TATM79: Föreläsning 6 Logaritmer och exponentialfunktioner

Storlek: px
Starta visningen från sidan:

Download "TATM79: Föreläsning 6 Logaritmer och exponentialfunktioner"

Transkript

1 TATM79: Föreläsning 6 Logaritmer och eponentialfunktioner Johan Thim augusti 06 Den naturliga logaritmen Vi börjar med att introducera den naturliga logaritmen. Definition. Den naturliga logaritmen ln för > 0 definieras som ln = ˆ t dt. Här ser vi att vi använder integralbegreppet utan att direkt ha definierat det innan. Vi återkommer till detta i envariabelanalysen när Riemann-integralen behandlas. Förhoppningsvis kommer vi ändå ihåg att man kan tolka en bestämd integral som arean under kurvan. y y = / ln johan.thim@liu.se

2 Egenskaper Den naturliga logaritmen har bland annat följande egenskaper: (i) D ln =]0, [ och V ln = R; (ii) ln y = ln + ln y för, y > 0; (iii) ln < för > 0 och ; (iv) ln = 0; (v) ln y = ln ln y för, y > 0; (vi) ln = ln för > 0; (vii) ln p = p ln för > 0 och p Z. De första tre egenskaperna behöver visas från definitionen medan övriga egenskaper följer från dessa tre. Till eempel kan vi se att ln = ln( ) = ln + ln, så ln = 0 är nödvändigt. Vi kan även se detta direkt från definitionen via Riemann-integralen så klart. Vidare, ( ) ln = ln y y = ln + ln y, y vilket bevisar (v). Egenskap (vi) är ett specialfall av (v) och (vii) kan visas genom att betrakta p = och utnyttja (ii) (och (vi) då p < 0). Observera att vi inte kan säga något om fallet då p ej är ett heltal i nuläget; vi återkommer stra till detta. Dessa egenskaper kan också användas för att visa en användbar olikhet för att stänga in logaritmen. < ln <, för > 0 och. Vi kan även använda denna egenskap för att visa att ln < 0 då 0 < < och ln > 0 då >, även om detta också är tämligen klart från Riemann-integralen. Övriga samband kan illustreras på liknande sett (övning!) Den naturliga logaritmen ln är strängt väande. Bevis. Låt > > 0. Då är >, så Alltså är ln strängt väande. 0 < ln = ln ln ln < ln.

3 Eempel Lös ekvationen ln( + ) = ln(5 + ) ln( + ) för R. Lösning. För att alla ingående uttryck ska vara definierade krävs att + > 0, 5 + > 0, och + > 0. Från detta ser vi att > krävs för att samtliga uttryck ska vara definierade. Antag att >. Då gäller ln( + ) = ln(5 + ) ln( + ) ln ( ( + )( + ) ) = ln(5 + ), och eftersom ln är strängt väande gäller då att ( + )( + ) = = 0 ( )( + 3) = 0. Endast = är en lösning då = 3 ej uppfyller kravet >. Svar. = enda lösningen. Logaritmer och negativa tal? Observera att vi endast har definierat ln för > 0. Men detta innebär absolut inte att ln > 0 för alla. Om 0 < < så är ln < 0. Det är skillnad på definitionsmängden och värdemängden! y y = ln e Observera även att till eempel ln(y) kan vara definierad även om ln och ln y inte är det. Det räcker att produkten blir positiv, så eempelvis = och y = 3 skulle fungera. Detta kan ställa till det när vi löser ekvationer som innehåller logaritmer, så var försiktiga! Eponentialfunktionen Eftersom ln är strängt väande finns en invers som vi kallar ep, dvs y = ln = ep(y), där D ep = R och V ep =]0, [. Som vanligt (med inverser) gäller ln(ep ) =, R och ep(ln ) =, > 0. 3

