda ut. Tillsammans med övningarna i föreläsning 6 täcker

Läs mer

Aritmetikens och algebras utveckling. Vladimir Tkatjev, MaI, LiU, ht2013

Aritmetikens och algebras utveckling. Vladimir Tkatjev, MaI, LiU, ht2013 Aritmetikens och algebras utveckling Vladimir Tkatjev, MaI, LiU, ht2013 Algebra och aritmetik Aritmetik: målet är själva räknesätt, dess utveckling och numerisk resultat. Ursprungligen ligger nära talteori.

Läs mer

Om tredjegradsekvation och en matematikerfejd på talet

Om tredjegradsekvation och en matematikerfejd på talet Om tredjegradsekvation och en matematikerfejd på 1500- talet Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln ska vi diskutera hur man kan lösa tredje- och fjärdegradsekvationer.

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll Ekvationer 1.1 Förstagradsekvationer.......................... 5.1.1 Övningar............................ 6. Andragradsekvationer..........................

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1. Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n

Läs mer

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0 Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Övningsuppgifter.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Ett polynom vilket som helst kan skrivas

Läs mer

Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7

Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7 Andragradsekvationer Tid: 70 minuter Hjälpmedel: Formelblad. Alla andragradsekvationer kan skrivas på formen Vilket värde har q i ekvationen x = 3x 7? + E Korrekt svar. B (q = 7) x + px + q = 0 (/0/0)

Läs mer

B. Kvadratkomplettering

B. Kvadratkomplettering B.1 Minimum för kvadratiska funktioner Betrakta funktionen f ( x) x a (B.1.1) Om x och a är reella så gäller uenbarligen att f ( x) 0 för alla x. Minimivärdet 0 så fås för x a. Betrakta nu den mera allmänna

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

motiveringar. Lämna tydliga svar. 1 (arcsin x) 2 dx: (0.6)

motiveringar. Lämna tydliga svar. 1 (arcsin x) 2 dx: (0.6) TENTAMENSSKRIVNING LUNDS TEKNISKA HÖGSKOLA MATEMATIK ENDIMENSIONELL ANALYS B (FMAA5)/A3 (FMAA) 74 kl. 83 Inga hjälmedel är tillåtna. För att du skall kunna erhålla full oäng skall dina lösningar vara läsvärda

Läs mer

Avsnitt 1, introduktion.

Avsnitt 1, introduktion. KTHs Sommarmatematik Introduktion 1:1 1:1 Kvadratkomplettering Avsnitt 1, introduktion. Det här är en viktig teknik som måste tränas in. Poängen med kvadratkomplettering är att man direkt kan se om andragradsfunktionen

Läs mer

ANDREAS REJBRAND NV1A Matematik Linjära ekvationssystem

ANDREAS REJBRAND NV1A Matematik   Linjära ekvationssystem ANDREAS REJBRAND NVA 004-04-05 Matematik http://www.rejbrand.se Linjära ekvationssystem Innehållsförteckning LINJÄRA EKVATIONSSYSTEM... INNEHÅLLSFÖRTECKNING... DEFINITION OCH LÖSNINGSMETODER... 3 Algebraiska

Läs mer

Övningshäfte 3: Polynom och polynomekvationer

Övningshäfte 3: Polynom och polynomekvationer LMA100 VT2005 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 3: Polynom och polynomekvationer Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med

Läs mer

Ekvationer och olikheter

Ekvationer och olikheter Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När

Läs mer

Tredjegradsekvationens kontrovers: Från Cardanos formel till monstergruppen

Tredjegradsekvationens kontrovers: Från Cardanos formel till monstergruppen Serge Ivanov Tredjegradsekvationens kontrovers: Från Cardanos formel till monstergruppen Vladimir Tkatjev Prolog: Andragradsekvationer Berlinpapyrus (ca 1800 f.kr) ger lösningar av enkla andragradsekvationer

Läs mer

Kapitel Ekvationsräkning

Kapitel Ekvationsräkning Kapitel Ekvationsräkning Din grafiska räknare kan lösa följande tre typer av beräkningar: Linjära ekvationer med två till sex okända variabler Högregradsekvationer (kvadratiska, tredjegrads) Lösningsräkning

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

POLYNOM OCH POLYNOMEKVATIONER

POLYNOM OCH POLYNOMEKVATIONER Explorativ övning 8 POLYNOM OCH POLYNOMEKVATIONER Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med en del nya egenskaper hos polynom.

