Grundläggande logik och modellteori

Storlek: px
Starta visningen från sidan:

Download "Grundläggande logik och modellteori"

Transkript

1 Grundläggande logik och modellteori Kapitel 3: Bevissystem, Hilbertsystem Henrik Björklund Umeå universitet 8. september, 2014

2 Bevissystem och Hilbertsystem Teorier och deduktionsproblemet Axiomscheman och bevisregler Bevissystem i allmänt Hilbertsystemet Egenskaper hos bevissystem

3 Varför bevissystem? Bevissystem är en metod för att visa att U = A steg för steg. Ett bevis kan verifieras, men är svårare att algoritmiskt beräkna. Om U = {A 1,..., A n } kan man med semantiska tablåer kontrollera om A 1 A n A är valid genom att falsifiera negationen. Från detta följer = A 1 A n A, och från det att U = A (se Teorem 2.38 i andra uppl., 2.50 i tredje). Men, bevissystem get oss vissa fördelar U kan vara oändlig (!) Bevissystem klarar hoppet till mer avancerade logiker Bevissystem producerar användbara mellanresultat (lemmor)

4 Teorier och teorem En mängd formler U är sluten under semantisk följd om, för varje formel A, U = A innebär att A U. Om U har den här egenskapen, då är U en teori och A är ett teorem. Låt U = {A 1, A 2,...} vara en mängd formler. Då säger vi att T (U) = {A U = A} är Us teori och att formlerna i U är axiom i T (U). Att fråga om A är ett teorem i T (U), dvs. om U = A, är ekvivalent med att fråga om = A 1 A 2... A är en tautologi (se Teorem 2.38 i andra uppl., 2.50 i tredje).

5 Deduktionsproblemet Deduktionsproblemet frågar om = A gäller (där A WF(L)). En logik L är avgörbar om dess deduktionsproblem är avgörbart. Satslogiken (dvs varje satslogik) är avgörbar. Vi kan visa att negationen av formeln inte är satisfierbar med en semantisk tablå. Är logiken i fråga ändlig så kan = A avgöras genom att räkna ut v(a) för varje tolkning v. Om logiken inte är ändlig kan A trots allt endast innehålla ett ändligt antal atomer, vilket medför att man kan begränsa sig till dem. Bevissystem kan dock producera långt mycket kompaktare, lösningar av deduktionsproblemet, som är mycket effektivare att verifiera korrekta.

6 Bevissystem, informellt Ett bevissystem består av axiom och regler. Ett bevis består av en linjär följd av formler, där varje formel är en hypotes, ett axiom eller kan härledas från tidigare formler enligt bevissystemets regler. Exempel: Vi vill visa att {p, p q, q r} = r. Formlerna p, p q och q r är hypoteserna och vi vill komma fram till r. I bevissystemet som ska diskuteras här (nedan kallat Hilbertsystemet) ser beviset ungefär ut så här: 1. p (hypotes) 2. p q (hypotes) 3. q (fås av 1 och 2) 4. q r (hypotes) 5. r (fås av 3 och 4)

7 Axiomscheman+bevisregler Axiomscheman är mallar för formler som innehåller platshållare. En platshållare står för en godtycklig wff. Ett exempel är α 1 (α 2 α 1 ). Om förekomsterna av α 1 och α 2 ersätts med två godtyckliga wff:er fås ett axiom. Antalet axiom som schemat beskriver brukar alltså vara oändligt. Bevisregler skrivs vanligen som i det här exemplet, en berömd bevisregel: α 1, α 1 α 2 α 2 (modus ponens, MP). MP användes i första exemplet. Regeln säger att om instanser av alla formler över strecket (premisserna) redan har härletts så får också motsvarande instans av formeln under strecket (konsekvensen) härledas. (Axiomscheman är egentligen ett specialfall där antalet formler över strecket är 0, vilket innebär att konsekvensen alltid får härledas.)

8 Uppgift 1 Om ett axiomschema innehåller mallen (α 1 (α 2 α 1 )), vilka av följande formler är då axiom? A 1 = (p (q p)) A 3 = (p (p p)) A 2 = ((p p) (p (p p))) A 4 = (p (q (r s)))

9 Lösning 1 Formlerna A 1, A 2 och A 3 är axiom (α 1 och α 2 kan bytas mot samma formel), men i A 4 har skilda förekomster av α 1 ersatts med olika formler och det är inte tillåtet.

10 Uppgift 2 Vilka av följande resonemang är acceptabla tillämpningar av modus ponens? α 1, α 1 α 2 α 2 1. p (hypotes) 1. p (hypotes) 2. p q (hypotes) 2. q r (hypotes) 3. q (MP) 3. r (MP)

11 Lösning 2 Det första resonmanget är korrekt, men i det andra stämmer inte premisserna överens; åter igen har skilda förekomster av α 1 ersatts med olika formler.

12 Bevissystem och bevis Definition Ett bevissystem är ett par Γ = (S, R) bestående av ändliga mängder S och R av axiomscheman och bevisregler. Ett bevis i Γ för en wff A utifrån en mängd U av wff:er är en sekvens A 1,..., A n av wff:er sådana att varje A i är ett element i U, en instans av ett axiomschema i S eller konsekvensen av en instans av en regel i R, där varje premiss finns bland A 1,..., A i 1 och A n = A. Notationen U Γ A uttrycker att det finns ett bevis av A från U i Γ.