4 y y = ep() e Om vi jämför graferna för ln och ep så kan man se att ep är spegelbilden av ln kring linjen y =. Detta gäller generellt för inverser! Så hur hör nu funktionen ep ihop med talet e? Talet e Definition. Talet e definieras som e = ep(). Talet e är irrationellt, har närmevärdet e.78 och uppfyller att ln e =. Om p Z så följer det av logaritmlagarna ovan att ln e p = p ln e = p eller ekvivalent ep(p) = ep(ln e p ) = e p. Vi väljer därför att skriva e = ep(). Det är alltså så här vi definierar talet e genom funktionen ep för alla. ep() och e Vi kommer att använda dessa uttryck helt utbytbart, de betyder alltså samma sak. När vi skriver e så syftar vi på funktionsvärdet ep(). Notationen ep är lämplig ibland, speciellt när det är komplicerade argument. Till eempel kanske vissa tycker ( ep + ) 3 sin är lättare att läsa än e + 3 sin. 4

5 Funktionen som definieras av e har bland annat följande egenskaper: (i) e 0 = och e = e; (ii) ln e = för R och e ln = för > 0; (iii) e +y = e e y ; (iv) e = e ; (v) (e ) p = e p då p Z. Egenskaper Lös ekvationen e + 4e = 4. Eempel Lösning. Det följer att e + 4e = 4 e 4e + 4 = 0. Låt t = e. Då måste t 4t+4 = (t ) = 0, vilket endast t = uppfyller. Alltså är e =, eller ekvivalent, = ln. Svar: = ln. Något bökigare? Kanske som handlar om inversen till ett uttryck? Eempel Bestäm definitionsmängden och (om möjligt) inversen till f() = ln ( 7 ln( + ) ). Lösning. Vi börjar med att bestämma den största möjliga definitionsmängden. Kraven som måste gälla är att + > 0 samt 7 ln( + ) > 0. Alltså måste > och 7 ln( + ) > 0 e 7 > + ( e 7 ) > eftersom ln är strängt väande. Således ges D f av de R så att Låt y R. Då gäller att < < ( e 7 ). y = ln( 7 ln( + )) ep(y) = 7 ln( + ) + = ep( 7 ep(y)) = ( ep( ) 7 ep(y)). ( ) 5

6 Eftersom vi bara har ett alternativ ges inversen av f () = ( ep( ) 7 ep()). { ( Svar: D f = R : < < e 7 )}, f () = ( ep( ) 7 ep()). Vad hade hänt om vi fått flera möjligheter i ekvation ( ) ovan? Tänk på att vi bara räknade med implikationer! 3 Potensfunktioner Potensfunktioner Definition. Vi definierar potensfunktionen α enligt α = ep(α ln ) då > 0 och α R, samt α = 0 då = 0 och α > 0. Detta är en rimlig definition. Till eempel vet vi att p = (e ln ) p = e p ln, p Z, vilket stämmer överens med definitionen ovan. Eftersom potensfunktioner är definierade via ep-funktionen så gäller motsvarande regler. Till eempel så är α β = ep(α ln ) ep(β ln ) = ep(α ln + β ln ) = ep((α + β) ln ) = α+β, > 0. Övriga regler kan visas på liknande sätt. Finn alla reella så att = 3. Eempel Lösning. Vi skriver om ekvationen för att se om vi kan finna en lämplig variabel: = 4 4 = 4 4 = 4t 4t, där t =. Då är t > 0 och ekvationen kan alltså skrivas 4t 4t 8 = 0 t t = 0 (t + )(t ) = 0. Här ser vi att t = inte går (då = saknar lösning) och att t = medför att =, så =. Svar: =. 6

TATM79: Föreläsning 4 Funktioner

TATM79: Föreläsning 4 Funktioner TATM79: Föreläsning 4 Funktioner Johan Thim augusti 08 Funktioner Vad är egentligen en funktion? Definition. En funktion f är en regel som till varje punkt i en definitionsmängd D f tilldelar precis ett

Läs mer

TATM79: Föreläsning 7 Arcusfunktioner och hjälpvinkelmetoden

TATM79: Föreläsning 7 Arcusfunktioner och hjälpvinkelmetoden TATM79: Föreläsning 7 Arcusfunktioner och hjälpvinkelmetoden Johan Thim augusti 0 Inverser till trigonometriska funktioner Om vi ritar upp funktionen y = sin ser vi följande: y y = sin Självklart går det

Läs mer

Exempel. Komplexkonjugerade rotpar

Exempel. Komplexkonjugerade rotpar TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck

Läs mer

TATM79: Föreläsning 8 Arcusfunktioner

TATM79: Föreläsning 8 Arcusfunktioner TATM9: Föreläsning 8 Arcusfunktioner Johan Thim augusti 0 Inverser till trigonometriska funktioner Om vi ritar upp funktionen y = sin ser vi följande: y y = sin Självklart går det inte att hitta en invers

Läs mer

Några saker att tänka på inför dugga 2

Några saker att tänka på inför dugga 2 LINKÖPINGS UNIVERSITET 17 oktober 017 Matematiska institutionen TATA68 Matematik och tillämpad matematik Några saker att tänka på inför dugga Dugga omfattar HELA kursen, så titta även på de tips som lämnades

Läs mer

Föreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018

Föreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018 Föreläsning 7 SF1625 Envariabelanalys 13 november 2018 SF1625 CDEPR1, CENMI1, CLGYM TEMI2 HT18 F7 1 / 23 Dagens teman: exponentialfunktioner och logaritmer standardgränsvärden tillväxtproblem SF1625 CDEPR1,

Läs mer

Lösningsförslag TATM

Lösningsförslag TATM Lösningsförslag TATM9 0-0-0. a) Summan är geometrisk med kvoten q = / och termer. Alltså, 50 k = 50 k+ = k ) ) ) ) =. k= k= b) Från definitionen av binomialkoefficienter ser vi att ) ) n n nn ) 6 = = =

Läs mer

TAMS79: Föreläsning 6. Normalfördelning

TAMS79: Föreläsning 6. Normalfördelning TAMS79: Föreläsning 6 Normalfördelningen Johan Thim (johan.thim@liu.se 3 november 018 Normalfördelning Definition. Låt µ R och > 0. Om X är en stokastisk variabel med täthetsfunktion f X ( = 1 ( ep ( µ,

Läs mer

Lösningsförslag TATM

Lösningsförslag TATM Lösningsförslag TATM79 08-0-04 a Binomialsatsen medför att b Eftersom 5 = 3 + 4i 3 i 5 5 k 5 k k = 3 5 80 4 + 80 3 40 + 0 4i 3 = 3 + 4i3 + i 0 gäller att realdelen blir 9 4 + 3 = + i3 5 = 9 + i3, c Summan

Läs mer

Notera att ovanstående definition kräver att funktionen är definierad i punkten x=a.

Notera att ovanstående definition kräver att funktionen är definierad i punkten x=a. SAMMANFATTNING OM KONTINUERLIGA FUNKTIONER Definition (Kontinuitet i en punkt { f ( är kontinuerlig i punkten a} { lim f ( a } a eller ekvivalent: { f ( är kontinuerlig i punkten a} { lim lim f ( a a a+

Läs mer

Avsnitt 4, introduktion.

Avsnitt 4, introduktion. KTHs Sommarmatematik Introduktion 4:1 4:1 Avsnitt 4, introduktion. Potensregler. Följande grundläggande potensregler är startpunkten för detta avsnitt: Ex 1: 2 3 2-2 = 2 3-2 =2 1 = 2. Ex 2: 8 4 = (2 3

Läs mer

v0.2, Högskolan i Skövde Tentamen i matematik

v0.2, Högskolan i Skövde Tentamen i matematik v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 7 Institutionen för matematik KTH 12 september 2016 Injektiva funktioner En funktion är en regel som till varje tal i definitionsmängden ordnar ett bestämt tal i värdemängden. Injektiva funktioner

Läs mer

TAMS79: Föreläsning 10 Markovkedjor

TAMS79: Föreläsning 10 Markovkedjor TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.

Läs mer

Svar till S-uppgifter Endimensionell Analys för I och L

Svar till S-uppgifter Endimensionell Analys för I och L Svar till S-uppgifter Endimensionell Anals för I och L S a) ja, ja, ja, nej, ja S4 N = A(I σ MZ), Z = I (σ A N), A = I MA S5 Du har väl inte verkligen multiplicerat ut alla termer? a) resp. b) 4 resp.

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande

Läs mer

Lösningsförslag, preliminär version 0.1, 23 januari 2018

Lösningsförslag, preliminär version 0.1, 23 januari 2018 Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel

Läs mer

Gränsvärdesberäkningar i praktiken

Gränsvärdesberäkningar i praktiken Gränsvärdesberäkningar i praktiken - ett komplement till kapitel i analsboken Jonas Månsson När man beräknar gränsvärden använder man sig av en rad olika strategier beroende på det givna problemet. Avsikten

Läs mer

TATA42: Föreläsning 5 Serier ( generaliserade summor )

TATA42: Föreläsning 5 Serier ( generaliserade summor ) TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 0 januari 207 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje

Läs mer

Läsanvisningar till kapitel 4 i Naturlig matematik

Läsanvisningar till kapitel 4 i Naturlig matematik Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här

Läs mer

6. Samband mellan derivata och monotonitet

6. Samband mellan derivata och monotonitet 34 6 SAMBAND MELLAN DERIVATA OCH MONOTONITET 6. Samband mellan derivata och monotonitet Antag att funktionen f är deriverbar på ]a,b[. Vi vet att derivatan f ( 0 ) i 0 ]a,b[ är riktningskoefficienten för

Läs mer

Svar till S-uppgifter Endimensionell Analys för I och L

Svar till S-uppgifter Endimensionell Analys för I och L Svar till S-uppgifter Endimensionell Anals för I och L - 00 S 600 = 3 3 5 3850 = 5 7 847 = 7 största gemensamma delare till 600 och 3850: 5 minsta gemensamma multipel till 3850 och 847: 5 7 S a) +6+9 b)

Läs mer

+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n

+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n Repetition, Matematik I.. Bestäm koefficienten vid 2 i utvecklingen av ( + 2 2 ) 5. 2. Bestäm koefficienten vid 2 i utvecklingen av ( + ) n för n =, 2,,.. Beräkna a 5 5a 2b + 5a 2b 2 5a 2 b + 5a 6b 2b

Läs mer

INVERSA FUNKTIONER DEFINITION. (invers funktion) Låt ff vara en funktion av en reell variabel med definitionsmängden DD ff och värdemängden VV ff. Vi säger att funktionen ff är inverterbar om ekvationen

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR ABSOLUTBELOPP Några eempel som du har gjort i gymnasieskolan: a) b) c) 5 5 Alltså et av ett tal är lika med själva talet om talet är positivt eller lika med et av är lika med det motsatta talet om är negativt

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler

TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler Johan Thim (johan.thim@liu.se) 1 november 18 Vi fokuserar på två-dimensionella variabler. Det är steget från en dimension till två som är det

Läs mer

Sådana avbildningar kallar vi bijektioner mellan A och B (eller från A till B).

Sådana avbildningar kallar vi bijektioner mellan A och B (eller från A till B). BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi. I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en funktion f : A B. Vi har oftast krav

Läs mer

Moment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59

Moment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59 Moment.0-. Viktiga exempel Övningsuppgifter Ö.9-., Ö.5, Ö.55, Ö.59 Funktioner Definition. En funktion y = f(x) är ett samband mellan variablerna x och y, sådant att ett x-värde motsvaras av högst ett värde

Läs mer

Exponentialfunktioner och logaritmer

Exponentialfunktioner och logaritmer Eponentialfunktioner och logaritmer Tidigare i kurserna har du gått igenom potenslagarna, hur man räknar med potenser och potensfunktioner av typen y. En potens- funktion är en funktion som innefattar

Läs mer

TATA42: Föreläsning 6 Potensserier

TATA42: Föreläsning 6 Potensserier TATA4: Föreläsning 6 Potensserier Johan Thim januari 7 Vi ska nu betrakta serier där termerna inte längre är konstanter. Speciellt ska vi studera så kallade potensserier. Dessa definieras som a k x k a

Läs mer

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson Matematikcentrum Matematik BASPROBLEM I ENDIMENSIONELL ANALYS Jan Gustavsson. Algebraiska förenklingar.. Reella andragradsekvationer.. Enkla rotekvationer - eventuellt med falsk rot.. Enkla absolutbeloppsproblem.

Läs mer

Notera att tecknet < ändras till > när vi multiplicerar ( eller delar) en olikhet med ett negativt tal.

Notera att tecknet < ändras till > när vi multiplicerar ( eller delar) en olikhet med ett negativt tal. OLIKHETER Egenskaper:.Om a < b då gäller a+ c < b +c. Om a < b < c då gäller a+d < b+d < c+d. Om a < b och k > 0 då gäller ka < kb. 4. Om a < b och k < 0 då gäller ka > kb. Notera att tecknet < ändras

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer

Teorifrå gor kåp

Teorifrå gor kåp Teorifrå gor kåp. 2.2 5.2 Funktioner och dess grafer 1) Vad är en funktion? 2) Vad är den naturliga definitionsmängden ge några eempel 3) Vad är en värdemängd? 4) Vad är en sammansatt funktion? 5) Varför

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 24 mars 29 Entydighet Om vi har ett polynom som approimerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna i

Läs mer

gränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n

gränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 5 mars 208 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal

Läs mer

4 Fler deriveringsregler

4 Fler deriveringsregler 4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x

Läs mer

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b Lösningsförslag till Tentamen i Inledande matematik för E, (TMV57), 203-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) För vilka tal gäller 2 + > cos2 ()? Lösning:

Läs mer

Lektion 6, Envariabelanalys den 14 oktober Låt oss krympa f:s definitionsmängd till en liten omgivning av x = x 2.

Lektion 6, Envariabelanalys den 14 oktober Låt oss krympa f:s definitionsmängd till en liten omgivning av x = x 2. Lektion 6, Envariabelanals den 4 oktober 999 Låt f vara en kontinuerligt deriverbar funktion vars graf är återgiven i figuren till höger. Besvara följande frågor. Låt oss krmpa f:s definitionsmängd till

Läs mer

1.1 Den komplexa exponentialfunktionen

1.1 Den komplexa exponentialfunktionen TATM79: Föreläsning 8 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim augusti 07 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk

Läs mer

TATA42: Föreläsning 3 Restterm på Lagranges form

TATA42: Föreläsning 3 Restterm på Lagranges form TATA4: Föreläsning 3 Restterm på Lagranges form Johan Thim 9 mars 9 Lagranges form för resttermen Vi har tidigare använt resttermen på ordo-form med goda resultat. Oftast i samband med gränsvärden, extrempunktsundersökningar

Läs mer

5. Förklara varför sannolikheten att en slumpvis vald lottorad har 7 rätt är x + x 2 innehåller termen 14x. Bestäm

5. Förklara varför sannolikheten att en slumpvis vald lottorad har 7 rätt är x + x 2 innehåller termen 14x. Bestäm VECKANS UPPGIFTER MENY FÖR HELA MOMENT 3 5B3 Amelia fr P och T ht 004 Uppgifter till Vecka 4. Förklara hur ett induktionsbevis fungerar.. Bevisa att 4 n är jämnt delbart med 3 för n =,, 3,... 3. Bevisa

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 6, Differential- och integralkalkyl II, del, envariabel, för F. Tentamen torsdag 3 maj 7, 8.-3. Förslag till lösningar.. Ange definitions- och värdemängderna

Läs mer

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x).

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x). Konveitet En funktionsgraf, som inte är en rät linje, böjer ofta av åt ett bestämt håll i ett visst intervall. För en funktion som är deriverbar två gånger kan man med hjälp av andraderivatan ta reda på

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2003 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande

Läs mer

Experimentversion av Endimensionell analys 1

Experimentversion av Endimensionell analys 1 Matematikcentrum Matematik Eperimentversion av Endimensionell anals Alternativ eamination Under lp 999 kommer för Bi 99, L 99 och V 99 att ges en något modifierad kurs i Endimensionell anals. Kursen avviker

Läs mer

Kap Inversfunktion, arcusfunktioner.

Kap Inversfunktion, arcusfunktioner. Kap 3. 3.5. Inversfunktion, arcusfunktioner. 30. (A) Förenkla uttrycken så långt som möjligt a. ln 8 ln + ln 8 ln + ln b. ln 3 log 0 3 log 0 e + 3 ln 3 log 3 e 30. (A) Lös ekvationerna a. e x = e x b.

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim 0. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVEXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVEXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER Stationära och infleionspunkter VÄXANDE OCH AVTAGANDE FUNKTIONER STATIONÄRA(KRITISKA) PUNKTER KONVEXA OCH KONKAVA FUNKTIONER INFLEXIONSPUNKTER EXTREMPUNKTER OCH EXTREMVÄRDEN Definition (Globalt maimum)

Läs mer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q

Läs mer

Att beräkna t i l l v ä x t takter i Excel

Att beräkna t i l l v ä x t takter i Excel Att beräkna t i l l v ä x t takter i Excel Detta kapitel är en liten matematisk vägledning om att beräkna tillväxttakten i Excel. Här visas exempel på potenser och logaritmer och hur dessa funktioner beräknas

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

SAMMAFATTNINGAR AV VISSA FÖRELÄSNINGAR

SAMMAFATTNINGAR AV VISSA FÖRELÄSNINGAR SAMMAFATTNINGAR AV VISSA FÖRELÄSNINGAR 1. Föreläsning 1 Se litet blad om mängdlära på kurshemsidan. Talsystemen N, Z, Q, R. Mängder och symboler. Lite logik. Slutligen gick vi igenom potenslagarna. Eftersom

Läs mer

Tentamen i matematik. f(x) = ln(ln(x)),

Tentamen i matematik. f(x) = ln(ln(x)), Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

2. Vid konsumtionen av varorna X och Y har en person nyttofunktionen

2. Vid konsumtionen av varorna X och Y har en person nyttofunktionen Tidigare prov i Matematik A. Eempel 1. Tillåtet hjälpmedel: Miniräknare enligt Utbildningsnämndens beslut. Formler och uträkningar skall redovisas. Lösningar skall vara väl motiverade och lätt kunna följas.

Läs mer

f(x) = 1 x 1 y = f(x) = 1 y = 1 (x 1) = 1 y x = 1+ 1 y f 1 (x) = 1+ 1 x 1+ 1 x 1 = 1 1 =

f(x) = 1 x 1 y = f(x) = 1 y = 1 (x 1) = 1 y x = 1+ 1 y f 1 (x) = 1+ 1 x 1+ 1 x 1 = 1 1 = Moment.5,.5.,.5.,.5. Viktiga eempel.0,.,.,.,.,.5,.,.7 Övningsuppgifter.8,.0 abc Inversfunktioner Givet: y = f(), y uttryckt i Sökt : = g(y), uttryckt i y När kan man lösa ut som funktion av y? Sats. Om

Läs mer

Anteckningar för kursen "Analys i en Variabel"

Anteckningar för kursen Analys i en Variabel Anteckningar för kursen "Analys i en Variabel" Simone Calogero Vecka 5 Viktig information. Dessa anteckningar är inte avsedda som en ersättning för kurs litteratur men bara som en kort sammanfattning av

Läs mer

Håkan L. (Skriv som en produkt. Gör uppdelningen i faktorer så långt det går.) 1. Faktorisera 25x Faktorisera 1. 3.

Håkan L. (Skriv som en produkt. Gör uppdelningen i faktorer så långt det går.) 1. Faktorisera 25x Faktorisera 1. 3. Övningsuppgifter för att stödja repetition av gymnasiets matematik Har sammanställt ett antal övningsuppgifter som hjälp att repetera några väsentliga delar av gymnasiets matematik På slutet finns uppgifter

Läs mer

Lösningsförslag TATA

Lösningsförslag TATA Lösningsförslag TATA 0-0-0 (a) Summan är geometrisk med kvoten q =/ och termer Alltså X0 k= k = X0 k+ k= k = (b) Från definitionen av binomialkoe n n = = n där endast n =är en lösning t (c) Låt z = a +

Läs mer

Upphämtningskurs i matematik

Upphämtningskurs i matematik Upphämtningskurs i matematik C.J. 2013 Föreläsningsunderlaget är uppbyggt utgående från kurserna i den långa gymnasiematematiken, ellips-kursböckerna (Schilds förlag) har använts som förebild. Böckerna