Läs mer

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0 Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Handräkning.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Datorräkning.6-.3 Ett polynom vilket som helst

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

Explorativ övning 7 KOMPLEXA TAL

Explorativ övning 7 KOMPLEXA TAL Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska

Läs mer

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L.

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L. Sidor i boken 119-11 Andragradsekvationer Dagens tema är ekvationer, speciellt andragradsekvationer. Men först några ord om ekvationer i allmänhet. En ekvation är en likhet som innehåller ett (möjligen

Läs mer

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är PASS 7. EKVATIONSLÖSNING 7. Grundbegrepp om ekvationer En ekvation säger att två matematiska uttryck är lika stora. Ekvationen har alltså ett likhetstecken och två deluttryck på var sin sida om likhetstecknet.

Läs mer

Övningshäfte 2: Komplexa tal

Övningshäfte 2: Komplexa tal LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet

Läs mer

Kvadratrötter. Lösningarna till andragradsekvationen ax 2 2x +1=0, där a betraktas som känd, ges som bekant av. 1. Pettersson: övn.

Kvadratrötter. Lösningarna till andragradsekvationen ax 2 2x +1=0, där a betraktas som känd, ges som bekant av. 1. Pettersson: övn. Kvadratrötter 1. Pettersson: övn. -40. En konstruktör beräknade att en bro kommer att klara den maximala lasten 500(198 a ) ton Han satte =1.4 och valde a så att maximala lasten blev 1000 ton. (a) Vilket

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet 27 augusti 2013 Innehåll Linjära ekvationssystem

Läs mer

8-6 Andragradsekvationer. Namn:..

8-6 Andragradsekvationer. Namn:.. 8-6 Andragradsekvationer. Namn:.. Inledning Nu har du arbetat en hel del med ekvationer där du löst ut ett siffervärde på en okänd storhet, ofta kallad x. I det här kapitlet skall du lära dig lösa ekvationer,

Läs mer

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Femtegradsekvationen av Niklas Fransson 2017 - No 44 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Läs mer

ger rötterna till ekvationen x 2 + px + q = 0.

ger rötterna till ekvationen x 2 + px + q = 0. KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 2.1 Introduktion Introduktion Avsnitt 2 handlar om den enklaste typen av algebraiska uttryck, polynomen. Eftersom polynom i princip

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

MÖNSTER OCH TALFÖLJDER

MÖNSTER OCH TALFÖLJDER MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q

Läs mer

ATT SKRIVA EN MATEMATISK TEXT

ATT SKRIVA EN MATEMATISK TEXT ATT SKRIVA EN MATEMATISK TEXT OLOF BERGVALL Innehåll 1. Introduktion 1 2. Uppbyggnad 2 3. Ordval och språk 3 4. Symboler och formler 4 Denna text är tänkt att vara en introduktion till hur man presenterar

Läs mer

TATM79: Föreläsning 3 Komplexa tal

TATM79: Föreläsning 3 Komplexa tal TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig

Läs mer

Historisk tidslinje & matematisk publikation

Historisk tidslinje & matematisk publikation Historisk tidslinje & matematisk publikation Niels Chr. Overgaard 2016-11-07 N. Chr. Overgaard Historia 2016-11-07 logoonly 1 / 12 Översikt Vi ska idag behandla tre ämnen: Snabb överblick över matematikens

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Första föreläsningen Mats Boij Institutionen för matematik KTH 26 oktober, 2009 Översikt Kurspresentation Komplexa tal Kursmålen Efter genomgången kurs ska studenten vara förtrogen

Läs mer

Komplexa tal med Mathematica

Komplexa tal med Mathematica Komplexa tal med Mathematica Vi startar med att lösa en andragradsekvation Solve[x^ - x + == 0] Vi får de komplexa rötterna x 1 = 1 i och x = 1 + i. När vi plottar funktionen f(x) = x x+ ser vi tydligt

Läs mer

Komplexa tal. Sid 1: Visa att ekvationerna på sid 1 saknar reella lösningar genom att plotta funktionerna.

