Lösningar till tentamen i Matematik grundkurs den 7 juni 011. A-del. (Endast svar krävs) 1. Förenkla så långt som möjligt. Svar: 1 1 1 1 +1. Skriv talet på formen a + ib. Svar: 1 + i 3. Beräkna 10 + 5i 3i 3 1 1 + k. Svar: 13/1. Vad är lutningen av linjen genom punkterna (, 3) och ( 6, 7)? Svar: 1/ 5. Vi vet att arg(z) = π/3 och att z = 3. Skriv z på formen a + ib, där a och b inte får innehålla sinus och cosinus. Svar: 3 + i 3 3 6. För vilka x gäller det att x + 011 = x + 011? Svar: x = 0 7. Vad är x om lg(x) + lg(x ) = 6? Svar: x = 100 8. Bestäm skärningspunkterna mellan linjen y = x + 1 och cirkeln x + y = 1. Svar: ( 1, 0) och (0, 1). 1
B-del. (Fullständiga lösningar krävs) 9. Hur många ord med sju bokstäver kan bildas med hjälp av bokstäverna i ISGLASS, om varje bokstav ska användas precis en gång? Lösning. Låt oss kalla de tre S:n för S 1, S och S 3. Nu ska vi bilda ord med hjälp av de sju olika bokstäverna IS 1 GLAS S 3. Något sådant kan göras på 7! sätt. Nu ska vi ta bort siffrorna 1,, och 3 igen och vi ser av varje permutation av dessa ger upphov till samma ord. Alltså har varje ord räknats 3! = 6 gånger var. Det rätta svaret är därför 7!/6 = 7 5 3 = 80. Svar: På 80 olika sätt. 10. Bestäm alla z sådana att { z + z = z z = 1. Lösning. Vi skriver z = x + iy, där x och y är reella tal. Då är z = x iy varför z + z = x + iy + x iy = x och z z = (x + iy)(x iy) = x + y. Ekvationssystemet blir därför { x = x + y = 1. Första raden ger x = 1 och stoppar vi in detta i andra raden får vi y = 0. Alltså är z = x + iy = 1 + i 0 = 1. Svar: z = 1 11. Vilka x uppfyller att x = x? Lösning. Eftersom x är lika med x måste x vara lika med (x ), dvs det måste gälla att x = (x ). Observera dock att vi inte kan vara säkra på att x = x bara för att x = (x ) utan vi kan ha skapat falska rötter då vi kvadrerade ekvationen. Vi måste därför kontrollera de lösningar vi hittar. Vi vecklar ut kvadraten och får x = x x+, vilket kan skrivas som x 5x + = 0. Vi kvadratkompletterar och får (x 5/) = (5/) = 9/. Alltså är x 5/ = ±3/ varför x = 5/ + 3/ = eller x = 5/ 3/ = 1. Vi kontrollerar nu x = genom att stoppa in x = i ekvationen: Vänsterledet blir = och högerledet blir = så detta stämmer, x = är en lösning. Vi kontrollerar nu x = 1 genom instoppning i ekvationen: Vänsterledet blir 1 = 1 och högerledet blir 1 = 1 så x = 1 är en falsk rot. Svar: x =. 1. Ordna de tre talen (( 10 ) 10 ) 10, (10) och 10 300 i storleksordning, börja med det minsta. Motivera ditt svar. Lösning. Vi börjar med att observera att 10 = 10 > 1000 = 10 3. Detta ger att (10) > 1000 = (( 10 ) 10 ) 10.
