Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler, för att derivera de flesta funktioner. Dessa regler finns dessutom i formelsamlingen. Vi kommer nu under tre föreläsningar att lära oss regler för att derivera polynomfunktioner potensfunktioner exponentialfunktioner Det är dessa funktionstyper du måste kunna derivera i denna kurs. I nästa kurs kommer du att lära dig derivera trigonometriska funktioner (sin x, cos x, tan x). Vi bestämde i förra föreläsningen Från detta slöt vi oss till att f(x) = x f (x) = 1 f(x) = x 2 f (x) = 2x f(x) = x 3 f (x) = 3x 2 f(x) = x 4 f (x) = 4x 3 Regel I: f(x) = x n f (x) = n x n 1 Åtminstone när eltalet n 1. Vi ser nu detta som en deriveringsregel. Vilken derivata ar då f(x) = 3x 2? Vi tillfogar alltså en koefficient. Vi visar derivatan med dess definition: f (x) = f(x + ) f(x) = 3(x + )2 3x 3x 2 + 6x + 3 2 3x 2 = Vi låter gå mot 0 = 3(x2 + 2x + 2 ) 3x 2 (6x + 3) lim(6x + ) = 6x 0 = 6x + Vi visste från tidigare att f(x) = x 2 ar derivatan f (x) = 2x. Nu kan vi se att f(x) = 3x 2 ar derivatan f (x) = 3 2x = 6x. Vi ar en ny regel: Regel II: f(x) = k x n f (x) = k nx n 1 = Håkan Strömberg 1 KTH Syd
Att funktionen f(x) = 7 ar derivatan f (x) = 0 ser vi genom derivatans definition f (x) = f(x + ) f(x) = 7 7 = 0 Vi beöver inte ens ta till gränsvärde för att inse detta. Regel III: f(x) = k f (x) = 0 Den fjärde regeln vi beöver är Regel IV: Ett polynom får deriveras termvis. Du vet ju att två termer skills åt av ett + eller. Nu är vi redo att derivera att polynom, vilket som elst med jälp av de fyra reglerna vi slagit fast ovan. Ett exempel Vi ar funktionen f(x) = 3x 7 4x 3 + x 2 100 oc kan snabbt fastställa dess derivata till f (x) = 3 7x 6 4 3x 2 + 2x = 21x 6 + 12x 2 + 2x Vi ar deriverat var oc en av de fyra termerna i polynomet var oc en för sig efter de regler vi känner till 1 Bestäm f (x) till f(x) = 4x 4 + 3x 3 + 2x 2 + x + 1 2 Bestäm f (3) då Först bestämmer vi derivatan Sedan bestämmer vi f (x) = 16x 3 + 9x 2 + 4x + 1 f(x) = 3x 4 + 2x f (x) = 12x 3 + 2 f (3) = 12 3 3 + 2 = 12 27 + 2 = 326 3 Finns det flera funktioner var derivata är f (x) = 3x 2 + 2x Håkan Strömberg 2 KTH Syd
Om vi deriverar baklänges (integrerar) får vi f(x) = x 3 + x 2 Är detta det enda svaret? När man inser att både oc g(x) = x 3 + x 2 + 1 (x) = x 3 + x 2 + 1000 förstår man att det finns oändligt många polynom som ar denna derivata. 4 Om vi startar med funktionen f(x) = 3x 3 + x 2 + x så kan man derivera den oc få f (x). Om man sedan i sin tur deriverar f (x) får man en funktion man kallar f (x). Hur länge kan man derivera f(x) innan resultatet blir 0? Alla ögre derivator är förstås 0. 5 Bestäm f (x) = 0 då f (x) = 9x 2 + 2x + 1 f (x) = 18x + 2 f (x) = 18 f IV (x) = 0 f(x) = x3 3 x2 2 6x Vi bestämmer först derivatan f (x) = 0 då Vi ar att lösa en andragradsekvation f (x) = x 2 x 6 x 2 x 6 = 0 x 2 x 6 = 0 1 x = 1 ± + 24 2 4 4 x = 1 ± 5 2 2 x 1 = 3 x 2 = 2 Derivatan ar två nollställen x = 3 oc x = 2. Vad innebär det att f (x) = 0? Vi tar en titt på graferna till f(x) oc f (x). Håkan Strömberg 3 KTH Syd