Komplexa tal. Sid 1: Visa att ekvationerna på sid 1 saknar reella lösningar genom att plotta funktionerna. Komplexa tal Komplexa tal stötte vi på redan i kurs 2 i samband med lösningar till andragradsekvationer. Detta är startpunkten för denna ganska omfattande aktivitet om komplexa tal, som behandlas i kurs

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

b) (A+B)(2m 3)=6m2 5:c 6 3/0/0 3) Förenkla uttrycket (3œ 2)2 + 4(3œ - 1) sä längt sommôjligt. O/l/O

b) (A+B)(2m 3)=6m2 5:c 6 3/0/0 3) Förenkla uttrycket (3œ 2)2 + 4(3œ - 1) sä längt sommôjligt. O/l/O " í*4 r Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) Förenkla: 20102 (æ + 1)(ac 1) 2/0/0 2) Ange A och B så att likheterna stämmer. Observera a2 ta och B är olika i de

Läs mer

Talmängder. Målet med första föreläsningen:

Talmängder. Målet med första föreläsningen: Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

1. Skollagen 2. Läroplanen Lpo 94 / Lpf Grundskole- / Gymnasieförordningen

1. Skollagen 2. Läroplanen Lpo 94 / Lpf Grundskole- / Gymnasieförordningen Olika styrdokument har olika dignitet 1. Skollagen 2. Läroplanen Lpo 94 / Lpf 94 3. Grundskole- / Gymnasieförordningen Riksdagen Regeringen Utskott SOU Departement (utbildnings-) Statliga verk (Skolverket)

Läs mer

1 Tal, mängder och funktioner

1 Tal, mängder och funktioner 1 Tal, mängder och funktioner 1.1 Komplexa tal Här skall vi snabbt repetera de grundläggande egenskaperna hos komplexa tal. För en mera utförlig framställning hänvisar vi till litteraturen i Matematisk

Läs mer

SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att

SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära

Läs mer

.I Minkowskis gitterpunktssats

.I Minkowskis gitterpunktssats 1.I Minkowskis gitterpunktssats Minkowskis sats klarar av en mängd problem inom den algebraiska talteorin och teorin för diofantiska ekvationer. en kan ses som en kontinuerlig, eller geometrisk, variant,

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth

Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth Mönster och Algebra NTA:s första matematiktema Per Berggren & Maria Lindroth 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att

Läs mer

Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS

Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS UPPSALA UNIVERSITET Matematiska institutionen Styf Övningstenta BASKURS DISTANS 011-0-7 Lösningar till övningstentan Del A 1. Lös ekvationen 9 + 5x = x 1 ( ). Lösning. Genom att kvadrera ekvationens led

Läs mer

Ett Sammelsurium av Matematiskt Nonsens, Galois Teori. Professor Ivar

Ett Sammelsurium av Matematiskt Nonsens, Galois Teori. Professor Ivar Ett Sammelsurium av Matematiskt Nonsens, Galois Teori. Professor Ivar December 8, 2016 ii Contents Företal v 1 Lösning av andragradsekvationer. 1 1.1 Lösning av Andragradsekvationen.................. 1

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7

Läs mer

Repetition kapitel 1, 2, 5 inför prov 2 Ma2 NA17 vt18

Repetition kapitel 1, 2, 5 inför prov 2 Ma2 NA17 vt18 Repetition kapitel,, 5 inför prov Ma NA7 vt8 Prov tisdag 5/6 8.00-0.00 Algebra När man adderar eller subtraherar uttryck, så räknar man ihop ensamma siffror för sig, x-termer för sig, och eventuella x

Läs mer

Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac

Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 21. Vi nämner något kort om rekursionsformler för att avsluta [Vre06, kap 4], sedan börjar vi med

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Delkursplanering MA Matematik A - 100p

Delkursplanering MA Matematik A - 100p Delkursplanering MA1201 - Matematik A - 100p som du skall ha uppnått efter avslutad kurs Du skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Lösa ekvationer på olika sätt

Lösa ekvationer på olika sätt Lösa ekvationer på olika sätt I denna aktivitet ska titta närmare på hur man kan lösa ekvationer på olika sätt. I kurserna lär du dig att lösa första- och andragradsekvationer exakt med algebraiska metoder.

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6 Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av

Läs mer

Linjära ekvationer med tillämpningar

Linjära ekvationer med tillämpningar UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-17 SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel

Läs mer

Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer

Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Dagens ämnen Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Linjära ekvationer Med en linjär ekvation i n variabler,

Läs mer

Övningshäfte 2: Komplexa tal (och negativa tal)

Övningshäfte 2: Komplexa tal (och negativa tal) LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa

Läs mer

Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson

Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Tentamen i Matematikens utveckling, 1MA163, 7,5hp fredagen den 28 maj 2010, klockan 8.00 11.00 Tentamen består

Läs mer

MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs.

MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. MA 202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning

Läs mer

Bedömingsanvisningar Del II vt 2010

Bedömingsanvisningar Del II vt 2010 Bedömingsanvisningar Del II vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Innehåll Bedömningsanvisningar Del II... 4 Kravgränser... 16 Maxpoäng...