Med hjälp av samma olikhet, dvs 10 > 10 3, ser vi också att (( 10 ) 10 ) 10 = ( 10 ) 100 > (10 3 ) 100 = 10 300 så 10 300 är minst, (( 10 ) 10 ) 10 är mellanstort och (10) är störst. Svar: 10 300 < (( 10 ) 10 ) 10 < (10 ) 13. Hur många olika par, dvs två kort med samma valör, går det att bilda med hjälp av en vanlig kortlek? (Hjärter tillsammans med Ruter är ett par, Hjärter tillsammans med Spader ett annat, däremot är Ruter tillsammans med Hjärter samma par som det första.) En kortlek består av totalt 5 kort, 13 olika valörer med kort i fyra olika färger var. Lösning. Vi börjar med att observera att det finns 13 olika valörer man kan få par i. I varje valör finns ( olika kort och varje val av två av dessa ger ett par. Antalet sätt att välja av saker på är = 3/ = 6. Totala antalet par ges därför enligt multiplikationsprincipen ) av 13 6 = 78. Svar: Man kan bilda 78 olika par. 1. Lös ekvationen z =. Lösning. har absolutbeloppet och argumentet π. Låt z ha absolutbeloppet r och argumentet θ. Då har z absolutbeloppet r och argumentet θ varför vi ser att r = och θ = π + nπ, där n är ett heltal. Den första ekvationen ger r = och den andra ger θ = π/+nπ/. Totalt söker vi fyra lösningar och vi får dessa genom att sätta n = 0, 1,, 3. De fyra lösningarna är därför z 1 = (cos(π/) + i sin(π/)) = ( 1 + i ) = 1 + i, z = (cos(3π/) + i sin(3π/)) = ( 1 + i ) = 1 + i, z 3 = (cos(5π/) + i sin(5π/)) = ( 1 i ) = 1 i och z = (cos(7π/) + i sin(7π/)) = ( 1 i ) = 1 i. Svar:z = 1 ± i och z = 1 ± i. C-del. (Fullständiga lösningar krävs) 15. Bevisa med hjälp av induktion att n k 3 = n (n + 1) för alla heltal n 1. 3
Lösning. Det minsta tal vi ska visa påståendet för är n = 1, därför ska vi börja med att visa påståendet just för n = 1. För n = 1 blir vänsterledet 1 k3 = 1 3 = 1 och högerledet är 1 (1+1) = 1 så påståendet är sant för n = 1. Vi antar nu att påståendet är sant för något heltal n = p (precis som det är för n = 1), dvs vi antar att p k 3 = p (p + 1). Vi ska nu visa att då gäller påståendet även för n = p + 1. Vänsterledet blir p+1 k 3 = p k 3 + (p + 1) 3. Enligt induktionsantagandet är summan detsamma som p (p+1) p+1 k 3 = p (p + 1) = (p + 1) (p + ) + (p + 1) 3 = (p + 1) (p + (p + 1)) = = (p + 1) ((p + 1) + 1). så därför har vi att (p + 1) (p + p + ) Alltså har vi visat att påståendet är sant för n = p+1 och enligt induktionsprincipen gäller därför att n k 3 = n (n + 1) för alla heltal n 1. 16. Vilken sorts geometrisk figur beskrivs av ekvationen y = 8 36x(x 1)? Vilket är det största värde som x kan anta i ekvationen ovan och vilket är det största värde som y kan anta? Lösning. Vi skriver om ekvationen genom att flytta allt utom konstanten till vänsterledet, då får vi 36x 36x + y = 8. Vi kvadratkompletterar och får ( 36 x 1 ) 36 + y = 8 så ekvationen kan skrivas som (x 1/) (1/6) + y 1 = 1. Detta är en ellips vars huvudaxlar har längden 1/6 i x led och 1 i y led och som har centrum i (1/, 0). Därför är x som mest 1/ + 1/6 = /3 och y som mest 0 + 1 = 1. Svar: Figuren är en ellips, x är som mest /3 och y är som mest 1.
17. Polynomet p(z) = z 16z + 0z 5 har ett nollställe i z = i. Hitta samtliga nollställen till p(z). Lösning. Eftersom i är en rot och polynomet är reellt måste även i = + i vara en rot. Enligt faktorsatsen är därför z + i och z i faktorer i p(z). Vi multiplicerar ihop dessa faktorer och får och detta måste dela p(z). Vi beräknar att (z + i)(z i) = z z + 5 p(z) z z+5 (tex med hjälp av liggande stolen) och får p(z) z z + 5 = z + z 5. För att hitta de sista två nollställena måste vi därför lösa ekvationen z + z 5 = 0. Detta ger (z + ) = 9 så z + = ±3 varför z = ± 3. Alltså är de två sista nollställena z = 1 och z = 5. Svar: Nollställena är z = 1, z = 5 och z = ± i. 18. Lös ekvationen tan x + 1 tan x =. Lösning. Vi börjar med att använda att tan x = sin x cos x sin x cos x + cos x sin x =. Vi skriver detta på gemensam nämnare och får sin x + cos x sin x cos x =. Enligt trigonometriska ettan är täljaren 1 så ekvationen blir sin x cos x = 1. för att få ekvationen Enligt sinus för dubbla vinkeln är sin x = sin x cos x så detta kan skrivas som sin x = 1/. Detta ger x = π/6 + πn eller x = 5π/6 + πn, där n är ett heltal. Vi delar med två och får x = π/1 + πn och x = 5π/1 + πn. Svar: Lösningarna är x = π/1 + πn och x = 5π/1 + πn, där n är ett godtyckligt heltal. 5