13 Ett bevisssystem av Hilberttypen Hilbertsystemet H har fått sitt namn efter David Hilbert, en av de mest framstående matematikerna i slutet av och början av 1900-talet, som kring 1920 initierade ett stort forskningsprogram vars mål var att fullständigt formalisera matematiken mha predikatlogik. Systemet H är gjort för satslogiker som innehåller konnektiven och. Det består av axiomschemana Ax 1 = α 1 (α 2 α 1 ) Ax 2 = (α 1 (α 2 α 3 )) ((α 1 α 2 ) (α 1 α 3 )) Ax 3 = ( α 1 α 2 ) (α 2 α 1 ) samt en enda bevisregel, nämligen modus ponens: α 1, α 1 α 2 α 2

14 Ett enkelt formellt bevis Vi vill visa att {p, p q, q r} H s r. 1. p (hypotes) 2. p q (hypotes) 3. q (modus ponens på 1 och 2) 4. q r (hypotes) 5. r (modus ponens på 3 och 4) 6. r ( s r) (Ax 1 = α 1 (α 2 α 1 ) med α 1 = r och α 2 = s) 7. s r (modus ponens på 5 och 6) Observera att formlerna skulle också kunna härledas i en annan ordning. Man skulle t ex kunna börja med 6, 4, 2, 1 istället.

15 En grafisk representation av bevis Beviset kan representeras som en dag en riktad acyklisk graf (directed acyclic graph). Representationen är fördelaktig eftersom den gör beroendeförhållandena tydliga: p p q q r r ( s r) q r s r Varje linearisering av grafen (dvs varje linjärt arrangemang av noderna som gör att kanterna pekar framåt) ger ett korrekt bevis.

16 Ett till bevis Låt oss försöka bevisa att {p q, q r} H p r}. 1 p q (hypotes) 2 q r (hypotes) 3 ((q r) (p (q r)) (Ax 1) 4 p (q r) (MP 2, 3) 5 (p (q r)) ((p q) (p r)) (Ax 2) 6 (p q) (p r) (MP 4, 5) 7 p r (MP 1, 6)

17 Metateorem Vi skulle vilja kunna använda en generalisering av beviset ovan: α 1 α 2, α 2 α 3 α 1 α 3 Det kan bevisas så här: 1. α 2 α 3 (hypotes 2) 2. (α 2 α 3 ) (α 1 (α 2 α 3 )) (Ax 1 ) 3. α 1 (α 2 α 3 ) (MP på 1 och 2) 4. (α 1 (α 2 α 3 )) ((α 1 α 2 ) (α 1 α 3 )) (Ax 2 ) 5. (α 1 α 2 ) (α 1 α 3 ) (MP på 3 och 4) 6. α 1 α 2 (hypotes 1) 7. α 1 α 3 (MP på 6 och 5)

18 Metateorem som förkortar bevis Betrakta ett bevissystem Γ (t ex Hilbertsystemet H) samt en mängd U = {A 1,..., A n } av formelscheman och ett formelschema A. Om det finns ett bevis U Γ A (där bevis av formelscheman är definierade på samma sätt som om det handlar om konkreta formler) så är varje konkret instans av beviset ett korrekt bevis. U Γ A är då ett metateorem som kan användas i senare bevis för att förkorta dem. Med andra ord, i bevis får man använda bevisregeln A 1,..., A n A För att inse att den är korrekt, observera att man istället för den nya regelns tillämpning skulle kunna klistra in motsvarande konkret instans av beviset för U Γ A.

19 Tillämpning av metateorem n p q (hypotes) n+1 q r (hypotes) n+2 p r (Metateorem 1 på n, n+1) m (t u) s (hypotes) m+1 s r (hypotes) m+2 (t u) r (Metateorem 1 på m, m+1)

20 Exempel 2: Bevis av metateorem 2 Vi kan nu använda metateorem 1 för att bevisa nya metateorem, till exempel metateorem 2: H α 1 (α 1 α 2 ) 1. α 1 ( α 2 α 1 ) (Ax 1 ) 2. ( α 2 α 1 ) (α 1 α 2 ) (Ax 3 ) 3. α 1 (α 1 α 2 ) (metateorem 1 på 1 och 2) Om vi istället för rad 3 klistrar in motsvarande instans av beviset för metateorem 1 (där vi hänvisar till rad 1 och 2 istället för hypotes 1 och 2) får vi ett (längre) bevis utan metateorem.

21 Deduktionsteoremet Deduktionsteoremet är en annan typ av metateorem. Det lyder så här: U {A} A om och endast om U A A (där U är en ändlig mängd av wff:er och A, A är wff:er). Teoremet kan bevisas via induktion över härledningens längd. Intuitivt säger deduktionsteoremet att man, under vilka hypoteser U som helst, kan bevisa A A genom att betrakta A som ytterligare en hypotes och sedan bevisa A.

22 Fler metateorem Kontrapositiv implikation Dubbelnegation Redukto ad absurdum Kommutativitet U B A U A B U A U A U A U A (A B) (B A)

23 Hilbertsystemet, sammanfattning Har tre axiomscheman och en regel (Modus ponens). Man kan skapa och bevisa nya metateorem som kan förenkla senare bevis. Bevisen kräver att vi är smarta och planerar i förväg.

24 Låt Γ vara ett bevissystem. Egenskaper hos bevissystem Sundhet: Γ är sunt (sound) om U Γ A implicerar U = A för varje formelmängd U och formel A. Med andra ord, bevissystemets bevis är pålitliga: U Γ A visar att A är en semantisk följd av U. Bevissystem som inte är sunda är meningslösa. Fullständighet: Γ är fullständigt (complete) om U = A implicerar U Γ A för varje formelmängd U och formel A. Med andra ord, alla semantiska följder kan bevisas. Fullständighet är självklart önskvärd men inte lika viktig som sundhet. Ibland avstår man från fullständighet för att öka effektiviteten och ibland är det inte ens möjligt att skapa ett sunt bevissystem som både är sunt och fullständigt. Hilbertsystemet är sunt och fullständigt.

25 Uppgift 1 Om S är ett satslogiskt bevissystem och det gäller att S A där A är en atom, är det då rimligt att tro att S är sunt?

26 Lösning 1 Om S är sunt så skulle innebära att S A = A, med andra ord att varje tolkning är en modell av A. Å andra sidan vet vi att det finns minst en tolkning v för vilken v(a) = 0, så vi kan dra slutsatsen att S inte är sunt.

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska kunnas?

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska kunnas? Avslutning Anmärkningar inför tentan Vad ska kunnas? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna och gruppövningarna räcker i princip.

Läs mer

Grundläggande logik och modellteori (5DV102)

Grundläggande logik och modellteori (5DV102) Tentamen 2014-01-10 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 10 Maximalt antal poäng 30 Krav för 3 i betyg 1 Krav för 4 i betyg 19 poäng, vara minst

Läs mer

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna?

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna? Avslutning Anmärkningar inför tentan Vad ska ni kunna? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna, inlämningsuppgifterna och gruppövningarna

Läs mer

p /\ q r DD1350 Logik för dataloger Kort repetition Fö 3 Satslogikens semantik

p /\ q r DD1350 Logik för dataloger Kort repetition Fö 3 Satslogikens semantik DD1350 Logik för dataloger Fö 3 Satslogikens semantik 1 Kort repetition Satslogik formellt språk för att uttrycka påståenden med variabler och konnektiv /\, \/,, t.ex. p /\ q r 1 Kort repetition Naturlig

Läs mer

Grundläggande logik och modellteori (5DV102)

Grundläggande logik och modellteori (5DV102) Tentamen 2013-10-31 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 11 Maximalt antal poäng 30 Krav för 3 i betyg 14 poäng Krav för 4 i betyg 19 poäng,

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 8: Predikatlogik Henrik Björklund Umeå universitet 2. oktober, 2014 Första ordningens predikatlogik Signaturer och termer Första ordningens predikatlogik Formler

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2015 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner

Läs mer

Om semantisk följd och bevis

Om semantisk följd och bevis Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om semantisk följd och bevis Logik handlar bla om studiet av korrekta slutledningar, dvs frågan om när det är riktigt

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2013 1 Inledning 2 Satslogik Inledning Satslogiska uttryck Resonemang och härledningar

Läs mer

DD1350 Logik för dataloger. Fö 2 Satslogik och Naturlig deduktion

DD1350 Logik för dataloger. Fö 2 Satslogik och Naturlig deduktion DD1350 Logik för dataloger Fö 2 Satslogik och Naturlig deduktion 1 Satslogik En sats(eller utsaga)är ett påstående som kan vara sant eller falskt. I satslogik(eng. propositionallogic) representeras sådana

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 6: Binära beslutsdiagram (BDD) Henrik Björklund Umeå universitet 22. september, 2014 Binära beslutsdiagram Binära beslutsdiagram (Binary decision diagrams, BDDs)

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 4: Konjunktiv och disjunktiv normalform Henrik Björklund Umeå universitet 15. september, 2014 CNF och DNF Konjunktiv normalform (CNF) Omskrivning av en formel

Läs mer

Satslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar)

Satslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Satslogik grundläggande definitioner Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Modeller, logisk konsekvens och ekvivalens Några notationella förenklingar Kompletta mängder

Läs mer

Lite om bevis i matematiken

Lite om bevis i matematiken Matematik, KTH Bengt Ek februari 2013 Material till kursen SF1662, Diskret matematik för CL1: Lite om bevis i matematiken Inledning Bevis är centrala i all matematik Utan (exakta definitioner och) bevis

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 7: SAT-lösare Henrik Björklund Umeå universitet 29. september, 2014 SAT En instans av SAT är en mängd av mängder av literaler. Exempel: {{p, q, r}, {p, q, s},

Läs mer

FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS

FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS 729G06 Logik FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS 160309 Idag Sammanfattning*/uppsamling 2 Mer problemöversikt (och lite definitioner) Inte ersättning för andra föreläsningar! 3 Vad är enlogik? Syntax

Läs mer

Hornklausuler i satslogiken

Hornklausuler i satslogiken Hornklausuler i satslogiken Hornklausuler (efter logikern Alfred Horn) är ett viktigt specialfall som tillåter effektiva algoritmer och ligger till grund för regelbaserade expertsystem och logiska programspråk

Läs mer

DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik

DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik DD1350 Logik för dataloger Fö 7 Predikatlogikens semantik 1 Kryssprodukt av mängder Om A och B är två mängder så är deras kryssprodukt A B mängden av alla par (a,b), där a A och b B. Ex: A={1,2}, B={3,4},

Läs mer

Lektion 8: Konstruktion av semantiska tablåer för PTL-formler

Lektion 8: Konstruktion av semantiska tablåer för PTL-formler Lektion 8: Konstruktion av semantiska tablåer för PTL-formler Till denna lektion hör uppgift 2, 6 och 0 i lärobokens avsnitt.6 (sid. 255). Lös uppgift 2 genom att konstruera en semantisk tablå. Följande

Läs mer

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19 Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium IV v. 2.0, den 29/4 2013 III. Metalogik 17-19 Modeller för satslogiken 18.1 Vi har tidigare sagt att en modell är en tolkning av en teori

Läs mer

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden.

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden. MATEMATISK LOGIK Matematisk logik formaliserar korrekta resonemang och definierar formellt bindeord (konnektiv) mellan påståenden (utsagor, satser) I matematisk logik betraktar vi påståenden som antingen

Läs mer

Filosofisk logik Kapitel 19. Robin Stenwall Lunds universitet

Filosofisk logik Kapitel 19. Robin Stenwall Lunds universitet Filosofisk logik Kapitel 19 Robin Stenwall Lunds universitet Dagens upplägg Gödels fullständighetsteorem Sundhet och fullständighet Fullständighetsbeviset Vittneskonstanter Henkinteorin Eliminationsteoremet

Läs mer

Logik och modaliteter

Logik och modaliteter Modallogik Introduktionsföreläsning HT 2015 Formalia http://gul.gu.se/public/courseid/70391/lang-sv/publicpage.do Förkunskaper etc. Logik: vetenskapen som studerar argument med avseende på (formell) giltighet.

Läs mer

DD1350 Logik för dataloger

DD1350 Logik för dataloger DD1350 Logik för dataloger Fö 8 Axiomatiseringar 1 Modeller och bevisbarhet Sedan tidigare vet vi att: Om en formel Φ är valid (sann i alla modeller) så finns det ett bevis för Φ i naturlig deduktion.

Läs mer

Innehåll. Föreläsning 7. Satslogiken är för grov. Samma sak i predikatlogik: Första ordningens predikatlogik. Logik med tillämpningar

Innehåll. Föreläsning 7. Satslogiken är för grov. Samma sak i predikatlogik: Första ordningens predikatlogik. Logik med tillämpningar Innehåll Föreläsning 7 Logik med tillämpningar 99-03-01 Första ordningens predikatlogik Objekt, predikat, kvantifierare Funktioner, termer, wffs Bindning och räckvidd Tolkningar och värderingar Satisfiering,

Läs mer

Föreläsning 8. Innehåll. Satisfierbarhet hos en formel. Logik med tillämpningar

Föreläsning 8. Innehåll. Satisfierbarhet hos en formel. Logik med tillämpningar Föreläsning 8 Logik med tillämpningar 000413 Innehåll Lite mer om värderingar och tolkningar Semantiska tablåer i predikatlogiken Kapitel 3.5 Satisfierbarhet hos en formel En formel A är satisfierbar om

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Modeller och uttrycksfullhet hos predikatlogik Department of mathematics Umeå university Föreläsning 10 Dagens föreläsning 1 Innehåll på resten av kursen 2 Varför verifikation? Formella metoder för verifikation

Läs mer

F. Drewes Datavetenskapens grunder, VT02. Lite logik

F. Drewes Datavetenskapens grunder, VT02. Lite logik F Drewes 2002-05-23 Datavetenskapens grunder, VT02 Lite logik Den här texten är en sammanfattning av logikdelen i kursen Datavetenskapens grunder Den handlar om satslogik och predikatlogik, några av deras

Läs mer

Logik I. Åsa Hirvonen Helsingfors universitet. Våren 2013

Logik I. Åsa Hirvonen Helsingfors universitet. Våren 2013 Logik I Åsa Hirvonen Helsingfors universitet Våren 2013 Inledning Logik är läran om härledning. Med hjälp av logiken kan vi säga när ett resonemang är korrekt och när det inte är det. För att kunna studera

Läs mer

Logik för datavetare DVK:Log Tisdagen 28 oktober 2014. Institutionen för dataoch systemvetenskap David Sundgren

Logik för datavetare DVK:Log Tisdagen 28 oktober 2014. Institutionen för dataoch systemvetenskap David Sundgren Institutionen för dataoch systemvetenskap David Sundgren Logik för datavetare DVK:Log Tisdagen 28 oktober 2014 Skrivtid: 9 00-13 00. Inga hjälpmedel utom formelsamlingen på nästa sida är tillåtna. För

Läs mer

Logik och bevisteknik lite extra teori

Logik och bevisteknik lite extra teori Logik och bevisteknik lite extra teori Inger Sigstam 2011-04-26 1 Satslogik (eng: propositional logic) 1.1 Språket Alfabetet består av följande symboler: satssymbolerna p 0, p 1, p 2,.... konnektiverna,,,,.

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet TER1

Försättsblad till skriftlig tentamen vid Linköpings universitet TER1 Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2016-12-09 Sal (1) TER1 Tid 14-18 Kurskod 729G06 Provkod TEN1 Kursnamn/benämning Provnamn/benämning Institution Antal

Läs mer

Formell logik Kapitel 5 och 6. Robin Stenwall Lunds universitet

Formell logik Kapitel 5 och 6. Robin Stenwall Lunds universitet Formell logik Kapitel 5 och 6 Robin Stenwall Lunds universitet Kapitel 5 Bevismetoder för boolesk logik Visa att en sats är en tautologisk konsekvens av en mängd premisser! Lösning: sanningstabellmetoden

Läs mer

INDUKTION OCH DEDUKTION

INDUKTION OCH DEDUKTION AVSNITT 3 INDUKTION OCH DEDUKTION Med induktion menar man vanligen en mycket vanlig resonemangsmetod: man gör flera observationer, upptäcker ett mönster (eller något som man tror är ett mönster) och därefter

Läs mer

8. Naturlig härledning och predikatlogik

8. Naturlig härledning och predikatlogik Objektorienterad modellering och diskreta strukturer 8. Naturlig härledning och predikatlogik Sven Gestegård Robertz Datavetenskap, LTH 2013 Outline 1 Inledning 2 Inferensregler 3 Predikatlogik 8. Naturlig

Läs mer

2 Matematisk grammatik

2 Matematisk grammatik MATEMATISK GRAMMATIK Matematisk grammatik.1 Skriva matematik Matematisk grammatik, minst lika kul som det låter, och hur man skriver matematik är nästan lika viktigt som vad man skriver. En grammatisk

Läs mer

Kompletteringsmaterial. K2 Något om modeller, kompakthetssatsen

Kompletteringsmaterial. K2 Något om modeller, kompakthetssatsen KTH Matematik Bengt Ek Maj 2008 Kompletteringsmaterial till kursen SF1642, Logik för D1 och IT3: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och

Läs mer

Föreläsning 5. Deduktion

Föreläsning 5. Deduktion Föreläsning 5 Deduktion Hur ett deduktivt system fungerar Komponenter - Vokabulär Ett deduktivt system använder ett visst slags språk som kan kallas för systemets vokabulär. I mindre formella fall är kanske

Läs mer

Filosofisk Logik. föreläsningsanteckningar/kompendium (FTEA21:4) v. 2.0, den 5/ Kompakthet och Löwenheim-skolemsatsen

Filosofisk Logik. föreläsningsanteckningar/kompendium (FTEA21:4) v. 2.0, den 5/ Kompakthet och Löwenheim-skolemsatsen Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium VI v. 2.0, den 5/5 2014 Kompakthet och Löwenheim-skolemsatsen 19.6-19.7 Närhelst vi har en mängd satser i FOL som inte är självmotsägande

Läs mer

Normalisering av meningar inför resolution 3. Steg 1: Eliminera alla och. Steg 2: Flytta alla negationer framför atomära formler

Normalisering av meningar inför resolution 3. Steg 1: Eliminera alla och. Steg 2: Flytta alla negationer framför atomära formler Normalisering av meningar inför resolution På samma sätt som i satslogiken är resolution i predikatlogiken en process vars syfte är att vederlägga att en klausulmängd är satisfierbar. Det förutsätter dock

Läs mer

FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS

FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS 729G06 Logik FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS 160208 Idag C-regeln, informell (och formell) inledning till predikatlogik (Bevis kommer senare.) 2 3 Vår (Snöfritt Cykla) (Vår Snöfritt) Cykla Lätt

Läs mer

K2 Något om modeller, kompakthetssatsen

K2 Något om modeller, kompakthetssatsen KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och fullständighetssatsen

Läs mer

Tentamen i TDDC75 Diskreta strukturer , lösningsförslag

Tentamen i TDDC75 Diskreta strukturer , lösningsförslag Tentamen i TDDC75 Diskreta strukturer 2018-10-23, lösningsförslag 1 1. (a) Sanningstabell för uttrycken p q r p q p r r q r p q 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1

Läs mer

13. CHURCH S OCH GÖDELS SATSER. KORT ORIENTERING OM BERÄKNINGSBARHET, EFFEKTIV UPPRÄKNELIGHET OCH AVGÖRBARHET.

13. CHURCH S OCH GÖDELS SATSER. KORT ORIENTERING OM BERÄKNINGSBARHET, EFFEKTIV UPPRÄKNELIGHET OCH AVGÖRBARHET. 81 13 CHURCH S OCH GÖDELS SATSER KORT ORIENTERING OM BERÄKNINGSBARHET, EFFEKTIV UPPRÄKNELIGHET OCH AVGÖRBARHET Våra beräkningar skall utföras på symbolsträngar, där symbolerna tas från ett givet alfabet