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

NpMa2b Muntlig del vt 2012

NpMa2b Muntlig del vt 2012 Till eleven - Information inför den muntliga provdelen Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

Algebraiska och geometriska lösningar av kubiska ekvationer

Algebraiska och geometriska lösningar av kubiska ekvationer Algebraiska och geometriska lösningar av kubiska ekvationer Ihab Megbil Juni 2018 Examensarbete matematik C, 15 hp Examinator: Johan Björklund Handledare: Rolf Källström Sammanfattning Syftet med det här

Läs mer

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +

Läs mer

Föreläsning 1. Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida

Föreläsning 1. Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida Föreläsning 1 Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida http://www2.math.uu.se/ rikardo/ baskursen/index.html Mängdlära * En "samling" av tal kallas för en mängd.

Läs mer

6 Derivata och grafer

6 Derivata och grafer 6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000

Läs mer

Ekvationer och system av ekvationer

Ekvationer och system av ekvationer Modul: Undervisa matematik utifrån problemlösning Del 4. Strategier Ekvationer och system av ekvationer Paul Vaderlind, Stockholms universitet Ekvationslösning är ett av de viktiga målen i skolmatematiken.

Läs mer

4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y

4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y UPPSALA UNIVERSITET Matematiska institutionen Styf Prov i matematik BASKURS DISTANS 011-03-10 Lösningar till tentan 011-03-10 Del A 1. Lös ekvationen 5 + 4x 1 5 x. ( ). Lösning. Högerledet han skrivas

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar NpMab vt 01 Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar

Läs mer

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8)

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8) De naturliga talen. Vi skall till att börja med stanna kvar i världen av naturliga tal, N 3. Vi har redan använt (i beviset av Euklides primtalssats) att de naturliga talen är uppbyggda (genom multiplikation)

Läs mer

Givet två naturliga tal a och b, som inte båda två är 0, hur räknar man ut största gemensamma delaren av a och b?

Givet två naturliga tal a och b, som inte båda två är 0, hur räknar man ut största gemensamma delaren av a och b? Euklides algoritm för största gemensamma delaren Givet två naturliga tal a och b, som inte båda två är 0, hur räknar man ut största gemensamma delaren av a och b? Euklides har kommit på en metod (algoritm)

Läs mer

Lösningsförslag TATA

Lösningsförslag TATA Lösningsförslag TATA8 08-0-04 (a) Binomialsatsen medför att (b) Eftersom ( ) 5 = +4i i 5X 5 k 4i = () 5 k ( ) k = 5 80 4 +80 40 +0 ( + 4i)( + i) 0 4 + = + i 5= 9 + i, 9 gäller att realdelen blir (c) Summan

Läs mer

MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET MED MATRISINVERSER = = =

MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET MED MATRISINVERSER = = = Matematiska institutionen Stockholms universitet CG Matematik med didaktisk inriktning 2 Problem i Algebra, geometri och kombinatorik Snedsteg 5 MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET

Läs mer

Lösningsförslag TATA

Lösningsförslag TATA Lösningsförslag TATA 0-0-0 (a) Summan är geometrisk med kvoten q =/ och termer Alltså X0 k= k = X0 k+ k= k = (b) Från definitionen av binomialkoe n n = = n där endast n =är en lösning t (c) Låt z = a +

Läs mer

Lösningar och kommentarer till Övningstenta 1

Lösningar och kommentarer till Övningstenta 1 Lösningar och kommentarer till Övningstenta 1 1 a b b a a b + b a + 2 (a + b) + b a 2 b2 a 2 + b2 + 2 (a + b) + b a 2 b 2 a 2 + b 2 (a + b) + b + 2 a 2 b 2 a 2 + b 2 (a + b) + b + 2 (a b)(a + b)(a + b)

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker

vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning

Läs mer

Mönster och Algebra. NTA:s första matematiktema. Per Berggren

Mönster och Algebra. NTA:s första matematiktema. Per Berggren Mönster och Algebra NTA:s första matematiktema Per Berggren 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga

Läs mer

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3b GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning

Läs mer

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4.

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4. Moment 4.2.1, 4.2.2, 4.2., 4.2.4 Viktiga exempel 4.1, 4., 4.4, 4.5, 4.6, 4.1, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4., 4.4, 4.5, 4.7 Många av de objekt man arbetar med i matematiken och naturvetenskapen

Läs mer

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter inför Matematik - 7G0 Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 4 Facit Repetitionsuppgifter inför

Läs mer

HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT

HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer