Matematik med litet logik

Storlek: px
Starta visningen från sidan:

Download "Matematik med litet logik"

Transkript

1 Matematik med litet logik Ralph-Johan Back (gemensamt arbete med Joakim von Wright) Åbo Akademi, Institutionen för Informationsbehandling TUCS - Turku Centre for Computer Science 14 oktober 2005 TUCS/Åbo Akademi

2 Matematiska bevis Bevis är centrala för förståelsen av matematik Med ett bevis är ett matematiskt teorem en självklarhet, utan bevis en magisk formel Men bevis anses vara svåra och undviks i gymnasiematematiken Bevisen som ges är informella och intuitiva Mera exakt och formell notation används inom vissa områden, t.ex. lösning av ekvationer och förenkling av algebraiska uttryck TUCS/Åbo Akademi 1

3 Logik och bevis Ett matematiskt bevis är en logisk argumentation Men logisk notation används inte i större utsträckning i gymnasiet, och logiska inferensregler ges inte explicit När logik undervisas, behandlas det som ett separat ämne, inte som ett hjälpmedel för att lösa matematiska problem Det som behövs är praktisk logik för matematiska bevis och matematisk argumentation TUCS/Åbo Akademi 2

4 Praktisk logik och programmeringsmetodik Calculational derivations (linjära härledningar) är en paradigm för att utföra bevis som vuxit fram inom ett område av datateknik som kallas programmeringsmetodik. Utvecklat av E.W. Dijkstra och hans kolleger (Wim Feijen, Nettie van Gasteren, mm). En bok av David Gries och Fred Schneider beskriver metoden och används på universitetsnivå. Strukturerade härledningar är en vidareutveckling av kalkylerade härledningar, som Joakim von Wright och jag utvecklat. TUCS/Åbo Akademi 3

5 Exempel på en linjär härledning Distributionsregel för snitt och union: v A (B C) {definition av snitt} v A v B C {definition av union} v A (v B v C) {distribution av logiska konnektiver} (v A v B) (v A v C) {definition av union och snitt} v (A B) (A C) TUCS/Åbo Akademi 4

6 Linjära härledningar Startuttrycket transformeras steg för steg Varje ny version av uttrycket skrivs på egen rad Mellan raderna skrivs relationen mellan uttrycken + en motivation för varför relationen gäller Noggrannheten i stegen kan varieras; det sista steget här mostvarar två steg i början TUCS/Åbo Akademi 5

7 Fördelar Formatet tvingar studenten att explicit ange motiveringen för varje steg i härledningen En härledning är lättare att förstå, och lättare att kolla när motivationen för varje steg är givet En intial grovare lösning kan förfinas och göras mera exakt Metoden stöder självstudier Lättare att ge datorstöd för konstruktion, kontroll och läsning av linjära härledningar TUCS/Åbo Akademi 6

8 Förutsättningar En förståelse av logikens grunder behövs, propositions- och predikatlogik Det egentliga behovet av logik är relativt litet och matematiskt ganska trivialt En grundläggande dos i praktisk logik nyttig i sig själv TUCS/Åbo Akademi 7

9 Strukturerade härledningar Strukturerade härledningar en vidareutveckling av linjära härledningar Stöder explicita delhärledningar, användningen av antaganden i bevis mm De bildar ett fullständigt system for logiska härledningar, ekvivalent med Gentzen liknande bevissystem för högre ordningens logik Strukturerade härledningar utvecklade i vår bok, Refinement Calculus: A Systematic Introduction, Springer Verlag Ett stort antal bevis har utförts som strukturerade härledningar i boken Vi visar i det följande med exempel hur strukturerade härledningar fungerar i gymnasiematematiken TUCS/Åbo Akademi 8

10 Lösa ekvationer Traditionellt angreppssätt: Varje ny version av ekvationen på egen rad, indicera vilken operation som utförts för att erhålla nästa version 2x + 3 = 5 3 2x = 2 /2 x = 1 Om sista raden är av formen 0 = 0, så har ekvationen oändligt många lösningar Om sista raden är av formen 0 = 1, så har ekvationen inga lösningar TUCS/Åbo Akademi 9

11 Ekvationslösning med linjära härledningar 2x + 3 = 5 {subtrahera 3 från båda sidorna} 2x = 2 {dividera med 2} x = 1 Den logiska kopplingen (ekvivalens) mellan uttrycken skrivs explicit Motiveringen skrivs bredvid ekvivalenssymbolen Transitivitet ger slutresultatet 2x + 3 = 5 x = 1 Sista uttrycket är en lösning för att den är skriven i enkel form, där man direkt ser värdet på x. Ekvationslösning är förenkling. TUCS/Åbo Akademi 10

12 Härledningar med sanningsvärden 1 We introducerar sanningsvärdena T (sant) och F (falskt). 2x + 3 = 2x {subtrahera 2x från båda sidorna} 3 = 0 {olika heltal} F 2x + 3 = 2x F visar att ekvationen är falsk för alla värden på x ( ekvationen har inga lösningar ) TUCS/Åbo Akademi 11

13 Härledningar med sanningsvärden 2 2x = 2(x + 1) 2 {förenkla högra sidan} 2x = 2x {dividera med 2} T Här drar vi den slutsatsen att ekvationen 2x = 2(x + 1) 2 gäller för alla värden på x TUCS/Åbo Akademi 12

14 Ekvationslösning Ekvationslönsing följer ett enkelt mönster: Vi manipulerar den ursprungliga ekvationen med ekvivalensbevarande transformationer Vi försöker nå en ekvation som är så enkel som möjlig Uttryck av formen x = 5, F och T är tillräckligt enkla, de visar lösningen TUCS/Åbo Akademi 13

15 Disjunktion och konjunktion x(x 2) = 3(x 2) {subtrahera 3(x 2) från båda sidorna} x(x 2) 3(x 2) = 0 {distributivitet} (x 3)(x 2) = 0 {nollprodukt regeln: ab = 0 a = 0 b = 0} x 3 = 0 x 2 = 0 {lägg till 3 på båda sidorna i vänstra ekvationen} x = 3 x 2 = 0 {lägg till 2 på båda sidorna i högra ekvationen} x = 3 x = 2 TUCS/Åbo Akademi 14

16 Diskussion Den ursprungliga ekvationen ekvivalent med det logiska uttrycket x = 3 x = 2 Detta kan tolkas som att ekvationen har två lösningar Om ekvationslösningen delas upp i två separata härledningar, en för x 3 = 0 och en för x 2 = 0, kan detta leda till osäkerhet om hur de här två lösningarna är relaterade Detta problem blir värre om det finns mer än en obekant, och om vissa delekvationer inte har lösningar Explicita logiska kvantorer undviker även problemet med ± notationen; bättre att skriva x = 1 x = 3 än x = 2 ± 1. TUCS/Åbo Akademi 15

17 Exempel 2 (x 1)(x 2 + 1) = 0 {nollproduktregeln} x 1 = 0 x = 0 {lägg till 1 på båda sidorna i vänstra disjunkten} x = 1 x = 0 {lägg till 1 på båda sidorna i högra disjunkten} x = 1 x 2 = 1 {en kvadrat är aldrig negativ} x = 1 F {regel för konnektiver} x = 1 TUCS/Åbo Akademi 16

18 Kommentarer Kopplingen mellan de två delekvationerna är explicit, och det sista steget använder en vanlig logisk regel Regler som p F = p, p F = F, etc blir lika självklara som x + 0 = x eller x 0 = 0 med litet övning Hela härledningen hålls samman som en enda härledning med hjälp av de logiska konnektiverna. Det ursrpungliga uttrycket transformeras stegvis till ett uttryck som visar lösningen explicit. TUCS/Åbo Akademi 17

19 Graden av noggrannhet Vi har valt en viss grad av noggrannhet i härledningarna ovan I en mycket detaljerad härledning motiveras stegen med specifika regler ( nollproduktregeln ), i mindre detaljerade härledningar är motiveringarna mera generella strategier ( lös ekvationen ). I de fall där man ger en mindre detaljerad härldning tänker man sig att det finns en mera deteljerad härledning, men att den inte visas TUCS/Åbo Akademi 18

20 Delhärledningar En regel som utnyttjas i ett bevissteg kan härledas i en skild delhärledning Alternativt så kan vi ge en delhärledning inom den pågående härledningen: Vi indenterar delhärledningen ett steg till höger Den skrivs direkt efter motiveringen för steget Markeras med eller rubrik Slutet av delhärledningen indiceras med... Om delhärledningen etablerar ett allmännare resultat, som kan användas på andra ställen, är det bättre med ett lemma, är den specifik för härledningen och kort, är det bättre med delhärledning TUCS/Åbo Akademi 19

21 Exempel Vi väljer som exempel följande problem: För vilka värden på x är uttrycket x 1 x 2 2 definierat Vi väljer påståendet som utgångspunkt, och försöker manipulera det tills vi får en karakterisering av x värden på ett enkelt sätt. TUCS/Åbo Akademi 20

22 Lösning (x 1)/(x 2 1) är definierat {villkoret för att ett rationellt uttryck skall vara definierat} x {övergå till logisk notation} (x 2 1 = 0) {lös ekvationen} x 2 1 = 0 {faktorisering} (x + 1)(x 1) = 0 {nollproduktregeln} x = 1 x = 1... (x = 1 x = 1) {de Morgans lagar} (x = 1) (x = 1) {ändra notation} x 1 x 1 TUCS/Åbo Akademi 21

23 Diskussion Det här visar att uttrycket är definierat för alla värden x utom 1 och 1 Vi löste här ekvationen x 2 1 = 0 i en delhärledning Användningen av logiska konnektiver och de Morgans regler visar explicit hur man når fram till de två förbjudna värdena Delhärledningen fokuserar på ett deluttryck, och räknar ut en egenskap hos delluttrycket Den logiska regeln som används här är substitution av lika för lika: s t u[s] u[t] Med det här undviker man att kopiera text som blir oförändrad i manipulationen TUCS/Åbo Akademi 22

24 Gömma delhärledningar Vi kan gömma delhärledningen: (x 1)/(x 2 1) är definierat {villkoret för att ett rationellt uttryck skall vara definierat} x {övergå till logisk notation} (x 2 1 = 0) {lös ekvationen}... (x = 1 x = 1) {de Morgans lagar} (x = 1) (x = 1) {ändra notation} x 1 x 1 Här visar... att en delhärledning är gömd. TUCS/Åbo Akademi 23

25 Fokusering med lokala antaganden När vi utför delhärledningen, så kan vi lägga till lokala antaganden som följer av sammanhanget: När vi fokuserar på b i a b, så kan vi lägga till a som ett lokalt antagande När vi fokuserar på b i a b, så kan vi lägga till a som ett lokalt antagande När vi fokuserar på b i a b, så kan vi lägga till a som ett lokalt antagande Vi visar de lokala antaganden i början av delhärledningen (inom hakparenteser). TUCS/Åbo Akademi 24

26 Exempel x 1 + 2x y = 0 {egenskaper hos absoluta värden} x 1 = 0 2x y = 0 {lägg till 1 på båda sidorna till vänster} x = 1 2x y = 0 {förenkla högra konjunkten} [x = 1] 2x y = 0 {substituera värdet på x} 2 y = 0 [lös ekvationen} y = 2... x = 1 y = 2 TUCS/Åbo Akademi 25

27 Diskussion Lösningen x = 1 y = 2 kan även skrivas som { x = 1 y = 2 Den här notationen har en implicit konjunktion, men det är bättre att skriva ut den explicit. Ett liknande skrivsätt används för lösningarna till en andra grads ekvation, { x1 = 1 x 2 = 2 men här är den implicita konnetorn disjunktion, här avses x = 1 x = 2. TUCS/Åbo Akademi 26

28 Fönsterinferens De här reglerna kan beskrivas som inferensregler. Den två första reglerna är t.ex. Φ,t s t Φ u a u t Φ, t s t Φ u a u t Här är t ( t) det lokala antagandet i beviset av s t, medan Φ är de globala antagandena som är i kraft i beviset. En samling av inferensregler av det här slaget ( fönsterinferens ) är mycket användbar i strukturerade härledningar TUCS/Åbo Akademi 27