Läs mer

FÖ: MVE045, Riemann integral, tekniker Zoran Konkoli, HT 2018

FÖ: MVE045, Riemann integral, tekniker Zoran Konkoli, HT 2018 FÖ: MVE045, Riemann integral, tekniker Zoran Konkoli, HT 2018 VIKTIG: Vi hinner inte gå igenom allt som ni skall kunna under föreläsningar. Varje föreläsning är alltid en tolkning av ADAMS boken, och ibland

Läs mer

där x < ξ < 0. Eftersom ξ < 0 är högerledet alltid mindre än Lektion 4, Envariabelanalys den 30 september 1999 r(1 + 0) r 1 = r.

där x < ξ < 0. Eftersom ξ < 0 är högerledet alltid mindre än Lektion 4, Envariabelanalys den 30 september 1999 r(1 + 0) r 1 = r. Lektion 4, Envariabelanals den 30 september 1999 där 0 < ξ 0 är högerledet alltid större än 2.6.2 Åskådliggör medelvärdessatsen genom att finna en punkt i det öppna intervallet (1, 2) där

Läs mer

Tips : Vertikala asymptoter kan finnas bland definitionsmängdens ändpunkter och bland diskontinuitetspunkter.

Tips : Vertikala asymptoter kan finnas bland definitionsmängdens ändpunkter och bland diskontinuitetspunkter. ASYMPTOTER Definition. Den räta linjen är en lodrät (vertikal) asmptot till funktionen om å dvs om minst en av följande påståenden gäller lim, lim, lim lim Tips : Vertikala asmptoter kan finnas bland definitionsmängdens

Läs mer

LMA222a. Fredrik Lindgren. 17 februari 2014

LMA222a. Fredrik Lindgren. 17 februari 2014 LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite

Läs mer

Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim

Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim Tentamen (TEN) i MATEMATIK, HF 7 dec 7 Tid :-7: KLASS: BP 7 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken typ som helst, en formelsamling och ett bifogat formelblad. Denna lapp lämnar du in

Läs mer

TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning

TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning Johan Thim 23 april 2018 1 Differentialoperatorer För att underlätta notation och visa på underliggande struktur introducerar vi begreppet

Läs mer

Modul 1: Funktioner, Gränsvärde, Kontinuitet

Modul 1: Funktioner, Gränsvärde, Kontinuitet Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd

Läs mer

Modul 1: Funktioner, Gränsvärde, Kontinuitet

Modul 1: Funktioner, Gränsvärde, Kontinuitet Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och

Läs mer

KOMPLETTERANDE UPPGIFTER TILL MATEMATISK ANALYS - EN VARIABEL AV FORSLING OCH NEYMARK

KOMPLETTERANDE UPPGIFTER TILL MATEMATISK ANALYS - EN VARIABEL AV FORSLING OCH NEYMARK KOMPLETTERANDE UPPGIFTER TILL MATEMATISK ANALYS - EN VARIABEL AV FORSLING OCH NEYMARK ELIN GÖTMARK MATS JOHANSSON INSTITUTIONEN FÖR MATEMATIK OCH MATEMATISK STATISTIK UMEÅ UNIVERSITET Date: 3 augusti 202.

Läs mer

Lösningsförslag obs. preliminärt, reservation för fel

Lösningsförslag obs. preliminärt, reservation för fel Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 9 Institutionen för matematik KTH 16 september 2016 Homogena injära ODE m konst koeff Sist: homogena linjära ODE med konstanta koefficienter. Första ordningens sådan ekvation kan skrivas y

Läs mer

Kapitel 4. Funktioner. 4.1 Definitioner

Kapitel 4. Funktioner. 4.1 Definitioner Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet

Läs mer

Lösningsförslag TATM

Lösningsförslag TATM Lösningsförslag TATM79 016-09-6 1 a) Vi isolerar x + och kvadrerar ekvationen observera att det då bara blir en implikation!): + x + = x x + = x ) x + = x ) = x 1x + 1 x 1 x + 10 = 0 x = 1 6 ± 7 6 Eftersom

