Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion Varför logik? Satslogik... 2

Storlek: px
Starta visningen från sidan:

Download "Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2"

Transkript

1 Föreläsning 1 Syntax 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 21 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 1.1 Innehåll Innehåll 1 Kursadministration 1 2 Introduktion Varför logik? Satslogik Predikatlogik Syntax Formalisering Kursadministration Lärare och personal Examinator: Annika Silvervarg Föreläsningar: Tommy Färnqvist Assistent, lektioner: Anders Märak Leffler Assistent, lektioner: Evelina Rennes Assistent, lektioner: Robin Keskisärkää Kursadministratör: Annelie Almquist 1.3 Litteratur Christian BennetFörsta ordningens logik, Studentlitteratur(.pdf på kurshemsidan) Jörgen Sjögren Introduktion till predikatlogik(.pdf på kurshemsidan) Uppgiftssamling(.pdf på kurshemsidan) 1.4 Examination Skriftlig tentamen 3hp, 14 mars, (U/G/VG) 1.5 Upplägg Föreläsningar Lektioner (lärarlösa och med lärare) 1.6 1

2 2 Introduktion 2.1 Varför logik? Vad är logik? Ni kommer att lära er att Formalisera resonemang i första ordningens predikatlogik Använda sanningstabeller och naturlig deduktion för att bevisa era slutsatser Skapa strukturer för att motbevisa felaktiga resonemang 1.7 Korrekta resonemang Ett resonemang är korrekt om slutsatsen med nödvändighet följer från premisserna Korrekt resonemang Alla människor är dödliga Sokrates är en människa Sokrates är dödlig Felaktigt resonemang Några veganer är militanta Kevin är vegan Kevin är militant 1.8 Hur definierar vi en logik? en bestämmer vilka symboler vi kan använda och hur de kan sättas ihop till komplexa uttryck (A B) C är välformat A :)B är inte välformat en avgör vilken betydelse ett uttryck har och när en formel är sann (A B) är sann när A och B båda är sanna Forskare har föreslagit hundratals olika logiker, men vi lär oss den överlägset vanligaste Satslogik Grundläggande syntax Vi pratar om atomära satser som kan vara sanna eller falska Gräs är blått Deep Blue besegrade Kasparov Vi använder oftast satssymboler för att slippa skrivkramp Låt B stå för Gräs är blått Ofta pratar vi bara om godtyckliga satser A,B,C,... Det finns fem konnektiv som används för att kombinera satssymboler negation ( ) konjunktion ( ) disjunktion ( ) implikation ( ) ekvivalens ( )

3 Negation B = Gräs är (B)lått B = Det är inte fallet att gräs är (B)lått A är sann när A är falsk Vi använder en sanningstabell för att definiera när en negerad sats är sann eller falsk A A S F F S 1.11 Konjunktion L = Solen (L)yser G = Snön (G)nistrar L G = Solen lyser och snön gnistrar L och G kallas konjunkter A B är sann när både A och B är sanna A B A B S F F F S F F F F 1.12 Disjunktion Ä = Jag åt ett (Ä)pple P = Jag åt ett (P)äron Ä P = Jag åt ett äpple eller ett päron (eller både och!) Ä och P kallas disjunkter A B är sann när minst en av A,B är sanna A B A B S F S F S S F F F 1.13 Implikation H = Hon sprang en (H)alvmara M = Hon sprang två (M)il H M = Om hon sprang en halvmara så sprang hon två mil H kallas antecendenten och M konsekventen A B är sann om det är fallet att när A är sann så är B sann. Observera att om A inte är sann så säger implikationen inte något om sanningsvärdet för B A B A B S F F F S S F F S

4 Ekvivalens F = Hon är min (F)aster B = Jag är hennes (B)rorsbarn F B = Hon är min faster om och endast om jag är hennes brorsbarn A B är sann när A,B har samma sanningsvärde A B A B S F F F S F F F S 1.15 Formalisering För att kunna analysera resonemang med hjälp av logik så måste vi formalisera dem, d.v.s. översätta dem till logikens syntax Följande steg kan användas för att formalisera en mening 1. Identifiera de atomära satserna och ersätt dem med lämpliga satssymboler 2. Identifiera satsernas relationer och ersätt dessa med konnektiv 1.16 Övning: Formalisering Formalisera följande 1. Om solen skiner och prognosen är lovande så gör vi en utflykt 2. Om vi inte gör en utflykt så skiner inte solen eller så är prognosen inte lovande 3. Vi gör ingen utflykt om det inte är skinande sol och lovande prognos 1.17 Satslogikens begränsningar Den syntax och semantik vi lärt oss kallas för satslogik, men den är ganska begränsad vilket detta resonemang visar: Gates är rik Någon är rik I en satslogisk formalisering ser det ut som att slutsatsen inte har något med premissen att göra: G = Gates är rik N = Någon är rik 3 Predikatlogik 3.1 Syntax G N 1.18 Predikatlogik Med predikatlogik kan vi formalisera slutledningen så här: R(x) = x är rik g = Gates R(g) xr(x) Vi utökar satslogikens syntax med följande symboler: predikat (R,P,Q,...) konnektiv (,,,, ) konstanter (g,a,b,c,...) funktioner ( f ar,mor,+, f,...) kvantifierare (, ) variabler (x,y,z,...) identitet (=)