5-3 -2-1 1 2 3 4-5 -10 Figur 1: Vilken graf är vilken? 6 Bestäm a i f(x) så att f (3) = 14 f(x) = 3x 2 + ax + 3 Vi deriverar oc åller i minnet att a är en konstant. f (x) = 14 då som ger a = 4. 7 Beräkna f (0) då f (x) = 6x + a 6 3 + a = 14 f(x) = ax 3 + bx 2 + cx + d där a, b, c, d är konstanter Dels gäller det att skilja på f (x) = 0 oc f (0). Vi deriverar: f(0) ger då 8 Derivera f (x) = 3ax 2 + 2bx + c f(0) = 3 a 0 2 + 2 b 0 + c = c f(x) = (x + 1) 3 Vi kan inte klara denna uppgift utan att utveckla (x + 1) 3 f(x) = (x + 1) 3 = x 3 + 3x 2 + 3x + 1 (Du kommer väl iåg Pascals triangel?). Nu kan vi derivera Som kan ju skrivas som f (x) = 3x 2 + 6x + 3 f (x) = 3(x 2 + 2x + 1) = 3(x + 1) 2 Jus den är gången ade vi kunnat använda samma regler som att derivera g(x) = x 3, men det funkar långt ifrån alltid. Håkan Strömberg 4 KTH Syd
1 Derivera f(x) = x 3 4x 2 + 13x + 108 2 Bestäm f (x) = 0 då f(x) = x 2 8x + 10 3 Bestäm f (1) då f(x) = 3x 2 + 2x + 3 4 Beräkna värdet på x för vilket f (x) = 2 då f(x) = 8x x 2 5 En cirkels area är en funktion A(r) där r cirkelns radie. Bestäm A (r) 1 Derivatan blir 2 Första deriverar vi f (x) = 3x 2 8x + 13 f (x) = 2x 8 Sedan sätter vi f (x) = 0 oc får ekvationen som ar roten x = 4 Svar: f (x) = 0 då x = 4 3 Först deriverar vi Sedan bestämmer vi Svar: f (1) = 8 4 Vi deriverar f (x) = 2 leder till ekvationen Med roten x = 3 Svar: x = 3 2x 8 = 0 f (x) = 6x + 2 f (1) = 6 1 + 2 = 8 f (x) = 8 2x 8 2x = 2 Håkan Strömberg 5 KTH Syd
5 Funktionen är A(r) = πr 2 Då måste A (r) = 2πr som också är formeln för cirkelns omkrets! Räkna bokens uppgifter: 2303d, 2307b, 2311, 2313 2303 d) TB: Jaa, nu gäller det att kunna sina deriveringsregler. Polynom kommer man alltid iåg ur de ska deriveras. f(x) = 4x 2 + 5x 3 ger derivatan f (x) = 8x + 15x 2 2307 b) TB: Lite lite svårare. När jag deriverat ska jag ta reda på f (3) Funktionen är f(x) = 2 + 3x + 4x 2 5x 3 som ar derivatan f (x) = 3 + 8x 15x 2. f (3) = 3 + 8 3 15 3 2 = 108 KTH: Det går som tåget 2311 b) TB: Den är gången ska jag ta reda på derivatans nollställen. Jag ska lösa ekvationen f (x) = 0. Det blir väl en andragradsekvation eftersom f(x) = 2x 3 + 30x 2 + 96x + 34 är av tredje graden. 2313 f(x) = 2x 3 + 30x 2 + 96x + 34 f (x) = 6x 2 + 60x + 96 f (x) = 0 då 6x 2 + 60x + 96 = 0 x 2 + 10x + 16 = 0 x 1 = 8 x 2 = 2 Vi kan väl visa graferna eller ur? Stämmer bra TB: Nu ska jag försöka gå bakvägen på något sätt. Jag ar alltså redan f (x) = 3x 2 + 2x oc vill a tag i f(x). Det måste väl bli någonting liknande f(x) = x 3 + x 2. Det stämmer. KTH: Du ska itta två funktioner som ar den är derivatan? TB: Va! Det kan det väl inte finnas? Aa, du menar att till exempel f 2 (x) = x 3 + x 2 + 123 också ar derivatan f 2 (x) = 3x2 + 2x? Den konstanta termen kan vara vad som elst. Det finns alltså ur många som elst. Håkan Strömberg 6 KTH Syd
600 500 400 300 200 100-10 -8-6 -4-2 2 Figur 2: KTH: Det är kommer du att få lära dig mer om framöver. Det kallas att integrera till skillnad från att derivera Under denna rubrik kommer då oc då att presenteras ett problem som bygger på logiskt tänkande oc mer problemlösning än många av de matematiska problem vi kommer att lösa i denna kurs. Dela bröd oc pengar Två luffare, A med 3 bröd oc B med 5 bröd, ade just satt sig vid vägkanten för att äta, då en tredje luffare, C, kom förbi. C ade ingen egen mat, utan betalade sin andel med 8 kr. Hur skulle detta belopp fördelas rättvist mellan A oc B, om maten delats lika mellan de tre luffarna? Håkan Strömberg 7 KTH Syd