Läs mer

Block 4 - Funktioner. Funktionsbegreppet Definitionsmängd

Block 4 - Funktioner. Funktionsbegreppet Definitionsmängd Block 4 - Funktioner Funktionsbegreppet Definitionsmängd Värdemängd Grafen för en funktion Polynom Konstanta polynom Linjära polynom Andragradspolynom Potenser, exponential- och logaritmfunktioner Potensfunktioner

Läs mer

Kontrollskrivning 25 nov 2013

Kontrollskrivning 25 nov 2013 Kontrollskrivning 5 nov 03 Tid: 3.5-5.00 Kurser: HF008 Analys och linjär algebra (analysdelen) HF006 Linjär algebra och analys (analysdelen) Lärare: Armin Halilovic, Inge Jovik, Richard Eriksson Eaminator:

Läs mer

TATM79: Föreläsning 3 Komplexa tal

TATM79: Föreläsning 3 Komplexa tal TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig

Läs mer

Modul 1 Mål och Sammanfattning

Modul 1 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation

Läs mer

Tentamen i matematik. f(x) = 1 + e x.

Tentamen i matematik. f(x) = 1 + e x. Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

1 x dx Eftersom integrationskonstanten i (3) är irrelevant, kan vi använda oss av 1/x som integrerande faktor. Låt oss beräkna

1 x dx Eftersom integrationskonstanten i (3) är irrelevant, kan vi använda oss av 1/x som integrerande faktor. Låt oss beräkna Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 30 maj 20, kl 8:00 3:00 Svar, uppgift : i sant, ii sant, iii falskt, iv sant, v falskt, vi sant,

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1

Instuderingsfrågor för Endimensionell analys kurs B1 Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande

Läs mer

3.1 Derivator och deriveringsregler

3.1 Derivator och deriveringsregler 3. Derivator och deriveringsregler Kort om derivator Eempel derivatans definition deriveringsregler numerisk derivering andraderivatan På höjden km kan lufttrcket mbar beskrivas med funktionen = 03 e 0,

Läs mer

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer

601. (A) Bestäm MacLaurinutvecklingarna av ordning 2 till följande uttryck. Resttermen ges på ordoform.

601. (A) Bestäm MacLaurinutvecklingarna av ordning 2 till följande uttryck. Resttermen ges på ordoform. Kap 4.8 4.9. Taylors formel, Lagranges restterm, stort ordo, entydigheten, approimationer, uppskattning av felet, Maclaurins formel, l'hospitals regel. 60. (A) Bestäm MacLaurinutvecklingarna av ordning

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2 SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot

Läs mer

Kap Funktioner av flera variabler, definitionsmängd, värdemängd, graf, nivåkurva. Gränsvärden, kontinuitet.

Kap Funktioner av flera variabler, definitionsmängd, värdemängd, graf, nivåkurva. Gränsvärden, kontinuitet. Kap. 2. 2.2. Funktioner av flera variabler, definitionsmängd, värdemängd, graf, nivåkurva. Gränsvärden, kontinuitet. 20. Skissera definitionsmängden till följande funktioner: A a. f(,) = ln ( 2 2 ) A b.

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

LOGARITMEKVATIONER. Typ 1. och. Typ2. Vi ska visa först hur man löser två ofta förekommande grundekvationer

LOGARITMEKVATIONER. Typ 1. och. Typ2. Vi ska visa först hur man löser två ofta förekommande grundekvationer LOGARITMEKVATIONER Vi ska visa först hur man löser två ofta förekommande grundekvationer Typ 1. log aa ff(xx) = nn och Typ2. log aa ff(xx) = log aa gg(xx) När vi löser logaritmekvationer måste vi tänka

Läs mer

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2 Kapitel 4 Bisektionsalgoritmen Vi ska konstruera lösningar till algebraiska ekvationer av formen f(x) = 0 med hjälp av bisektionsalgoritmen (intervallhalveringsmetoden). På samma gång ska vi se hur man

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största

Läs mer

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde)

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde) GRAFRITNING För att skissera (rita) grafen till en funktion y f () undersöker vi först några viktiga egenskaper: definitionsmängd, eventuella skärningspunkter med och y-aeln, gränsvärdena f ( ), f ( )

Läs mer