5 Termer och formler Vi definierar termer 1. Variabler är termer 2. Konstanter är termer 3. f (t 1,...,t n ) är en term om f är en funktion som tar n argument och t 1,...,t n är termer Istället för satssymboler har vi atomära formler 1. P(t 1,...,t n ) är en atomär formel om P är ett predikat som tar n argument och t 1,...,t n är termer 2. t = u är en atomär formel om t och u är termer Atomära formler kan sedan kombineras till formler 1. Atomära formler är också formler 2. Formler som kombineras med hjälp av konnektiven (,,,, ) är också formler 3. xa och xa är formler om x är en variabel och A en formel 1.20 Övning: Syntax Vilka uttryck är vad och varför? 1. x 2. b 3. x yp(x, y) 4. f (a,g(b)) = 4 7. P a b 8. xp(q(x)) Formalisering Formalisering Vi vill formalisera satser, d.v.s. översätta dem till predikatlogikens syntax Följande steg kan användas för att formalisera en mening 1. identifiera de atomära formlerna och ersätt dem med lämpliga predikat och termer 2. Identifiera satsernas relationer och ersätt dessa med konnektiv och kvantifierare 1.22 Två vanliga regler för formalisering Alla P är Q x(p(x) Q(x)) Exempel Alla bananer är böjda Alla x om Banan(x) så Böjd(x) x(banan(x) Böjd(x)) Undvik x(banan(x) Böjd(x)) Alla är bananer och böjda! Några P är Q x(p(x) Q(x)) Exempel Några svampar är giftiga Några x Svamp(x) och Giftig(x) x(svamp(x) Giftig(x)) Undvik x(svamp(x) Giftig(x)) x( Svamp(x) Giftig(x)) Det finns något som inte är en svamp eller som är giftigt

6 Övning: Formalisering Formalisera följande i predikatlogik 1. Några länder är demokratier 2. Inte alla länder är demokratier 3. Alla länder har en valuta 4. Alla svenskar har en valuta 1.24 Att uttrycka antal I predikatlogiken kan vi uttrycka att det finns minst ett äpple xäpple(x) Men det är också möjigt att uttrycka att det finns exakt ett äpple x(äpple(x) y(äpple(y) y = x)) Det finns ett objekt x som är ett äpple och för alla objekt y gäller att om y också är ett äpple så måste det vara identiskt med det förra äpplet Eller att det finns exakt två äpplen x,y(äpple(x) Äpple(y) x y z(äpple(z) (z = x z = y))) 1.25 Övning: Formalisera antal Formalisera följande i predikatlogiken 1. Alla länder har en valuta 2. Alla länder har exakt en valuta

Tommy Färnqvist, IDA, Linköpings universitet. 2 Strukturer 2 2.1 Domäner... 2 2.2 Tolkningar... 3

Tommy Färnqvist, IDA, Linköpings universitet. 2 Strukturer 2 2.1 Domäner... 2 2.2 Tolkningar... 3 Föreläsning 2 Semantik 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 27 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 2.1 Innehåll Innehåll 1 Lite mer syntax 1 2 Strukturer

Läs mer

729G06 Logik FÖRELÄSNING 1 ANDERS MÄRAK LEFFLER IDA/HCS

729G06 Logik FÖRELÄSNING 1 ANDERS MÄRAK LEFFLER IDA/HCS 729G06 Logik FÖRELÄSNING 1 ANDERS MÄRAK LEFFLER IDA/HCS 160127 Vad är logik? Som ämne, område... 2 Läran om korrekta resonemang Följer slutsatserna av ens antaganden? 3 Alla hundar är djur. Alla enhörningar

Läs mer

Grundläggande logik och modellteori (5DV102)

Grundläggande logik och modellteori (5DV102) Tentamen 2013-10-31 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 11 Maximalt antal poäng 30 Krav för 3 i betyg 14 poäng Krav för 4 i betyg 19 poäng,

Läs mer

FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS

FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS 729G06 Logik FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS 160309 Idag Sammanfattning*/uppsamling 2 Mer problemöversikt (och lite definitioner) Inte ersättning för andra föreläsningar! 3 Vad är enlogik? Syntax

Läs mer

Viktiga frågor att ställa när ett argument ska analyseras och sedan värderas:

Viktiga frågor att ställa när ett argument ska analyseras och sedan värderas: FTEA12:2 Föreläsning 2 Grundläggande argumentationsanalys II Repetition: Vid förra tillfället började vi se närmre på vad som utmärker filosofisk argumentationsanalys. Vi tittade närmre på ett arguments

Läs mer

Formell logik Kapitel 3 och 4. Robin Stenwall Lunds universitet

Formell logik Kapitel 3 och 4. Robin Stenwall Lunds universitet Formell logik Kapitel 3 och 4 Robin Stenwall Lunds universitet Kapitel 3: De Booleska konnektiven Vi sade att predikaten och namnen kan variera mellan olika FOL Vi ska nu titta på några språkliga element

Läs mer

Semantik och pragmatik (Serie 4)

Semantik och pragmatik (Serie 4) Semantik och pragmatik (Serie 4) Satser och logik. Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 30 Så här långt (satslogik) Konjunktion (p q): att två enklare satser båda är uppfyllda.

Läs mer

Semantik och pragmatik

Semantik och pragmatik Semantik och pragmatik OH-serie 4 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Om barnet har svårt att andas eller har ont i bröstet

Läs mer

Semantik och pragmatik

Semantik och pragmatik Semantik och pragmatik OH-serie 5 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Så här långt Konjunktion (p q): att två enklare satser

Läs mer

Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf

Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik II 1 Predikatlogik, generella

Läs mer

Logik för datavetare DVK:Log Tisdagen 28 oktober 2014. Institutionen för dataoch systemvetenskap David Sundgren

Logik för datavetare DVK:Log Tisdagen 28 oktober 2014. Institutionen för dataoch systemvetenskap David Sundgren Institutionen för dataoch systemvetenskap David Sundgren Logik för datavetare DVK:Log Tisdagen 28 oktober 2014 Skrivtid: 9 00-13 00. Inga hjälpmedel utom formelsamlingen på nästa sida är tillåtna. För

Läs mer

Vad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system

Vad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system Vad är det? Översikt Discrete structure: A set of discrete elements on which certain operations are defined. Discrete implies non-continuous and therefore discrete sets include finite and countable sets

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2015 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2013 1 Inledning 2 Satslogik Inledning Satslogiska uttryck Resonemang och härledningar

Läs mer

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19 Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium IV v. 2.0, den 29/4 2013 III. Metalogik 17-19 Modeller för satslogiken 18.1 Vi har tidigare sagt att en modell är en tolkning av en teori

Läs mer

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1.

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1. UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik I 1 Lite om satslogik 1.1

Läs mer

Övningshäfte 1: Logik och matematikens språk

Övningshäfte 1: Logik och matematikens språk GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter

Läs mer

Innehåll. Föreläsning 7. Satslogiken är för grov. Samma sak i predikatlogik: Första ordningens predikatlogik. Logik med tillämpningar

Innehåll. Föreläsning 7. Satslogiken är för grov. Samma sak i predikatlogik: Första ordningens predikatlogik. Logik med tillämpningar Innehåll Föreläsning 7 Logik med tillämpningar 99-03-01 Första ordningens predikatlogik Objekt, predikat, kvantifierare Funktioner, termer, wffs Bindning och räckvidd Tolkningar och värderingar Satisfiering,

Läs mer

Logik I. Åsa Hirvonen Helsingfors universitet. Våren 2013

Logik I. Åsa Hirvonen Helsingfors universitet. Våren 2013 Logik I Åsa Hirvonen Helsingfors universitet Våren 2013 Inledning Logik är läran om härledning. Med hjälp av logiken kan vi säga när ett resonemang är korrekt och när det inte är det. För att kunna studera

Läs mer

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt,

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, Explorativ övning 1 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt matematiska språk,

Läs mer

MATEMATIKENS SPRÅK. Avsnitt 1

MATEMATIKENS SPRÅK. Avsnitt 1 Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en

Läs mer

FTEA12:2 Filosofisk Metod. Grundläggande argumentationsanalys II

FTEA12:2 Filosofisk Metod. Grundläggande argumentationsanalys II TEA12:2 ilosofisk Metod Grundläggande argumentationsanalys II Dagens upplägg 1. Kort repetition. 2. Logisk styrka: några intressanta specialfall. 3. ormalisering: översättning från naturligt språk till

Läs mer

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss Explorativ övning 1 LMA100 vt 2003 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 6: Binära beslutsdiagram (BDD) Henrik Björklund Umeå universitet 22. september, 2014 Binära beslutsdiagram Binära beslutsdiagram (Binary decision diagrams, BDDs)

Läs mer

Semantik och pragmatik (Serie 3)

Semantik och pragmatik (Serie 3) Semantik och pragmatik (Serie 3) Satser och logik. Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 37 Logik: språk tanke (Saeed kapitel 4.) Satser uttrycker (ofta) tankar. Uttrycksrikedom

Läs mer

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna?

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna? Avslutning Anmärkningar inför tentan Vad ska ni kunna? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna, inlämningsuppgifterna och gruppövningarna

Läs mer

Något om logik och logisk semantik

Något om logik och logisk semantik UPPSALA UNIVERSITET Semantik och pragmatik (HT 08) Institutionen för lingvistik och filologi Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv08/sempht/ Något om logik och logisk semantik 1 Språk och sanning

Läs mer

Lite om bevis i matematiken

Lite om bevis i matematiken Matematik, KTH Bengt Ek februari 2013 Material till kursen SF1662, Diskret matematik för CL1: Lite om bevis i matematiken Inledning Bevis är centrala i all matematik Utan (exakta definitioner och) bevis

Läs mer

Robin Stenwall Lunds universitet

Robin Stenwall Lunds universitet Robin Stenwall Lunds universitet Vik$gt a) tänka på Innehållet i kursen formell logik förutsätts vara inhämtat (repetera om du är osäker). I allmänhet gäller att kursinnehållet, som ska instuderas på relativt

Läs mer

Logik och bevisteknik lite extra teori

Logik och bevisteknik lite extra teori Logik och bevisteknik lite extra teori Inger Sigstam 2011-04-26 1 Satslogik (eng: propositional logic) 1.1 Språket Alfabetet består av följande symboler: satssymbolerna p 0, p 1, p 2,.... konnektiverna,,,,.

Läs mer

Logik och kontrollstrukturer

Logik och kontrollstrukturer Logik och kontrollstrukturer Flödet av instruktioner i ett programmeringsspråk bygger vi upp med hjälp av dess kontrollstrukturer. I C har vi exemplen if, if else, while, do while. Dessutom finns switch

Läs mer

Robin Stenwall Lunds universitet

Robin Stenwall Lunds universitet Robin Stenwall Lunds universitet Vik$gt a) tänka på Innehållet i kursen formell logik förutsätts vara inhämtat (repetera om du är osäker). I allmänhet gäller att kursinnehållet, som ska instuderas på relativt

Läs mer

Logik: sanning, konsekvens, bevis

Logik: sanning, konsekvens, bevis Logik: sanning, konsekvens, bevis ft1100 samt lc1510 HT 2016 Giltiga argument (Premiss 1) (Premiss 2) (Slutsats) Professorn är på kontoret eller i lunchrummet Hon är inte på kontoret Professorn är i lunchrummet

Läs mer

DD1350 Logik för dataloger. Vad är logik?

DD1350 Logik för dataloger. Vad är logik? DD1350 Logik för dataloger Fö 1 - Introduktion Vad är logik? Vetenskapen som studerar hur man bör resoneraoch dra slutsatser utifrån givna påståenden (=utsagor, satser). 1 Aristoteles (384-322 f.kr) Logik

Läs mer

MA 11. Hur starkt de binder. 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi

MA 11. Hur starkt de binder. 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi MA 11 Talteori och logik 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi propositionssymboler: bokstäver konnektiv Paranteser konnektiv

Läs mer

Introduktion till predikatlogik. Jörgen Sjögren

Introduktion till predikatlogik. Jörgen Sjögren Introduktion till predikatlogik Jörgen Sjögren Högskolan i Skövde Institutionen för naturvetenskap 2002 - 1 - Förord Det som följer på dessa dryga hundra sidor är ett av otaliga försök som gjorts att presentera

Läs mer

F. Drewes Datavetenskapens grunder, VT02. Lite logik

F. Drewes Datavetenskapens grunder, VT02. Lite logik F Drewes 2002-05-23 Datavetenskapens grunder, VT02 Lite logik Den här texten är en sammanfattning av logikdelen i kursen Datavetenskapens grunder Den handlar om satslogik och predikatlogik, några av deras

Läs mer

En introduktion till logik

En introduktion till logik rasmus.blanck@gu.se FT1200, LC1510 och LGFI52 VT2017 Först: Tack till Martin Kaså, som gett mig tillstånd att använda och bearbeta dessa ljusbilder. Vad är logik? Slogan: Logik undersöker vilka argument

Läs mer

4 Något om logik och semantik

4 Något om logik och semantik Mats Dahllöf. http://stp.lingfil.uu.se/ matsd/uv/uv09/sempht/ 4 Något om logik och semantik Att kunna ett språk innebär att man begriper skillnaden mellan sanna och falska yttranden. Det innebär givetvis

Läs mer

Föreläsning 6. pseudokod problemlösning logik algoritmer

Föreläsning 6. pseudokod problemlösning logik algoritmer Föreläsning 6 pseudokod problemlösning logik algoritmer Inledning Logik är läran om korrekt resonemang att kunna dra korrekta slutledningar utifrån det man vet. Vi gör detta ständigt utan att tänka på

Läs mer

Formell logik Kapitel 1 och 2. Robin Stenwall Lunds universitet

Formell logik Kapitel 1 och 2. Robin Stenwall Lunds universitet Formell logik Kapitel 1 och 2 Robin Stenwall Lunds universitet Kapitel 1: Atomära satser Drömmen om ett perfekt språk fritt från vardagsspråkets mångtydighet och vaghet (jmf Leibniz, Russell, Wittgenstein,

Läs mer

Första ordningens logik

Första ordningens logik Första ordningens logik Christian Bennet Christian Bennet, februari 2013 Detta verk är licensierat under en Creative Commons Erkännande- Ickekommersiell-IngaBearbetningar 3.0 Unported license. För att

Läs mer

9. Predikatlogik och mängdlära

9. Predikatlogik och mängdlära Objektorienterad modellering och diskreta strukturer 9. Predikatlogik och mängdlära Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik naturlig härledning predikatlogik

Läs mer

Predikatlogik: Normalformer. Klas Markström

Predikatlogik: Normalformer. Klas Markström 1 Precis som i satslogik så är det bekvämt att kunna hitta en normalform för meningar. Om vi kan utgå från att alla meningar är på normalform så behöver vi t.e.x. inte bekymra oss om en massa specialfall

Läs mer

*UXSS YQLQJ±/RJLNPHGWLOOlPSQLQJDUYW

*UXSS YQLQJ±/RJLNPHGWLOOlPSQLQJDUYW *USS YQLQJ±/RJLNPHGWLOOlPSQLQJDUYW 8SSJLIW Här kommer några teoretiska frågor, skriv svaren med egna ord, dvs skriv inte av ohbilderna: a. Vad är en beslutsprocedur? En algoritm som terminerar och som

Läs mer

Anteckningar om logik och semantik

Anteckningar om logik och semantik UPPSALA UNIVERSITET Semantik och pragmatik (VT 2012) Institutionen för lingvistik och filologi Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv12/semp/ Anteckningar om logik och semantik 1 Inledning 1.1

Läs mer

Logik en introduktion. Christian Bennet Björn Haglund Dag Westerståhl

Logik en introduktion. Christian Bennet Björn Haglund Dag Westerståhl Logik en introduktion Christian Bennet Björn Haglund Dag Westerståhl 1980 Innehåll I Satslogik 3 1 Inledning till satslogiken 4 A Satser...................................... 4 B Satsoperationer.................................

Läs mer

KRITISKT TÄNKANDE I VÄRDEFRÅGOR. 8: Repetition

KRITISKT TÄNKANDE I VÄRDEFRÅGOR. 8: Repetition KRITISKT TÄNKANDE I VÄRDEFRÅGOR 8: Repetition TRE CENTRALA BEGREPP (i) Sanning: en egenskap som tillkommer utsagor, inte slutledningar. (ii) Logisk styrka: en egenskap som tillkommer slutledningar, inte

Läs mer

Logik och modaliteter

Logik och modaliteter Modallogik Introduktionsföreläsning HT 2015 Formalia http://gul.gu.se/public/courseid/70391/lang-sv/publicpage.do Förkunskaper etc. Logik: vetenskapen som studerar argument med avseende på (formell) giltighet.

Läs mer

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2.

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2. Logik Vid alla matematiskt resonemang måste man vara säker på att man verkligen menar det man skriver ner på sitt papper. Därför måste man besinna hur man egentligen tänker. Den vetenskap, som sysslar

Läs mer

A B A B A B S S S S S F F S F S F S F F F F

A B A B A B S S S S S F F S F S F S F F F F Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 17. Logik När man utför matematiska resonemang så har man alltid vissa logiska spelregler att förhålla

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 12: Logikprogrammering Henrik Björklund Umeå universitet 16. oktober, 2014 Prolog Prolog har två klasser av formler. Atomära formler: country(sweden, 9000000).

Läs mer

DD1361 Programmeringsparadigm HT16

DD1361 Programmeringsparadigm HT16 DD1361 Programmeringsparadigm HT16 Logikprogrammering 1 Dilian Gurov, TCS Delkursinnehåll Logikprogrammering Logisk versus procedurell läsning Kontrollflöde Unifiering, Backtracking, Snitt Negation Induktiva

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Logikgrindar Från data till digitala byggblock: Kursens

Läs mer

KRITISKT TÄNKANDE I VÄRDEFRÅGOR. 5: Deduktion

KRITISKT TÄNKANDE I VÄRDEFRÅGOR. 5: Deduktion KRITISKT TÄNKANDE I VÄRDEFRÅGOR 5: Deduktion Deduktivt resonerande DEL 1 Contrariwise, continued Tweedledee, if it was so, it might be; and if it were so, it would be as it isn t, it ain t. That s logic.

Läs mer

Semantik och logik. Semantik: Föreläsning 3 Lingvistik: 729G08 HT 2012 IKK, Linköpings universitet

Semantik och logik. Semantik: Föreläsning 3 Lingvistik: 729G08 HT 2012 IKK, Linköpings universitet emantik och logik emantik: Föreläsning 3 Lingvistik: 729G08 HT 2012 IKK, Linköpings universitet 1 Dagens föreläsning aeed 2009, kap.4 Introduktion till formell semantik Betydelse i sammansatta satser Betydelserelationer

Läs mer

FTEA12:2 Filosofisk metod. Att värdera argumentation I

FTEA12:2 Filosofisk metod. Att värdera argumentation I FTEA12:2 Filosofisk metod Att värdera argumentation I Dagens upplägg 1. Några generella saker att tänka på vid utvärdering av argument. 2. Grundläggande språkfilosofi. 3. Specifika problem vid utvärdering:

Läs mer

Semantik och pragmatik (serie 5)

Semantik och pragmatik (serie 5) Semantik och pragmatik (serie 5) (Predikat)logik Mängdlära överkurs (och repetition för en del). Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 41 Korsning av två egenskaper E 1