29 Ett minimeringsproblem x 2 x 6 når sitt minsta värde {skriv om i kvadratisk form} x 2 x 6 = {komplettera kvadraterna} x 2 x = (x 1 2 ) (x 1 2 ) når sitt minsta värde {konstanta termer inverkar inte på minimits position} (x 1 2 )2 når sitt minsta värde {minsta värdet för en kvadrat är 0} x 1 2 = 0 {lägg 1 2 x = 1 2 till båda sidorna} TUCS/Åbo Akademi 28

30 Diskussion Vi kan använda informella uttryck som delar av ett uttryck Vi gör här ett antal implicita antaganden om extremvärden för uttryck. Utan dessa antaganden borde vi börja med ett mera komplicerat uttryck, som ( y y 2 y 6 x 2 x 6) På den yttersta nivån har vi ekvivalens, men på den inre nivån likhetsrelationen. Vi kan även använda andra transitiva relationer, såsom implikation, ordningsrelationer, mm. TUCS/Åbo Akademi 29

31 Fokusering med monotonicitet Vi kan använda monotonicitet vid fokusering Antag t.ex. att vi vill transformera ett aritmetiskt uttryck av formen t s under relation. Vi kan fokusera på t och visa att t t, varav följer t s t s. Vi kan fokusera på s och visa att s s, varav följer t s t s. Inferensreglerna är här Φ t t Φ t s t s Φ s s Φ t s t s TUCS/Åbo Akademi 30

32 Exempel med epsilon-delta Vi visar att funktionen f (x) = 2x är uniformt kontinuerlig För att kunna uttrycka kontinuitet behövs (nästlade) kvantorer Reglerna som används är i princip formaliseringar av de vanliga reglerna för att hantera kvantorer I exemplet behöver vi specifikt regeln för - introduktion (man visar existens genom att ge ett vittne) Φ t[s/x] Φ ( x t) TUCS/Åbo Akademi 31

33 Beviset f är uniformt kontinuerlig {definition av uniform kontinuitet} ( ε ε > 0 ( δ δ > 0 ( x,y x y < δ x > y f (x) f (y) < ε))) {fokusera på slutsatsen, ersätt i ett monotont kontext} [ε > 0] ( δ δ > 0 ( x,y x y < δ x > y f (x) f (y) < ε)) {fokusera innanför kvantorerna, visa att δ ε/2 f (x) f (y) < ε}... ( δ δ > 0 ( x,y x y < δ x > y δ ε/2)) { - introduktionsregeln, vitnet för δ är ε/2 } ε/2 > 0 ( x,y x y < ε/2 x > y ε/2 ε/2)) {förenkla med hjälp av antaganden} T... ( ε ε > 0 T ) {förenkla med basregler för kvantorer och konnektiver} T TUCS/Åbo Akademi 32

34 Delbeviset Det gömda steget är [δ > 0,x y < δ,x > y] f (x) f (y) < ε {definitionen av f } 2x 2y < ε {förenkla med hjälp av antaganden} x y < ε/2 {antagandena och transitivitet} δ ε/2 TUCS/Åbo Akademi 33

35 Diskussion Exemplet illustrerar nästlade delhärledningar. Exemplet illustrerar även baklänges inferens (omvänd implikation bevaras i härledningen). Detta är ett exemple på ett målinriktat bevis, vi försöker reducera ett givet påstående till T. Om vi kan bevisa t T, så gäller t. De nästlade kvantorerna kräver i princip skilda fokuseringar, en för varje kvantor. Här har flera fokuseringar slagits samman. Samma schema kan användas för att bevisa uniform kontinuitet för vilken funktion som helst. Endast den innersta härledningen behöver göras om. Exemplet visar varför epsilon-delta metoden är komplicerad: här används 3 nästlade kvantorer. Om inferensreglerna är implicita, är det mycket svårt att argumentera intuitivt med ett komplicerat uttryck som det här. TUCS/Åbo Akademi 34

36 Problem med långa nästlade uttryck f är uniformt kontinuerlig {definition av uniform kontinuitet} ( ε ε > 0 ( δ δ > 0 ( x,y x y < δ x > y f (x) f (y) < ε))) {fokusera på slutsatsen, ersätt i ett monotont kontext} [ε > 0] ( δ δ > 0 ( x,y x y < δ x > y f (x) f (y) < ε)) {fokusera innanför kvantoren} [δ > 0,x y < δ,x > y] f (x) f (y) < ε {definitionen av f } 2x 2y < ε {förenkla med hjälp av antaganden} x y < ε/2 {antagandena och transitivitet} δ ε/2 TUCS/Åbo Akademi 35

37 ... ( δ δ > 0 ( x,y x y < δ x > y δ ε/2)) { - introduktionsregeln, vitnet för δ är ε/2 } ε/2 > 0 ( x,y x y < δ x > y ε/2 ε/2)) {förenkla med hjälp av antaganden} T... ( ε ε > 0 T ) {förenkla med basregler för kvantorer och konnektiver} T När härdelningarna går över flere sidor, kan det vara svårt att se hur indenteringen fungerar Kan dela upp härledningen i mindre delar, som var och en ryms på en sida Kan ha en editor som kan gömma delhärledningarna Kan ha indikation i vänstra marginalen som visar indenteringsnivån Kan använda lemman Kan visa härledning och delhärledning sida vid sida TUCS/Åbo Akademi 36

38 Exempel på alternativ beskrivning TUCS/Åbo Akademi 37

39 f är uniformt kontinuerlig {definition av uniform kontinuitet} ( ε ε > 0 ( δ δ > 0 ( x,y x y < δ x > y f (x) f (y) < ε))) {fokusera på slutsatsen, monotont kontext} [ε > 0] ( δ δ > 0 ( x,y x y < δ x > y f (x) f (y) < ε)) {fokusera innanför kvantorerna,}... ( δ δ > 0 ( x,y x y < δ x > y δ ε/2)) { - introduktionsregeln, vittnet ε/2 } ε/2 > 0 ( x,y x y < ε/2 x > y ε/2 ε/2)) {förenkla med hjälp av antaganden} T... ( ε ε > 0 T) {förenkla } T [δ > 0,x y < δ,x > y] f (x) f (y) < ε {definitionen av f } 2x 2y < ε {förenkla med antaganden} x y < ε/2 {antagandena och transitivitet} δ ε/2 TUCS/Åbo Akademi 38

40 Fördelarna med strukturerade härledningar Lättare att konstruera och förklara härledningar under lektionen Lättare att förstå härledningar och bevis efter lektionen, vid självstudie Enklare och enhetligare logik-baserad notation Enklare och enhetligare begreppslig bas för matematiska härledningar Explicita regler visar vilka steg som är tillåtna Enklare att kontrollera och ge vitsord för härledningar Bra stöd för web-baserad undervisning i matematik Nästlade härledningar kan selektivt visas och gömmas TUCS/Åbo Akademi 39

41 Projekt Metoden har prövats på en större samling studentexamensuppgifter (lång matematik) Hela gymnasiekursen i matematik har förelästs med hjälp av strukturerade härledningar (Kuppis gymnasium i Åbo, Mia Peltomäki). Jämförande studie med en kontrollgrupp som undervisats på vanligt sätt. Gymnasiet har 3 år, med kurser i matematik. En kurs Logik och problemlösningsmetoder har undervisats som specialkurs i gymansiet (Joakim von Wright, Vasa övningsskola i Vasa) Joakim och jag har skrivit en bok över metodiken: Matematik med litet logik: Strukturerade härledningar i gymnasiematematiken. Bokens manuskript finns nu på svenska och engelska, översättning till finska är på gång. TUCS/Åbo Akademi 40

42 Erfarenheter från Kuppis Strukturerade härledningsgruppen klarat sig mycket bra i jämförelse med kontrollgruppen Gradering av kurser på skalan 5-10 (5 godkänd, 10 bäst). Strukturerade härledningsgruppen haft i medeltal vitsordet 9 över alla kurser, kontrollgruppen vitsordet 7. Strukturerade härledningsgruppen var i början bättre än kontrollgruppen (skillnaden cirka 1) och läraren var även bättre (skillnaden cirka 1). Statistiskt kan vi säga att det åtminstone inte leder till sämre resultat om man använder strukturerade härledningar Kurserna med strukturerade härledningar led av brist på ordentligt studiematerial (endast mycket preliminära kompendier kunde användas) Goda erfarenheter även från andra projekten. TUCS/Åbo Akademi 41

43 Hur introducera strukturerade härledningar i gymnasiet Man kan inte experimentera fritt med gymnasie-eleverna (oroliga föräldrar, osäkra lärare) Stukturerade härledningar är tillåtna i gymnasiematematiken i Finland, tillstånd av studentexamensnämnden Kan introducera metoden genom en frivillig kurs i logik och talteori, baserad på vår bok. En tillvalskurs kan ges på det här området tidigt i gymnasiet, t.ex. första året Kan lämpa sig t.ex. för att göra lärarna mera bekanta med metodiken. Lärarna kan sedan utnyttja metodiken i övrig undervisning, i den utsträckning som de känner sig säkra på metoden och dess fördelar TUCS/Åbo Akademi 42

44 Slutsatser Vi har visat hur man kan använda strukturerade härledningar för att lösa typiska problem i gymnasiematematiken Formatet tillåter att vi går från problemformulering till lösning i en enda enhetlig strukturerad härledning, där varje steg motiveras noggrant Härledningen kan inspekteras och kontrolleras av andra utan större svårighet Noggrannheten i beviset kan anpassas efter behov Vi kan bygga upp härledningen top-down (starta från problemet) eller bottom-up (starta med att bevisa nyttiga lemman) Formatet lämpar sig väl för olika slag av datorbaserat stöd. Metoden har prövats i praktiken, och visat sig fungera bra. TUCS/Åbo Akademi 43

45 Matematikuppgift på 1950-talet En skogshuggare säljet virke för 100 mark. Hans produktionskostnader är 4/5 av priset. Hur mycket får han i vinst? TUCS/Åbo Akademi 44

46 Matematikuppgift på 1960-talet En skogshuggare säljer virke för 100 mark. Hans produktionskostnader är 4/5 av priset, dvs 80 mark. Hur mycket får han i vinst? TUCS/Åbo Akademi 45

47 Matematikuppgift på 1970-talet En skogshuggare byter en mängd V av virke mot en mängd P av pengar. Mängden P har 100 element. Varje element har värdet 1 mark. Rita 100 punkter för att illustrera mängden P. Mängden av produktionskostnader K har 20 element mindre än mängden P. Visa mängden K som en delmängd av mängden P och svara på följande fråga: Hur många element finns det i den mängd som beskriver vinsten? TUCS/Åbo Akademi 46

48 Matematikuppgift på 1980-talet En skogshuggare säljer virke för 100 mark. Hans produktionskostnader är 80 mark och hans vinst är 20 mark. Uppgift: sträcka under talet 20. TUCS/Åbo Akademi 47

49 Matematikuppgift på 1990-talet En skogshuggare förtjänar 20 mark genom att fälla träd i en vacker skog. Vad anser du om det här sättet att förtjäna uppehället? Diskussionsämne för klassen efter att uppgiften blivit utförd: Hur kändes det för skogens fåglar och ekorrar när skogshuggaren fällde träden? TUCS/Åbo Akademi 48

50 Matematikuppgift på 2000-talet En skogshuggare säljer ett lass virke för 100 euro. Hans produktionskostnader är 120 euro. Hur stort stöd bör han få när vinsten skall vara 20 euro, och bokföringsbyrån skall ha 60 euro? TUCS/Åbo Akademi 49

Utveckling av undervisningen i matematik och datateknik i gymnasiet

Utveckling av undervisningen i matematik och datateknik i gymnasiet Utveckling av undervisningen i matematik och datateknik i gymnasiet Ralph-Johan Back Åbo Akademi, Avdelningen för Informationsteknologi CREST Learning and Reasoning laboratoriet 22 mars 2007 Gymnasieundervisning