Läs mer

Logik: sanning, konsekvens, bevis

Logik: sanning, konsekvens, bevis Logik: sanning, konsekvens, bevis ft1100 samt lc1510 HT 2016 Giltiga argument (Premiss 1) (Premiss 2) (Slutsats) Professorn är på kontoret eller i lunchrummet Hon är inte på kontoret Professorn är i lunchrummet

Läs mer

Sanningens paradoxer: om ändliga och oändliga lögnare

Sanningens paradoxer: om ändliga och oändliga lögnare STEN LINDSTRÖM Sanningens paradoxer: om ändliga och oändliga lögnare 1. Inledning Lögnarparadoxen, i dess olika versioner, tycks ge vid handen att vår naiva förståelse av sanningspredikatet, uttryckt i

Läs mer

DD1350 Logik för dataloger

DD1350 Logik för dataloger DD1350 Logik för dataloger Fö 4 Predikatlogik 1 Kort repetition Satslogik Naturlig deduktion är ett sunt och fullständigt bevissystem för satslogik Avgörbarhet Så vad saknas? Egenskaper Satslogiken är

Läs mer

*UXSS YQLQJ±/RJLNPHGWLOOlPSQLQJDUYW

*UXSS YQLQJ±/RJLNPHGWLOOlPSQLQJDUYW *USS YQLQJ±/RJLNPHGWLOOlPSQLQJDUYW 8SSJLIW Här kommer några teoretiska frågor, skriv svaren med egna ord, dvs skriv inte av ohbilderna: a. Vad är en beslutsprocedur? En algoritm som terminerar och som

Läs mer

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 2. Explicita formler och rekursionsformler. Dag mötte vi flera talföljder,

Läs mer

Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet

Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet Dagens upplägg Antalet element i en mängd Kardinalitet Humes princip Cantors teorem Den universella mängden Några mängdteoretiska paradoxer

Läs mer

Varför är logik viktig för datavetare?

Varför är logik viktig för datavetare? Varför är logik viktig för datavetare? 1. Datavetenskap handlar ofta om att automatisera processer som tidigare styrts av människor. Intuition, intelligens och mänskliga resonemang ersätts av beräkningar.

Läs mer

9. Predikatlogik och mängdlära

9. Predikatlogik och mängdlära Objektorienterad modellering och diskreta strukturer 9. Predikatlogik och mängdlära Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik naturlig härledning predikatlogik

Läs mer

Semantik och pragmatik (Serie 3)

Semantik och pragmatik (Serie 3) Semantik och pragmatik (Serie 3) Satser och logik. Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 37 Logik: språk tanke (Saeed kapitel 4.) Satser uttrycker (ofta) tankar. Uttrycksrikedom

Läs mer

Tentamen i logik 729G06 Programmering och logik

Tentamen i logik 729G06 Programmering och logik Tentamen i logik 729G06 Programmering och logik 2016-08-19 Poänggränser: På tentan kan du som mest få 25 poäng. Om du har fått 12 poäng är du garanterad åtminstone godkänt betyg, 19 väl godkänt. Tillåtna

Läs mer

Föreläsning 9: NP-fullständighet

Föreläsning 9: NP-fullständighet Föreläsning 9: NP-fullständighet Olika typer av problem: 1. Beslutsproblem: A(x) =Ja. 2. Optimeringsproblem: A(x) =m Vanligen max/min. 3. Konstruktionsproblem: A(x) =En struktur. Vanligen lösningen till

Läs mer

En introduktion till logik

En introduktion till logik rasmus.blanck@gu.se FT1200, LC1510 och LGFI52 VT2017 Först: Tack till Martin Kaså, som gett mig tillstånd att använda och bearbeta dessa ljusbilder. Vad är logik? Slogan: Logik undersöker vilka argument

Läs mer

Övningshäfte 2: Induktion och rekursion

Övningshäfte 2: Induktion och rekursion GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,

Läs mer

Formell logik Kapitel 7 och 8. Robin Stenwall Lunds universitet

Formell logik Kapitel 7 och 8. Robin Stenwall Lunds universitet Formell logik Kapitel 7 och 8 Robin Stenwall Lunds universitet Kapitel 7: Konditionalsatser Kapitlet handlar om konditionalsatser (om-så-satser) och deras logik Idag: bevismetoder för konditionalsatser,

Läs mer

Semantik och pragmatik (Serie 4)

Semantik och pragmatik (Serie 4) Semantik och pragmatik (Serie 4) Satser och logik. Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 30 Så här långt (satslogik) Konjunktion (p q): att två enklare satser båda är uppfyllda.

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

Lite Kommentarer om Gränsvärden

Lite Kommentarer om Gränsvärden Lite Kommentarer om Gränsvärden På föreläsningen (Föreläsning 2 för att vara eakt) så introducerade vi denitionen Denition. Vi säger att f() går mot a då går mot oändligheten, uttryckt i symboler som f()

Läs mer

Funktionella beroenden - teori

Funktionella beroenden - teori Relationell databasdesign, FB Teori 7-12 Funktionella beroenden - teori Vid utformning av databassystem är det av största vikt att man kan resonera systematiskt om funktionella beroenden bl.a. för att

Läs mer

Svar och lösningar, Modul 1.