Läs mer

7. FORMELL SATSLOGIK (SL)

7. FORMELL SATSLOGIK (SL) 7. FORMELL SATSLOGIK (SL) 7.1 VEM BEHÖVER FORMELL LOGIK? Ingen använder formell logik i det dagliga livet. Den logik vi använder, den naturliga eller intuitiva logiken, är, som vi sett, varierande och

Läs mer

K2 Något om modeller, kompakthetssatsen

K2 Något om modeller, kompakthetssatsen KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och fullständighetssatsen

Läs mer

Generellt kan vi säga att för att vi ska värdera ett argument som bra bör det uppfylla åtminstone följande kriterier:

Generellt kan vi säga att för att vi ska värdera ett argument som bra bör det uppfylla åtminstone följande kriterier: FTEA12:2 Föreläsning 3 Att värdera en argumentation I: Vad vi hittills har gjort: beaktat argumentet ur ett mer formellt perspektiv. Vi har funnit att ett argument kan vara deduktivt eller induktivt, att

Läs mer

K3 Om andra ordningens predikatlogik

K3 Om andra ordningens predikatlogik KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K3 Om andra ordningens predikatlogik Vi presenterar på dessa sidor kortfattat andra ordningens predikatlogik, vilket

Läs mer

Vad är semantik? LITE OM SEMANTIK I DATORLINGVISTIKEN. Språkteknologi semantik. Frågesbesvarande

Vad är semantik? LITE OM SEMANTIK I DATORLINGVISTIKEN. Språkteknologi semantik. Frågesbesvarande LITE OM SEMANTIK I DATORLINGVISTIKEN (FORMELL SEMANTIK) Vad är semantik? Form (abstrakt struktur): grammatik Innehåll (betydelse): semantik Användning: pragmatik/diskurs Mats Dahllöf Språkteknologisk motivation

Läs mer

Innehåll. Föreläsning 4-5. Logiska system. Alfabet. Calculus. Well-formed formulas. Vanliga termer i logik Satslogik. Första ordningens predikatlogik

Innehåll. Föreläsning 4-5. Logiska system. Alfabet. Calculus. Well-formed formulas. Vanliga termer i logik Satslogik. Första ordningens predikatlogik Innehåll Föreläsning 4-5 Logik med tillämpningar 010220 Vanliga termer i logik Satslogik syntax och semantik beslutsprocedurer Första ordningens predikatlogik syntax och semantik Kapitel 3-5: Topic 8-11

Läs mer

Diskret matematik. Gunnar Bergström

Diskret matematik. Gunnar Bergström Diskret matematik Gunnar Bergström 20 september 2005 ii INNEHÅLL iii Innehåll 1 Logik och mängdlära 1 1.1 Satslogik........................... 1 1.1.1 Utsagor....................... 1 1.1.2 Konnektiv......................

Läs mer

Elementär logik och mängdlära

Elementär logik och mängdlära Elementär logik och mängdlära Mängd En mängd är en ihopsamling av noll eller flera saker, där ordningen mellan de ihopsamlade sakerna är oväsentlig. Sakerna kallas för mängdens element. EXEMPEL {1, 2,

Läs mer

Sanning och lögnare. Rasmus Blanck VT2017. FT1200, LC1510 och LGFI52

Sanning och lögnare. Rasmus Blanck VT2017. FT1200, LC1510 och LGFI52 rasmus.blanck@gu.se FT1200, LC1510 och LGFI52 VT2017 Vad är sanning? Vi verkar använda begreppet utan större problem till vardags. Det kanske vore intressant att ha en definition: P är sann om och endast

Läs mer

KRITISKT TÄNKANDE I VÄRDEFRÅGOR. 8: Repetition

KRITISKT TÄNKANDE I VÄRDEFRÅGOR. 8: Repetition KRITISKT TÄNKANDE I VÄRDEFRÅGOR 8: Repetition TRE CENTRALA BEGREPP (i) Sanning: en egenskap som tillkommer utsagor, inte slutledningar. (ii) Logisk styrka: en egenskap som tillkommer slutledningar, inte

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 3: Bevissystem, Hilbertsystem Henrik Björklund Umeå universitet 8. september, 2014 Bevissystem och Hilbertsystem Teorier och deduktionsproblemet Axiomscheman

Läs mer

Logik. Boolesk algebra. Logik. Operationer. Boolesk algebra

Logik. Boolesk algebra. Logik. Operationer. Boolesk algebra Logik F4 Logik Boolesk algebra EDAA05 Roger Henriksson Jonas Wisbrant Konsten att, och vetenskapen om, att resonera och dra slutsatser. Vad behövs för att man ska kunna dra en slutsats? Hur kan man dra

Läs mer

Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R

Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R Föreläsning Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen För att göra ett påstående av en öppen utsaga med flera variabler behövs flera kvantifierare.

Läs mer

Finns det tillräckligt med information för att bestämma hur många av eleverna som fick 1 poäng? Vad tycker du?

Finns det tillräckligt med information för att bestämma hur många av eleverna som fick 1 poäng? Vad tycker du? Logik och bevis I 1. Introduktion till logik Varför skulle vi vilja studera logik? Det kan vara för att det hjälper oss att förstå ett problem och dra slutsatser. Det hjälper oss att skriva klartext så

Läs mer

Logik och semantik. Mats Dahllöf, Plan. Semantik och pragmatik

Logik och semantik. Mats Dahllöf, Plan. Semantik och pragmatik Semantik och pragmatik Logik och semantik Mats Dahllöf, 2005-05-20. Plan Sanning och logik. Logik i lexikala begreppssystem. Logik i satsinnehåll. Aristotelisk logik. (En enkel typ av formalisering. För

Läs mer

DD1350 Logik för dataloger

DD1350 Logik för dataloger DD1350 Logik för dataloger Fö 8 Axiomatiseringar 1 Modeller och bevisbarhet Sedan tidigare vet vi att: Om en formel Φ är valid (sann i alla modeller) så finns det ett bevis för Φ i naturlig deduktion.

Läs mer

MÖNSTER OCH TALFÖLJDER

MÖNSTER OCH TALFÖLJDER MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

KTH Matematik Jan Kristoferson Problemsamling. till repetitionskurs i LOGIK (5B1928) för D och IT

KTH Matematik Jan Kristoferson Problemsamling. till repetitionskurs i LOGIK (5B1928) för D och IT KTH Matematik Jan Kristoferson 2006 Problemsamling till repetitionskurs i LOGIK (5B1928) för D och IT Följande uppgifter är huvudsakligen hämtade från A-delen av äldre tentor och från äldre kontrollskrivningar.

Läs mer

8 MODAL SATSLOGIK. omöjligt - inte omöjligt. tänkbart - inte tänkbart

8 MODAL SATSLOGIK. omöjligt - inte omöjligt. tänkbart - inte tänkbart 8 MODAL SATSLOGIK 8.1 BEGREPPEN MÖJLIG OCH NÖDVÄNDIG Att det finns en skillnad mellan att ett påstående är möjligen sant, sant och nödvändigtvis sant är uppenbart. Det är möjligen sant att Aristoteles

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 1: Introduktion, motivation Henrik Björklund Umeå universitet 30. augusti, 2014 Lärare Henrik Björklund MIT E445 henrikb@cs.umu.se Klas Markström MIT E328 klas.markstrom@math.umu.se

Läs mer

Malmö högskola 2012/2013 Teknik och samhälle

Malmö högskola 2012/2013 Teknik och samhälle Laboration 6 Till pseudokoduppgifterna och aktivitetsdiagrammen ges inga direkta lösningar då dessa går att göra på så väldigt många olika sätt. Pseudokod Skriv pseudokod för följande problem Åka tåg Du

Läs mer

:1) Vid ett besök på Knarrön (där ju var och en antingen är kung (och

:1) Vid ett besök på Knarrön (där ju var och en antingen är kung (och KTH Matematik B.Ek SF1642 LOGIK för D och IT, övningarna vt08 Exempel från gamla tentor (i 5B1928) Ö1, kungar och narrar 23.5-01:1a) Det är marknadsdag på Knarrön och många invånare från den närbelägna

Läs mer

TDIU01 (725G67) - Programmering i C++, grundkurs

TDIU01 (725G67) - Programmering i C++, grundkurs TDIU01 (725G67) - Programmering i C++, grundkurs Introduktion till kursen och programmering Eric Elfving Institutionen för datavetenskap 2 september 2014 Översikt Kursinformation Personal Kursmål Upplägg

Läs mer

Satslogiken, Sanningsfunktioner och Semantiska Tablåer

Satslogiken, Sanningsfunktioner och Semantiska Tablåer atslogiken, anningsfunktioner och emantiska Tablåer Daniel Rönnedal Abstrakt Den här uppsatsen handlar om satslogiken, sanningsfunktioner och semantiska tablåer. yftet är dels att sammanfatta några intressanta

Läs mer

729G06 Föreläsning 1 Objektorienterad programmering

729G06 Föreläsning 1 Objektorienterad programmering Översikt Formalia Vad är objektorienterad programmering 729G06 Föreläsning 1 Objektorienterad programmering Definieria klasser Skapa och använda objekt Annika Silvervarg Ciltab, IDA, Linköpings universitet

Läs mer

2 Mängdlärans grundbegrepp

2 Mängdlärans grundbegrepp UPPSALA UNIVERSITET Föreläsningsanteckningar Institutionen för lingvistik och filologi Grundläggande datalogi II Mats Dahllöf http://stp.ling.uu.se/~matsd/uv/uv04/gd2/ Augusti 2004 2 Mängdlärans grundbegrepp

Läs mer

EDA Digital och Datorteknik 2009/2010

EDA Digital och Datorteknik 2009/2010 EDA45 - Digital och Datorteknik 29/2 EDA 45 - Digital och Datorteknik 29/2, lärobokens kapitel 3 Ur innehållet: Satslogik och Boolesk algebra Grindar Funktionstabell Binär evaluering Normal orm/förenklad

Läs mer

Traditionell Programmering

Traditionell Programmering Crash Course in Prolog Baran Çürüklü Introduktion till PROLOG, dvs. PROgramming in LOGic Prolog-programmen är deklarativa och består av egenskaper, relationer och regler. Lisp and Prolog är de vanligaste

Läs mer

Algebra I, 1MA004. Lektionsplanering

Algebra I, 1MA004. Lektionsplanering UPPSALA UNIVERSITET Matematiska Institutionen Dan Strängberg HT2016 Fristående, IT, KandDv, KandMa, Lärare 2016-11-02 Algebra I, 1MA004 Lektionsplanering Här anges rekommenderade uppgifter ur boken till

Läs mer

Lektion 8: Konstruktion av semantiska tablåer för PTL-formler

Lektion 8: Konstruktion av semantiska tablåer för PTL-formler Lektion 8: Konstruktion av semantiska tablåer för PTL-formler Till denna lektion hör uppgift 2, 6 och 0 i lärobokens avsnitt.6 (sid. 255). Lös uppgift 2 genom att konstruera en semantisk tablå. Följande

Läs mer

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29 Numeriska serier Andreas Rejbrand, april 2014 1/29 1 Inledning Författarens erfarenhet säger att momentet med numeriska serier är ganska svårt för många studenter i inledande matematikkurser på högskolenivå.

Läs mer

tidskrift för politisk filosofi nr 2 2014 årgång 18

tidskrift för politisk filosofi nr 2 2014 årgång 18 tidskrift för politisk filosofi nr 2 2014 årgång 18 Bokförlaget thales fn:s allmänna förklaring om de mänskliga rättigheterna och kvantifierad deontisk logik Daniel Rönnedal fn:s allmänna förklaring om

Läs mer

Artificiell Intelligens Lektion 4

Artificiell Intelligens Lektion 4 Frames Filmdomän Artificiell Intelligens Lektion 4 Frames (Lab4) Resolution & unifiering Frames system Lagrar hierarkisk information Attribut lagras i attributvärdesstrukturer Attribut kan ha egenskaper

Läs mer

Tentamen i TTIT07 Diskreta Strukturer

Tentamen i TTIT07 Diskreta Strukturer Tentamen i TTIT07 Diskreta Strukturer 2004-10-28, kl 8 13, TER1 och TERC Inga hjälpmedel är tillåtna Kom ihåg att svaren på samtliga uppgifter måste MOTIVERAS, och att motiveringarna skall vara uppställda

Läs mer

Introduktion till logik

Introduktion till logik Introduktion till logik Av Johan Johansson Johan.johansson@guldstadsgymnasiet.se Logik sägs som många andra saker komma från de grekiska filosoferna, och ordet kommer också därifrån. Grekerna kallade det

Läs mer

Religionskunskap 1 15 hp, delkurs 1 Religionshistorisk introduktion (7,5 hp)

Religionskunskap 1 15 hp, delkurs 1 Religionshistorisk introduktion (7,5 hp) Linköpings Universitet Institutionen för kultur och kommunikation IKK Religionsvetenskaplig grundkurs 790G01 Religionskunskap 1 15 hp, delkurs 1 Religionshistorisk introduktion (7,5 hp) Studiehandledning

Läs mer

Matematik med lite logik

Matematik med lite logik Ralph-Johan Back Matematik med lite logik Logik för strukturerade härledningar Turku Centre for Computer Science IMPEd Resource Centre TUCS Lecture Notes No 8, Oct 2008 Matematik med lite logik Logik

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

Uppgifter i TDDC75: Diskreta strukturer Kapitel 8 Ordning och oändlighet

Uppgifter i TDDC75: Diskreta strukturer Kapitel 8 Ordning och oändlighet Uppgifter i TDDC75: Diskreta strukturer Kapitel 8 Ordning och oändlighet Mikael Asplund 19 oktober 2016 Uppgifter 1. Avgör om följande relationer utgör partialordningar. Motivera varför eller varför inte.

Läs mer

Hur implementera algoritmerna på maskinnivå - datorns byggstenar

Hur implementera algoritmerna på maskinnivå - datorns byggstenar Hur implementera algoritmerna på maskinnivå - datorns byggstenar Binära tal Boolesk logik grindar och kretsar A A extern representation intern representation minnet i datorn extern representation 1000001

Läs mer

PROBLEMLÖSNING. ! GPS! Mål medel analys! Problemlösning i programmering. Lars-Erik Janlert 2007

PROBLEMLÖSNING. ! GPS! Mål medel analys! Problemlösning i programmering. Lars-Erik Janlert 2007 PROBLEMLÖSNING! Problem & lösning! Sökträd, sökgraf! Automatisk problemlösning! Heuristik! Heuristisk sökning! GPS! Mål medel analys! Problemlösning i programmering 1 Problem (snäv mening)! Ett problem

Läs mer