Läs mer

Strukturerade härledningar har sedan mitten av 1990-talet utvecklats av

Strukturerade härledningar har sedan mitten av 1990-talet utvecklats av Linda Mannila, Mia Peltomäki & Ralph-Johan Back Erfarenheter av strukturerade härledningar i undervisningen Artikeln Strukturerade härledningar ökar förståelsen i Nämnaren 2010:3 beskriver principerna

Läs mer

Matematik med lite logik

Matematik med lite logik Ralph-Johan Back Matematik med lite logik Logik för strukturerade härledningar Turku Centre for Computer Science IMPEd Resource Centre TUCS Lecture Notes No 8, Oct 2008 Matematik med lite logik Logik

Läs mer

Matematik med lite logik

Matematik med lite logik Ralph-Johan Back Matematik med lite logik Strukturerade härledningar som allmänt bevisformat Turku Centre for Computer Science IMPEd Resource Centre TUCS Lecture Notes No 9, Oct 2008 Matematik med lite

Läs mer

Medan bevis och exakta definitioner är vardagsmat för en universitetsstuderande,

Medan bevis och exakta definitioner är vardagsmat för en universitetsstuderande, Linda Mannila Strukturerade härledningar ökar förståelsen Strukturerade härledningar är ett specifikt format för att presentera beräkningar och bevis på ett klart och tydligt sätt som dessutom lämpar sig

Läs mer

MATEMATIKENS SPRÅK. Avsnitt 1

MATEMATIKENS SPRÅK. Avsnitt 1 Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en

Läs mer

Matematik med lite logik

Matematik med lite logik Ralph-Johan Back Joakim von Wright Matematik med lite logik Strukturerade härledningar i gymnasiematematiken Turku Centre for Computer Science IMPEd Resource Centre TUCS Lecture Notes No 1, Oct 2008 Matematik

Läs mer

Övningshäfte 1: Logik och matematikens språk

Övningshäfte 1: Logik och matematikens språk GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter

Läs mer

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden.

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden. MATEMATISK LOGIK Matematisk logik formaliserar korrekta resonemang och definierar formellt bindeord (konnektiv) mellan påståenden (utsagor, satser) I matematisk logik betraktar vi påståenden som antingen

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q

Läs mer

(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element.

(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element. Grunder i matematik och logik (2017) Mängdlära Marco Kuhlmann 1 Grundläggande begrepp Mängder och element 2.01 En mängd är en samling objekt. Två standardexempel är mängden av naturliga tal (N) och mängden

Läs mer

A B A B A B S S S S S F F S F S F S F F F F

A B A B A B S S S S S F F S F S F S F F F F Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 17. Logik När man utför matematiska resonemang så har man alltid vissa logiska spelregler att förhålla

Läs mer

ANDREAS REJBRAND NV3ANV Matematik Matematiskt språk

ANDREAS REJBRAND NV3ANV Matematik   Matematiskt språk ANDREAS REJBRAND NV3ANV 2006-02-14 Matematik http://www.rejbrand.se Matematiskt språk Innehållsförteckning MATEMATISKT SPRÅK... 1 INNEHÅLLSFÖRTECKNING... 2 INLEDNING... 3 MÄNGDER... 4 Att uttrycka en mängd...

Läs mer

9. Predikatlogik och mängdlära

9. Predikatlogik och mängdlära Objektorienterad modellering och diskreta strukturer 9. Predikatlogik och mängdlära Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik naturlig härledning predikatlogik

Läs mer

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss Explorativ övning 1 LMA100 vt 2003 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt

Läs mer

Sats. Om t är en rätvinklig triangel så är summan av kvadraterna på kateterna i t lika med kvadraten på hypotenusan.

Sats. Om t är en rätvinklig triangel så är summan av kvadraterna på kateterna i t lika med kvadraten på hypotenusan. Lunds tekniska högskola Datavetenskap Lennart Andersson Föreläsningsanteckningar EDAF10 3 Predikatlogik 3.1 Motivering I satslogiken är de minsta beståndsdelarna satslogiska variabler som kan anta värdena

Läs mer

Övningshäfte 2: Induktion och rekursion

Övningshäfte 2: Induktion och rekursion GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,

Läs mer

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är PASS 7. EKVATIONSLÖSNING 7. Grundbegrepp om ekvationer En ekvation säger att två matematiska uttryck är lika stora. Ekvationen har alltså ett likhetstecken och två deluttryck på var sin sida om likhetstecknet.

Läs mer

Logik: sanning, konsekvens, bevis

Logik: sanning, konsekvens, bevis Logik: sanning, konsekvens, bevis ft1100 samt lc1510 HT 2016 Giltiga argument (Premiss 1) (Premiss 2) (Slutsats) Professorn är på kontoret eller i lunchrummet Hon är inte på kontoret Professorn är i lunchrummet

Läs mer

Talmängder. Målet med första föreläsningen:

Talmängder. Målet med första föreläsningen: Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt

Läs mer

Explorativ övning 9 RELATIONER OCH FUNKTIONER

Explorativ övning 9 RELATIONER OCH FUNKTIONER Explorativ övning 9 RELATIONER OCH FUNKTIONER Övningens syfte är att bekanta sig med begreppet relation på en mängd M. Begreppet relation i matematiska sammanhang anknyter till betydelsen av samma ord

Läs mer

MÖNSTER OCH TALFÖLJDER

MÖNSTER OCH TALFÖLJDER MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll

Läs mer

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2.

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2. Logik Vid alla matematiskt resonemang måste man vara säker på att man verkligen menar det man skriver ner på sitt papper. Därför måste man besinna hur man egentligen tänker. Den vetenskap, som sysslar

Läs mer

2 Matematisk grammatik

2 Matematisk grammatik MATEMATISK GRAMMATIK Matematisk grammatik.1 Skriva matematik Matematisk grammatik, minst lika kul som det låter, och hur man skriver matematik är nästan lika viktigt som vad man skriver. En grammatisk

Läs mer

DD1350 Logik för dataloger. Fö 2 Satslogik och Naturlig deduktion

DD1350 Logik för dataloger. Fö 2 Satslogik och Naturlig deduktion DD1350 Logik för dataloger Fö 2 Satslogik och Naturlig deduktion 1 Satslogik En sats(eller utsaga)är ett påstående som kan vara sant eller falskt. I satslogik(eng. propositionallogic) representeras sådana

Läs mer

Matematisk problemlösning

Matematisk problemlösning Matematisk problemlösning För utveckling av personliga och professionella förmågor Linda Mattsson och Robert Nyqvist Blekinge tekniska högskola Institutionen för matematik och naturvetenskap 16 augusti

Läs mer

Lite om bevis i matematiken

Lite om bevis i matematiken Matematik, KTH Bengt Ek februari 2013 Material till kursen SF1662, Diskret matematik för CL1: Lite om bevis i matematiken Inledning Bevis är centrala i all matematik Utan (exakta definitioner och) bevis

Läs mer

p /\ q r DD1350 Logik för dataloger Kort repetition Fö 3 Satslogikens semantik

p /\ q r DD1350 Logik för dataloger Kort repetition Fö 3 Satslogikens semantik DD1350 Logik för dataloger Fö 3 Satslogikens semantik 1 Kort repetition Satslogik formellt språk för att uttrycka påståenden med variabler och konnektiv /\, \/,, t.ex. p /\ q r 1 Kort repetition Naturlig

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om logik och mängdlära Mikael Hindgren 5 september 2018 Utsagor Utsaga = Påstående som har sanningsvärde Utsagan kan vara sann (S) eller falsk (F) öppen eller

Läs mer

LMA033/LMA515. Fredrik Lindgren. 4 september 2013

LMA033/LMA515. Fredrik Lindgren. 4 september 2013 LMA033/LMA515 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 4 september 2013 F. Lindgren (Chalmers&GU) Matematik 4 september 2013 1 / 25 Outline 1 Föreläsning

Läs mer

Föreläsning 3: Ekvationer och olikheter

Föreläsning 3: Ekvationer och olikheter Föreläsning 3: Ekvationer och olikheter En ekvation är en likhet som innehåller en flera obekanta storheter. Exempel: x = 9, x är okänd. t + t + 1 = 7, t är okänd. Vi säger att ett värde på den obekanta

Läs mer

Begreppen "mängd" och "element" är grundläggande begrepp i matematiken.

Begreppen mängd och element är grundläggande begrepp i matematiken. MÄNGDER Grundläggande begrepp och beteckningar Begreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt,

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, Explorativ övning 1 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt matematiska språk,

Läs mer

Övningshäfte 3: Funktioner och relationer

Övningshäfte 3: Funktioner och relationer GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2014 INLEDANDE ALGEBRA Övningshäfte 3: Funktioner och relationer Övning H Syftet är att utforska ett av matematikens viktigaste begrepp: funktionen. Du har

Läs mer

Begreppen "mängd" och "element" är grundläggande begrepp i matematiken.

Begreppen mängd och element är grundläggande begrepp i matematiken. MÄNGDER Grundläggande begrepp och beteckningar egreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2015 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner

Läs mer

Kontinuitet och gränsvärden

Kontinuitet och gränsvärden Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika

Läs mer

Erfarenheter av strukturerade härledningar i undervisningen

Erfarenheter av strukturerade härledningar i undervisningen Erfarenheter av strukturerade härledningar i undervisningen Linda Mannila, Mia Peltomäki och Ralph-Johan Back December 15, 2013 Iartikeln Struktureradehärledningarökarförståelsen inämnarennr3/2010beskrevsdegrundläggande

Läs mer

Mängder. 1 Mängder. Grunder i matematik och logik (2015) 1.1 Grundläggande begrepp. 1.2 Beskrivningar av mängder. Marco Kuhlmann

Mängder. 1 Mängder. Grunder i matematik och logik (2015) 1.1 Grundläggande begrepp. 1.2 Beskrivningar av mängder. Marco Kuhlmann Marco Kuhlmann 1 Diskret matematik handlar om diskreta strukturer. I denna lektion kommer vi att behandla den mest elementära diskreta strukturen, som alla andra diskreta strukturer bygger på: mängden.

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2013 1 Inledning 2 Satslogik Inledning Satslogiska uttryck Resonemang och härledningar

Läs mer

Olika sätt att lösa ekvationer

Olika sätt att lösa ekvationer Modul: Algebra Del 5: Algebra som språk Olika sätt att lösa ekvationer Cecilia Kilhamn, Göteborgs Universitet och Lucian Olteanu, Linnéuniversitetet Att lösa ekvationer är en central del av algebran, det

Läs mer

Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section

Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section Föreläsning 1 Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section 1.1-1.3 i kursboken Definition En utsaga (proposition) är ett

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 6: Binära beslutsdiagram (BDD) Henrik Björklund Umeå universitet 22. september, 2014 Binära beslutsdiagram Binära beslutsdiagram (Binary decision diagrams, BDDs)

Läs mer

Likhetstecknets innebörd

Likhetstecknets innebörd Likhetstecknets innebörd Följande av Görel Sterner översatta och bearbetade text bygger på boken: arithmetic & algebra in elementary school. Portsmouth: Heinemann Elever i åk 1 6 fick följande uppgift:

Läs mer

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska kunnas?

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska kunnas? Avslutning Anmärkningar inför tentan Vad ska kunnas? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna och gruppövningarna räcker i princip.

Läs mer

En introduktion till logik

En introduktion till logik rasmus.blanck@gu.se FT1200, LC1510 och LGFI52 VT2017 Först: Tack till Martin Kaså, som gett mig tillstånd att använda och bearbeta dessa ljusbilder. Vad är logik? Slogan: Logik undersöker vilka argument

Läs mer

Satslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar)

Satslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Satslogik grundläggande definitioner Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Modeller, logisk konsekvens och ekvivalens Några notationella förenklingar Kompletta mängder

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta

Läs mer

Läsanvisningar Henrik Shahgholian

Läsanvisningar Henrik Shahgholian Institutionen för matematik SF1626 Flervariabelanalys Läsanvisningar Henrik Shahgholian Läsanvisningarna nedan är har tagits fram som hjälpmedel för de studenter som vill helst ha en snabb tillgång till

Läs mer

Likhetstecknets innebörd

Likhetstecknets innebörd Modul: Algebra Del 5: Algebra som språk Likhetstecknets innebörd Följande av Görel Sterner (2012) översatta och bearbetade text bygger på boken: Carpenter, T. P., Franke, M. L. & Levi, L. (2003). Thinking

Läs mer

RÄDDA EKVATIONERNA! Cecilia Christiansen

RÄDDA EKVATIONERNA! Cecilia Christiansen RÄDDA EKVATIONERNA! Cecilia Christiansen Innehåll Introduktion...4 Innan du börjar...6 Lektion 1 Vad är matematiska uttryck och hur förenklar man dem?...8 Lektion 2 Ekvationsspelet del 1...11 Lektion 3

Läs mer

Logik. Dr. Johan Hagelbäck.

Logik. Dr. Johan Hagelbäck. Logik Dr. Johan Hagelbäck johan.hagelback@lnu.se http://aiguy.org Vad är logik? Logik handlar om korrekta och inkorrekta sätt att resonera Logik är ett sätt att skilja mellan korrekt och inkorrekt tankesätt

Läs mer

Formell logik Kapitel 7 och 8. Robin Stenwall Lunds universitet

Formell logik Kapitel 7 och 8. Robin Stenwall Lunds universitet Formell logik Kapitel 7 och 8 Robin Stenwall Lunds universitet Kapitel 7: Konditionalsatser Kapitlet handlar om konditionalsatser (om-så-satser) och deras logik Idag: bevismetoder för konditionalsatser,

Läs mer

I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental.

I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental. Lunds tekniska högskola Datavetenskap Lennart ndersson Föreläsningsanteckningar EDF10 4 Mängder 4.1 Motivering Mängden är den mest grundläggande diskreta strukturen. Nästan alla matematiska begrepp går

Läs mer

Kompletteringsmaterial. K2 Något om modeller, kompakthetssatsen

Kompletteringsmaterial. K2 Något om modeller, kompakthetssatsen KTH Matematik Bengt Ek Maj 2008 Kompletteringsmaterial till kursen SF1642, Logik för D1 och IT3: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och

Läs mer

Logik och kontrollstrukturer

Logik och kontrollstrukturer Logik och kontrollstrukturer Flödet av instruktioner i ett programmeringsspråk bygger vi upp med hjälp av dess kontrollstrukturer. I C har vi exemplen if, if else, while, do while. Dessutom finns switch

Läs mer

Föreläsning 1, Differentialkalkyl M0029M, Lp

Föreläsning 1, Differentialkalkyl M0029M, Lp Föreläsning 1, Differentialkalkyl M0029M, Lp 1 2017 Staffan Lundberg Luleå Tekniska Universitet, Inst för teknikvetenskap och matematik Staffan Lundberg M0029M H17 1/ 50 Allmän information Föreläsningar:

Läs mer

Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT. Övning A

Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT. Övning A Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT Första delen av övningen handlar om begreppet funktion. Syftet är att bekanta sig med funktionsbegreppet som en parbildning. Vi koncentrerar oss på tre viktiga

Läs mer

Om semantisk följd och bevis

Om semantisk följd och bevis Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om semantisk följd och bevis Logik handlar bla om studiet av korrekta slutledningar, dvs frågan om när det är riktigt

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 3: Bevissystem, Hilbertsystem Henrik Björklund Umeå universitet 8. september, 2014 Bevissystem och Hilbertsystem Teorier och deduktionsproblemet Axiomscheman

Läs mer

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar Aktivitetsbeskrivning Denna aktivitet är utformat som ett spel som spelas av en grupp elever. En elev i taget agerar Gömmare och de andra är Gissare. Den som är gömmare lagrar (gömmer) tal i några av räknarens

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

Föreläsningsanteckningar och övningar till logik mängdlära

Föreläsningsanteckningar och övningar till logik mängdlära Inledande matematisk analys tma970, 010, logik, mängdlära Föreläsningsanteckningar och övningar till logik mängdlära Dessa öreläsningsanteckningar kompletterar mycket kortattat kap 0 och appendix B i Persson/Böiers,

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

Föreläsning 5. Deduktion

Föreläsning 5. Deduktion Föreläsning 5 Deduktion Hur ett deduktivt system fungerar Komponenter - Vokabulär Ett deduktivt system använder ett visst slags språk som kan kallas för systemets vokabulär. I mindre formella fall är kanske

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

K2 Något om modeller, kompakthetssatsen

K2 Något om modeller, kompakthetssatsen KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och fullständighetssatsen

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

Lite Kommentarer om Gränsvärden

Lite Kommentarer om Gränsvärden Lite Kommentarer om Gränsvärden På föreläsningen (Föreläsning 2 för att vara eakt) så introducerade vi denitionen Denition. Vi säger att f() går mot a då går mot oändligheten, uttryckt i symboler som f()

Läs mer

8. Naturlig härledning och predikatlogik

8. Naturlig härledning och predikatlogik Objektorienterad modellering och diskreta strukturer 8. Naturlig härledning och predikatlogik Sven Gestegård Robertz Datavetenskap, LTH 2013 Outline 1 Inledning 2 Inferensregler 3 Predikatlogik 8. Naturlig

Läs mer

Filosofisk logik Kapitel 19. Robin Stenwall Lunds universitet

Filosofisk logik Kapitel 19. Robin Stenwall Lunds universitet Filosofisk logik Kapitel 19 Robin Stenwall Lunds universitet Dagens upplägg Gödels fullständighetsteorem Sundhet och fullständighet Fullständighetsbeviset Vittneskonstanter Henkinteorin Eliminationsteoremet

Läs mer

Mängdlära. Kapitel Mängder

Mängdlära. Kapitel Mängder Kapitel 2 Mängdlära 2.1 Mängder Vi har redan stött på begreppet mängd. Med en mängd menar vi en väldefinierad samling av objekt eller element. Ordet väldefinierad syftar på att man för varje tänkbart objekt

Läs mer

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1.

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1. UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik I 1 Lite om satslogik 1.1

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Logikgrindar Från data till digitala byggblock: Kursens

Läs mer

Absolutstabilitet. Bakåt Euler Framåt Euler

Absolutstabilitet. Bakåt Euler Framåt Euler Absolutstabilitet Introduktion För att en numerisk ODE-metod ska vara användbar måste den vara konvergent, dvs den numeriska lösningen ska närma sig den exakta lösningen när steglängden går mot noll. Det

Läs mer

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19 Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium IV v. 2.0, den 29/4 2013 III. Metalogik 17-19 Modeller för satslogiken 18.1 Vi har tidigare sagt att en modell är en tolkning av en teori

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

Mängder, funktioner och naturliga tal

Mängder, funktioner och naturliga tal Lådprincipen Följande sats framstår som en fullständig självklarhet: Sats (Lådprincipen (pigeon hole principle)). Låt n > m vara naturliga tal. Fördelar man n föremål i m lådor, så kommer åtminstone en

Läs mer

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna?

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna? Avslutning Anmärkningar inför tentan Vad ska ni kunna? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna, inlämningsuppgifterna och gruppövningarna

Läs mer

Anteckningar i. Inledande Matematik

Anteckningar i. Inledande Matematik Anteckningar i Inledande Matematik Anders Logg Chalmers tekniska högskola (Utkast, version 3 oktober 2016) Copyright 2016 Anders Logg Förord och läsanvisningar Dessa anteckningar är avsedda att användas

Läs mer

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter inför Matematik - 7G0 Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 4 Facit Repetitionsuppgifter inför

Läs mer

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L.

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L. Sidor i boken 119-11 Andragradsekvationer Dagens tema är ekvationer, speciellt andragradsekvationer. Men först några ord om ekvationer i allmänhet. En ekvation är en likhet som innehåller ett (möjligen

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

Föreläsning 1: Tal, mängder och slutledningar

Föreläsning 1: Tal, mängder och slutledningar Föreläsning 1: Tal, mängder och slutledningar Tal Tal är organiserade efter några grundläggande egenskaper: Naturliga tal, N De naturliga talen betecknas med N och innehåller alla positiva heltal, N =

Läs mer

LOGIK, MÄNGDER OCH FUNKTIONER

LOGIK, MÄNGDER OCH FUNKTIONER LOGIK, MÄNGDER OCH FUNKTIONER KOMPLETTERANDE STUDIEMATERIAL TILL MMA121 MATEMATISK GRUNDKURS VÅRTERMINEN 2014 ERIK DARPÖ 1. Utsagor, implikation och ekvivalens En utsaga är en påstående, formulerat med

Läs mer

Jesper Carlström 2008 (reviderad 2009)

Jesper Carlström 2008 (reviderad 2009) Jesper Carlström 2008 (reviderad 2009) Jesper Carlström Matematiska institutionen Stockholms universitet 106 91 Stockholm http://www.math.su.se/ jesper/logikbok/ c 2009 Jesper Carlström Typsatt av L A

Läs mer

När vi läste Skolverkets rapport Svenska elevers matematikkunskaper

När vi läste Skolverkets rapport Svenska elevers matematikkunskaper Florenda Gallos Cronberg & Truls Cronberg Två perspektiv på att utveckla algebraiska uttryck Svenska elever påstås ha svårt med mönstertänkande. Eller är det så att de inte får lärarledd undervisning i

Läs mer

1 Suddig logik och gitter

1 Suddig logik och gitter UPPSALA UNIVERSITET Matematiska institutionen Erik Palmgren Kompletterande material Algebra DV2 ht-2000 1 Suddig logik och gitter Suddig logik (engelska: fuzzy logic) är en utvidgning av vanlig boolesk

Läs mer

Mängder och kardinalitet

Mängder och kardinalitet UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen

Läs mer

Formell logik Kapitel 5 och 6. Robin Stenwall Lunds universitet

Formell logik Kapitel 5 och 6. Robin Stenwall Lunds universitet Formell logik Kapitel 5 och 6 Robin Stenwall Lunds universitet Kapitel 5 Bevismetoder för boolesk logik Visa att en sats är en tautologisk konsekvens av en mängd premisser! Lösning: sanningstabellmetoden

Läs mer

PRIM-gruppen har på uppdrag av Skolverket utarbetat ett webbaserat

PRIM-gruppen har på uppdrag av Skolverket utarbetat ett webbaserat Katarina Kjellström Ett bedömningsstöd för grundskolans matematiklärare På Skolverkets webbplats finns nu ett fritt tillgängligt bedömnings stöd. Artikel författaren har deltagit i arbetet med att ta fram

Läs mer

Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet

Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet Dagens upplägg Antalet element i en mängd Kardinalitet Humes princip Cantors teorem Den universella mängden Några mängdteoretiska paradoxer

Läs mer

Introduktion till strukturerade härledningar

Introduktion till strukturerade härledningar Introduktion till strukturerade härledningar Strukturerade härledningar är en metod för att underlätta konstruktion, presentation och förståelsen av matematiska argument. Metoden är lämplig för matematiska

Läs mer

1 Föreläsning Implikationer, om och endast om

1 Föreläsning Implikationer, om och endast om 1 Föreläsning 1 Temat för dagen, och för dessa anteckningar, är att introducera lite matematisk terminologi och notation, vissa grundkoncept som kommer att vara genomgående i kursen. I grundskolan presenteras

Läs mer

Lite om räkning med rationella uttryck, 23/10

Lite om räkning med rationella uttryck, 23/10 Lite om räkning med rationella uttryck, / Tänk på att polynom uppför sig ungefär som heltal Summan, differensen respektive produkten av två heltal blir ett heltal och på motsvarande sätt blir summan, differensen

Läs mer

Föreläsning 9. Absolutstabilitet

Föreläsning 9. Absolutstabilitet Föreläsning 9 Absolutstabilitet Introduktion För att en numerisk ODE-metod ska vara användbar måste den vara konvergent, dvs den numeriska lösningen ska närma sig den exakta lösningen när steglängden går

Läs mer

Om plana och planära grafer

Om plana och planära grafer Matematik, KTH Bengt Ek november 2017 Material till kurserna SF1679 och SF1688, Diskret matematik: Om plana och planära grafer I många sammanhang (t.ex. vid konstruktion av elektriska kretsar) är det intressant

Läs mer