Svar och lösningar, Modul 1. Svar och lösningar, Modul. A Använd t.ex. följande lexikon: H : han hör vad som sägs, D : han är döv, O : han är ouppmärksam, M : han kommer att missa mötet. Vi får svar: H ((D O) & M) B Vi har Att E bara

Läs mer

Introduktion till formell logik

Introduktion till formell logik Introduktion till formell logik Annika Kanckos 2017 1 Introduktion Detta kompendium har utvecklats på basen av föreläsningar i grundkursen i logik. Kompendiet är en sammanfattning av materialet som presenteras

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om logik och mängdlära Mikael Hindgren 5 september 2018 Utsagor Utsaga = Påstående som har sanningsvärde Utsagan kan vara sann (S) eller falsk (F) öppen eller

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 2 Strukturer 2 2.1 Domäner... 2 2.2 Tolkningar... 3

Tommy Färnqvist, IDA, Linköpings universitet. 2 Strukturer 2 2.1 Domäner... 2 2.2 Tolkningar... 3 Föreläsning 2 Semantik 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 27 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 2.1 Innehåll Innehåll 1 Lite mer syntax 1 2 Strukturer

Läs mer

Robin Stenwall Lunds universitet

Robin Stenwall Lunds universitet Robin Stenwall Lunds universitet Vik$gt a) tänka på Innehållet i kursen formell logik förutsätts vara inhämtat (repetera om du är osäker). I allmänhet gäller att kursinnehållet, som ska instuderas på relativt

Läs mer

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten.

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Semantik och pragmatik

Semantik och pragmatik Semantik och pragmatik OH-serie 4 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Om barnet har svårt att andas eller har ont i bröstet

Läs mer

Matriser. En m n-matris A har följande form. Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. 0 1, 0 0. Exempel 1

Matriser. En m n-matris A har följande form. Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. 0 1, 0 0. Exempel 1 Matriser En m n-matris A har följande form a 11... a 1n A =.., a ij R. a m1... a mn Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. Exempel 1 1 0 0 1, 0 0 ( 1 3 ) 2, ( 7 1 2 3 2, 1 3, 2 1

Läs mer

Introduktion till predikatlogik. Jörgen Sjögren

Introduktion till predikatlogik. Jörgen Sjögren Introduktion till predikatlogik Jörgen Sjögren Högskolan i Skövde Institutionen för naturvetenskap 2002 - 1 - Förord Det som följer på dessa dryga hundra sidor är ett av otaliga försök som gjorts att presentera

Läs mer

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v , den 24/

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v , den 24/ Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v. 2.1.1, den 24/11 2014 Om detta kompendium: Filosofiska institutionen, Lunds Universitet staffan.angere@fil.lu.se Förberedande Det här kompendiet

Läs mer

Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att

Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att Egensystem Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner Potens av matris 2 6 Ex Givet matrisen A =, vad är A 2? Det är komplicerat att beräkna högre

Läs mer

PROBLEMLÖSNING. ! GPS! Mål medel analys! Problemlösning i programmering. Lars-Erik Janlert 2007

PROBLEMLÖSNING. ! GPS! Mål medel analys! Problemlösning i programmering. Lars-Erik Janlert 2007 PROBLEMLÖSNING! Problem & lösning! Sökträd, sökgraf! Automatisk problemlösning! Heuristik! Heuristisk sökning! GPS! Mål medel analys! Problemlösning i programmering 1 Problem (snäv mening)! Ett problem

Läs mer

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2

Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2 Föreläsning 1 Syntax 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 21 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 1.1 Innehåll Innehåll 1 Kursadministration 1 2 Introduktion

Läs mer

Material till kursen SF1679, Diskret matematik: Om urvalsaxiomet mm. Axiom som är ekvivalenta med urvalsaxiomet

Material till kursen SF1679, Diskret matematik: Om urvalsaxiomet mm. Axiom som är ekvivalenta med urvalsaxiomet Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om urvalsaxiomet mm Vi har tidigare nämnt Zermelo-Fraenkels axiom för mängdläran, de upprepas på sista sidan av dessa

Läs mer

Poincarés modell för den hyperboliska geometrin

Poincarés modell för den hyperboliska geometrin Poincarés modell för den hyperboliska geometrin Niklas Palmberg, matrikelnr 23604 Uppsats för kandidatexamen i naturvetenskaper Matematiska institutionen Åbo Akademi 12.2.2001 Innehåll 1 Presentation av

Läs mer

Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.

Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Föreläsning 9: Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står

Läs mer

Grafer och grannmatriser

Grafer och grannmatriser Föreläsning 2, Linjär algebra IT VT2008 Som avslutning på kursen ska vi knyta samman linjär algebra med grafteori och sannolikhetsteori från första kursen. Resultatet blir så kallade slumpvandringar på

Läs mer

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1.

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1. UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik I 1 Lite om satslogik 1.1

Läs mer

12. CANTORS PARADIS. KORT ORIENTERING OM MÄNGDTEORI.

12. CANTORS PARADIS. KORT ORIENTERING OM MÄNGDTEORI. 75 12. CANTORS PARADIS. KORT ORIENTERING OM MÄNGDTEORI. I slutet av 1800-talet uppfann Cantor mängdteorin som ett hjälpmedel vid sitt arbete med integrationsteori. Med en mängd menade Cantor "vilken som

Läs mer

Kunskap. Evidens och argument. Kunskap. Goda skäl. Goda skäl. Två typer av argument a) deduktiva. b) induktiva

Kunskap. Evidens och argument. Kunskap. Goda skäl. Goda skäl. Två typer av argument a) deduktiva. b) induktiva Kunskap Evidens och argument Sören Häggqvist Stockholms universitet Den s k klassiska definitionen: Kunskap är sann, välgrundad tro. Ekvivalent: S vet att p om och endast om p S tror att p S har goda skäl

Läs mer

Jesper Carlström 2008 (reviderad 2009)

Jesper Carlström 2008 (reviderad 2009) Jesper Carlström 2008 (reviderad 2009) Jesper Carlström Matematiska institutionen Stockholms universitet 106 91 Stockholm http://www.math.su.se/ jesper/logikbok/ c 2009 Jesper Carlström Typsatt av L A

Läs mer

Grundläggande Logik och Modellteori

Grundläggande Logik och Modellteori Grundläggande Logik och Modellteori Temporallogik Klas Markström och Lars-Daniel Öhman Institutionen för matematik och matematisk statistik Umeå universitet HT2014 Klas Markström och Lars-Daniel Öhman

Läs mer

Robin Stenwall Lunds universitet

Robin Stenwall Lunds universitet Robin Stenwall Lunds universitet Dagens föreläsning Informella bevismetoder för kvantifikatorer Universell elimination Existentiell introduktion Existentiell elimination Universell introduktion General

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 1: Introduktion, motivation Henrik Björklund Umeå universitet 30. augusti, 2014 Lärare Henrik Björklund MIT E445 henrikb@cs.umu.se Klas Markström MIT E328 klas.markstrom@math.umu.se

Läs mer

Vad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system

Vad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system Vad är det? Översikt Discrete structure: A set of discrete elements on which certain operations are defined. Discrete implies non-continuous and therefore discrete sets include finite and countable sets

Läs mer

Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section

Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section Föreläsning 1 Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section 1.1-1.3 i kursboken Definition En utsaga (proposition) är ett

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 12: Logikprogrammering Henrik Björklund Umeå universitet 16. oktober, 2014 Prolog Prolog har två klasser av formler. Atomära formler: country(sweden, 9000000).

Läs mer

Viktiga frågor att ställa när ett argument ska analyseras och sedan värderas:

Viktiga frågor att ställa när ett argument ska analyseras och sedan värderas: FTEA12:2 Föreläsning 2 Grundläggande argumentationsanalys II Repetition: Vid förra tillfället började vi se närmre på vad som utmärker filosofisk argumentationsanalys. Vi tittade närmre på ett arguments

Läs mer

HD-metoden och hypotesprövning. Vetenskapliga data

HD-metoden och hypotesprövning. Vetenskapliga data HD-metoden och hypotesprövning. Vetenskapliga data En central vetenskaplig metod? Vetenskap har (minst) fyra olika komponenter: Att ställa upp hypoteser. Att verifiera hypoteser med logik. Att värdera

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

Epistemologi - Vad kan vi veta? 4IK024 Vetenskapsmetod och teori

Epistemologi - Vad kan vi veta? 4IK024 Vetenskapsmetod och teori Epistemologi - Vad kan vi veta? 4IK024 Vetenskapsmetod och teori Vetenskapsteori/filosofi Filosofi Ontologi/ Metafysik Vad finns? Epistemologi Vad kan vi veta? Hur kan vi inhämta kunskap? Etik Vad är rätt

Läs mer

Semantik och pragmatik

Semantik och pragmatik Semantik och pragmatik OH-serie 5 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Så här långt Konjunktion (p q): att två enklare satser

Läs mer

Primitivt rekursiva funktioner och den aritmetiska hierarkin

Primitivt rekursiva funktioner och den aritmetiska hierarkin Primitivt rekursiva funktioner och den aritmetiska hierarkin Rasmus Blanck 0 Inledning En rad frågor inom logiken, matematiken och datavetenskapen relaterar till begreppet beräkningsbarhet. En del i kursen

Läs mer

Realism och anti-realism och andra problem

Realism och anti-realism och andra problem Realism och anti-realism och andra problem Vetenskap och verkligheten Vetenskapen bör beskriva verkligheten. Men vad är verkligheten? Är det vi tycker oss se av verkligheten verkligen vad verkligheten

Läs mer

PCP-satsen på kombinatoriskt manér

PCP-satsen på kombinatoriskt manér austrin@kth.se Teorigruppen Skolan för Datavetenskap och Kommunikation 2005-10-24 Agenda 1 Vad är ett bevis? Vad är ett PCP? PCP-satsen 2 Vad, hur och varför? Lite definitioner Huvudresultatet 3 Ännu mer

Läs mer

Predikatlogik: Normalformer. Klas Markström

Predikatlogik: Normalformer. Klas Markström 1 Precis som i satslogik så är det bekvämt att kunna hitta en normalform för meningar. Om vi kan utgå från att alla meningar är på normalform så behöver vi t.e.x. inte bekymra oss om en massa specialfall

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer