Funktionella beroenden - teori

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Funktionella beroenden - teori"

Transkript

1 Relationell databasdesign, FB Teori 7-12 Funktionella beroenden - teori Vid utformning av databassystem är det av största vikt att man kan resonera systematiskt om funktionella beroenden bl.a. för att kunna testa scheman för BCNF och 3NF. Formella begreppet nyckel (repetition): K är en (kandidat)nyckel för relation R om (1) K alla attribut i R (2) För ingen äkta delmängd av K är (1) sann. Om K bara satisfierar (1) så är K en supernyckel. Hölje av en mängd av funktionella beroenden Vi kunde definiera ett relationsschema genom att helt enkelt ge en enda kandidatnyckel. De enda funktionella beroenden som sedan anges är att K A för varje attribut A. K är då den enda kandidatnyckeln för dessa funktionella beroenden, enligt den formella definitionen på kandidatnyckel. Eller vi kunde ange några funktionella beroenden och härleda en eller flere nycklar enligt den formella definitionen Tumregel: Funktionella beroenden kommer antingen från nyckelhet eller från fysik. T.ex. "inga två kurser kan hållas i samma rum vid samma tid" ger rum tid kurs Vilka beroenden fås ur E-R-diagrammet?

2 Relationell databasdesign, FB Teori 7-13 Det räcker ej att beakta en mängd funktionella beroenden, man måste beakta alla funktionella beroenden som gäller. Genom att utgå från en given mängd F av funktionella beroenden kan man bevisa att andra funktionella beroenden gäller är logiskt implicerade av F: Givet ett relationsschema R. Ett funktionellt beroende f på R är logiskt implicerat av en mängd F av funktionella beroenden på R om varje instans r(r) som satisfierar F även satisfierar f. Ex.: Givet relationsschema R(A,B,C,G,H,I) där följande funktionella beroenden gäller A B XY = X Y A C CG H CG I B H Man kan visa att A H är logist implicerat. Dvs. man kan visa att om den givna mängden av funktionella beroenden gäller så gäller äver A H: Antag att t 1 och t 2 är tupler så att t 1 [A] = t 2 [A] A B, def.fb B H, def.fb t 1 [A] = t 2 [A] t 1 [B] = t 2 [B] t 1 [H] = t 2 [H] dvs. A H Hölje av en mängd funktionella beroenden, F + Låt F vara en mängd av funktionella beroenden. Höljet av F (bet. F + ) är mängden av alla funktionella beroenden implicerade av F. F + kan bestämmas m.h.a. en algoritm som utnyttjar Armstrongs axiom, med det är besvärligt ty F + kan vara stort. (Om R innehåller n attribut är antalet möjliga funktionella beroenden i F + 2 2n -2 n+1 +1.)

3 Relationell databasdesign, FB Teori 7-14 Inferensregler Följande regler kan användas för att härleda funktionella beroenden Armstrongs axiom (1974) 1. Reflexivitet: Om Y X, så X Y 2. Augmentering: Om X Y, så XZ YZ 3. Transitivitet: Om X Y och Y Z, så X Z Av 1-3 följer 4. Union: Om X Y och X Z, så X YZ 5. Uppdelning: Om X YZ så X Y och X Z 6. Pseudo-transitivitet: Om X Y och WY Z, så XW Z Armstrongs axiom är sunda (ger inga felaktiga funktionella beroenden) och fullständiga. Ex.: Visa att A B och BC D implicerar AC D 1. A B (givet) 2. AC BC (augmentering) 3. BC D (givet) 4. AC D (transitivitet anv. 2 och 3) Ex.: Visa att A B och A C implicerar A BC 1. A B (givet) 2. A AB (augmentering m.h.a A) 3. A C (givet) 4. AB CB (augmentering) 5. A BC (transitivitet anv 2 och 4)

4 Relationell databasdesign, FB Teori 7-15 Höljet av en mängd attribut Ett attribut B är funktionellt bestämt av α om α B. Låt α vara en mängd attribut. Höljet av α under F (bet. α + ) är mängden av alla attribut som funktionellt bestäms av α under en mängd F av funktionella beroenden. Algorim för att beräkna höljet av α, α + Bas: α + = α. Induktion: Om β α +, och β γ är ett givet funktionellt beroende, så lägg γ till α +. Varför? Sluta då α + inte kan ändras. Då bestämmer α funktionellt alla medlemmar av α +, och inga andra attribut. Algorimen kan användas på många sätt: Testa om en attributmängd α är en supernyckel: Beräkna α + i schemat under mängden av dess funktionella beroenden. Om alla attribut i schemat ingår i höljet är mängden en supernyckel. Ex.: R = (A,B,C,D) A B, BC D A + = AB B + = B (AC) + = ABCD dvs. AC är en nyckel Testa om ett funktionellt beroende α β gäller, dvs tillhör F + : Beräkna α +, om β α + gäller α β eljest gäller det ej. Ex.: A C gäller ej ty C / A + = AB Beräkna F + : Beräkna γ + för varje γ R. Varje S γ + ger det funktionella beroendet γ S till F +.

5 Relationell databasdesign, FB Teori 7-16 Ex.: R = (A,B,C,G,H,I) F = {A B, A C, CG H, CG I, B H} Några element i F + i exemplet ovan: A H CG HI AG I Finns det flere? ty A B och B H (anv. trans) ty CG H, CG I (anv. union) ty A C i F, AG CG (aug med G), CG I i F (trans) ger res. Bestämning av alla härledda funktionella beroenden Motivering: Antag att vi har en relation ABCD med några funktionella beroenden F. Om vi besluter att uppdela ABCD i ABC och AD, vad är de funktionella beroendena för ABC och AD? Ex.: R = (A,B,C,D), F = {AB C, C D, D A} Det ser ut som om bara AB C gäller i ABC, men i själva verket följer C A från F och är tillämpbar på relation ABC. Problemet är exponentiellt i värsta fall. Algoritm För varje mängd av attribut X i R beräkna X +. Eliminera några "uppenbara" beroenden som följer av andra: 1. Eliminera triviala funktionella beroenden (högersida vänstersida) 2. Eliminera XY Z om X Z gäller. 3. Eliminera funktionella beroenden vars högra sidor inte är enskilda attribut. Obs! Efter det att de upptäckta FB na projicerats på en relation kan de som eliminerats med reglerna ovan rekonstrueras i den projicerade relationen.

6 Relationell databasdesign, FB Teori 7-17 Ex.: R = (A,B,C,D) F = {AB C, C D, D A} Vilka funktionella beroenden följer. Dvs. AB, BC och BD är supernycklar A + = A B + = B C + = ACD D + = AD (AB) + = ABCD (BC) + = ABCD (BD) + = ABCD (AC) + = ACD (AD) + = AD (CD) + = ACD ingenting ingenting lägg C A till höljet lägg AB D (lämna bort alla supermängder av AB) (lämna bort alla supermängder av BC) lägg till BD C (lämna bort alla supermängder av BD) Alla andra mängder innehåller AB, BC eller BD så de ger inget nytt. Dvs. de enda intressanta funktionella beroenden som följer av F är: C A AB D BD C

7 Relationell databasdesign, FB Teori 7-18 Kanonisk övertäckning Alltid då en uppdatering görs i en databas måste systemet kontrollera att inga funktionella beroenden brytes mot. Dvs. att alla funktionella beroenden i F är satisfierade i databasens nya tillstånd. (Om de ej är satisfierade skall systemet återställas.) Kontrollen kan göras för en förenklad mängd av funktionella beroenden som har samma hölje som F, som är enklare att utföra. Att F och den förenklade mängden har samma hölje innebär att om databasen satisfierar den förenklade mängden av funktionella beroenden så satisfierar den även F, och tvärtom. Def.: Betrakta en mängd F av funktionella beroenden och det funktionella beroendet α β i F. Attribut A är överflödigt i α om A α och F logiskt implicerar (F { α β } ) { (α A) β } Attribut A är överflödigt i β om A β och mängden av funktionella beroenden Varför F F (F { α β } ) { α (β A) } och ej F F? logiskt implicerar F. En kanonisk övertäckning F c för F är en mängd av beroenden så att F logiskt implicerar alla beroenden i F c och F c logiskt implicerar alla beroenden i F, och vidare Inget FB i F c innehåller ett överflödigt attribut Varje vänstersida av ett FB i F c är unikt Hur hitta en förenklad mängd F av F? Varför F F och ej F F? Kan en mängd av funktionella beroenden ha flere kanonisk övertäckningar?

8 Relationell databasdesign, FB Teori 7-19 Beräkning av en kanonisk övertäckning för F: F c = F repeat Använd union-regeln för att ersätta beroenden α 1 β 1 och α 1 β 2 med α 1 β 1 β 2 Bestäm ett FB α βmed ett överflödigt attribut i antingen α eller i β Om ett överflödigt attribut hittas, stryk det från α β until F c inte ändras Ex.: R = (A, B, C) F = { A BC B C A B AB C } Det finns två FB n med samma vänstersida, kombinera dem: A BC och A B kombineras till A BC Är A överflödigt i AB C? dvs. gäller F (F { AB C} ) { B C } Ja ty B C F implicerar logiskt AB C Är C är överflödigt i A BC? dvs. gäller (F { A BC } ) { A B} F Ja ty A BC kan härledas ur F ty A + = ABC under F F = { A BC B C AB C } F = { A BC B C } F = { A B B C } Den kanoniska övertäckningen F c för F är F c = { A B, B C }

Relationell databasdesign

Relationell databasdesign Relationell databasdesign Kapitel 7 Relationell databasdesign sid Uppdelning m.h.a. funktionella beroenden 3 Funktionella beroenden - teori 12 Uppdelningsalgoritmer 27 Designprocess 33 Relational oath

Läs mer

Uppdelning. Relationell databasdesign, FB Teori 7-20. Låt R vara ett relationsschema. R 1, R 2,..., R n är en uppdelning av

Uppdelning. Relationell databasdesign, FB Teori 7-20. Låt R vara ett relationsschema. R 1, R 2,..., R n är en uppdelning av Relationell databasdesign, FB Teori 7-20 Uppdelning Låt R vara ett relationsschema. R 1, R 2,..., R n är en uppdelning av R om R i = R, i=1,...,n. Dvs. varje R i är en delmängd av R och varje attribut

Läs mer

Kvalitetstänkande. Utgångsläge Samtliga ER-diagram har överförts till scheman

Kvalitetstänkande. Utgångsläge Samtliga ER-diagram har överförts till scheman Kvalitetstänkande Utgångsläge Samtliga ER-diagram har överförts till scheman Förbättra kvaliteten på relationsscheman Normalformler ger dugligare nycklar Hitta funktionella beroenden med hjälp av slutsatsdragning

Läs mer

Analytisk relationsdatabasdesign

Analytisk relationsdatabasdesign Analytisk relationsdatabasdesign Att förbättra kvaliteten i databaser Presenter s Name Organization name www.horton.com Domän-regler och främmande nyckel regler via DDL Datatyp! Datatyp! Maxvärde! Maxvärde!

Läs mer

Universitetet: ER-diagram

Universitetet: ER-diagram Databaser Design och programmering Fortsättning på relationsmodellen: Normalisering funktionella beroenden normalformer informationsbevarande relationsschemauppdelning Varför normalisera? Metod att skydda

Läs mer

Databasdesign. E-R-modellen

Databasdesign. E-R-modellen Databasdesign Kapitel 6 Databasdesign E-R-modellen sid Modellering och design av databaser 1 E-R-modellen 3 Grundläggande begrepp 4 Begränsningar 10 E-R-diagram 14 E-R-design 16 Svaga entitetsmängder 19

Läs mer

GIS, databasteknik och kartografi. Kursmaterial för databasdelen

GIS, databasteknik och kartografi. Kursmaterial för databasdelen GIS, databasteknik och kartografi Kursmaterial för databasdelen Våren 2004 Innehåll Objekt och objektklasser......................... 3 Samband och sambandsklasser...................... 4 Övningsuppgifter:

Läs mer

Informationssystem och databasteknik

Informationssystem och databasteknik Informationssystem och databasteknik Föreläsning 5 Analytisk databasdesign F5! Funktionellt beroende: Pnr Namn Funktion (i vanlig mat. betydelse): 610321 11111 22222 33333 Maria Eva Sture Olle För varje

Läs mer

Relationsmodellen. Relations modellen är idag den mest änvända datamodellen för kommersiella

Relationsmodellen. Relations modellen är idag den mest änvända datamodellen för kommersiella Relationsmodellen 2-1 Relationsmodellen Relations modellen är idag den mest änvända datamodellen för kommersiella applikationer. Relationsdatabasstruktur En relationsdatabas består av en samling tabeller,

Läs mer

IT i organisationer och databasteknik

IT i organisationer och databasteknik IT i organisationer och databasteknik Föreläsning 5 Analytisk databasdesign Arkitektur hos ett informationssystem Presentation Användargränssnitt via en browser Applikationslogik Data Java servlets som

Läs mer

Karlstads Universitet, Datavetenskap 1

Karlstads Universitet, Datavetenskap 1 * * * * DAV B04 - Databasteknik! "# $ %'&( ) KaU - Datavetenskap - DAV B04 - MGö 132 Riktlinjer när man vill skapa en databas 1) Designa så att det är lätt att förstå innebörden. Kombinera inte attribut

Läs mer

Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck

Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck KOMBINATORISK LOGIK Innehåll Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck Boolesk algebra Karnaugh-diagram Realisering av logiska funktioner

Läs mer

Grunderna för relationsmodellen!

Grunderna för relationsmodellen! Grunderna för relationsmodellen! 1 Varför behöver jag lära mig relationsmodellen?! Relationsmodellen är den totalt dominerande datamodellen i moderna databassystem Beskriver databaser som en mängd tabeller

Läs mer

2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY!, där RIDKURS.KursId = KURS.KursId 3NF Hästnamn, Art, NY! NY! NY! NY!

2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY!, där RIDKURS.KursId = KURS.KursId 3NF Hästnamn, Art, NY! NY! NY! NY! ÖVNING 9 2NF HÄST (Hästnamn, Mankhöjd, Favoritmat, Art, Medelvikt, Spiltnummer, Bredd, Höjd) PERSON(Personnummer, Namn, Adress, Telefon) RIDKURS(KursId, StartDatum, SlutDatum, Ledare) KURS(KursId, Svårighetsgrad)

Läs mer

Skriftlig tentamen i kurserna TDDD12 och TDDB48 Databasteknik 2008-08-11 kl. 14 18

Skriftlig tentamen i kurserna TDDD12 och TDDB48 Databasteknik 2008-08-11 kl. 14 18 LiTH, Tekniska högskolan vid Linköpings universitet 1(5) IDA, Institutionen för datavetenskap Juha Takkinen Skriftlig tentamen i kurserna TDDD12 och TDDB48 Databasteknik 2008-08-11 kl. 14 18 Lokal T2 och

Läs mer

Pga att (Nummer och Typ) tillsammans bestämmer övriga attribut funktionellt väljer vi (Nummer, Typ) till primärnyckel:

Pga att (Nummer och Typ) tillsammans bestämmer övriga attribut funktionellt väljer vi (Nummer, Typ) till primärnyckel: ÖVNING 1. PRODUKT(Nummer, Namn, Typ, Klass, Prisklass, Vikt, Volym, Fraktkostnad) Nummer, Typ Namn, Klass, Pris, Prisklass, Vikt, Volym, Fraktkostnad Namn, Typ Nummer Typ Klass Pris Prisklass Vikt, Volym,

Läs mer

Lösningsförslag, tentamen i Databaser

Lösningsförslag, tentamen i Databaser LUNDS TEKNISKA HÖGSKOLA 1(4) Institutionen för datavetenskap Lösningsförslag, tentamen i Databaser 2004-04-20 1. ER-diagram: Matsedel år vecka serveras 1..5 lagas-med Maträtt Ingrediens dag mängd Allergi

Läs mer

Normalisering. Varför? För att åstadkomma en så bra struktur i databasen som möjligt med minimalt med dubbellagrad info.

Normalisering. Varför? För att åstadkomma en så bra struktur i databasen som möjligt med minimalt med dubbellagrad info. Normalisering Varför? För att åstadkomma en så bra struktur i databasen som möjligt med minimalt med dubbellagrad info. Tillbaka i modelleringsfasen. 1NF: Vad menas med ett sammansatt attribut? Exempel:

Läs mer

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: Anslås inom 3 veckor

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: Anslås inom 3 veckor TENTAMEN För kursen DATUM: 2014-12-18 TID: 9 14 Ansvarig för tentamen: Cecilia Sönströd Förfrågningar: 033-4354424 Resultat: Betygsskala: Hjälpmedel: Anslås inom 3 veckor Godkänt 20 p, Väl godkänt 32 p,

Läs mer

Uppföljning av diagnostiskt prov HT-2016

Uppföljning av diagnostiskt prov HT-2016 Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING II. Föreläsning II. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING II. Föreläsning II. Mikael P. Sundqvist Föreläsning II Mikael P. Sundqvist Att bygga matematisk teori Odefinierade begrepp Axiom påstående som ej behöver bevisas Definition namn på begrepp Sats påstående som måste bevisas Lemma hjälpsats Proposition

Läs mer

TENTAMEN TDDB77 Databaser och Bioinformatik 22 augusti 2006, kl 14-18

TENTAMEN TDDB77 Databaser och Bioinformatik 22 augusti 2006, kl 14-18 Institutionen för datavetenskap Linköpings universitet TETAME TDDB77 Databaser och Bioinformatik 22 augusti 2006, kl 14-18 Jourhavande lärare: Lena Strömbäck (Patrick Lambrix, 0703-492066) Poäng: Tentan

Läs mer

Logisk databasdesign

Logisk databasdesign NORMALISERING Peter Bellström Logisk databasdesign 2 Arbetssteget vars syfte är att konstruera en modell (diagram, schema), baserad på en specifik datamodell, över verksamhetens begrepp och samband. Modellen

Läs mer

Karlstads Universitet, Datavetenskap 1

Karlstads Universitet, Datavetenskap 1 DAV B04 - Databasteknik KaU - Datavetenskap - DAV B04 - MGö 1 Normalisering Förut sunt förnuft Nu formell metod riktlinjer för att hjälpa till att gruppera attributen (egenskaperna) för varje relation

Läs mer

Föreläsning 9: NP-fullständighet

Föreläsning 9: NP-fullständighet Föreläsning 9: NP-fullständighet Olika typer av problem: 1. Beslutsproblem: A(x) =Ja. 2. Optimeringsproblem: A(x) =m Vanligen max/min. 3. Konstruktionsproblem: A(x) =En struktur. Vanligen lösningen till

Läs mer

Föreläsning 8: Intro till Komplexitetsteori

Föreläsning 8: Intro till Komplexitetsteori Föreläsning 8: Intro till Komplexitetsteori Formalisering av rimlig tid En algoritm som har körtid O(n k ) för någon konstant k är rimligt snabb. En algoritm som har körtid Ω(c n ) för någon konstant c>1

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll

Läs mer

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: 033-4354424. Anslås inom 3 veckor

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: 033-4354424. Anslås inom 3 veckor TENTAMEN För kursen DATUM: 2014-08-20 TID: 9 14 Ansvarig för tentamen: Cecilia Sönströd Förfrågningar: 033-4354424 Resultat: Betygsskala: Hjälpmedel: Anslås inom 3 veckor Godkänt 20 p, Väl godkänt 32 p,

Läs mer

Normalisering. Christer Stuxberg Institutionen för Informatik och Media

Normalisering. Christer Stuxberg Institutionen för Informatik och Media Normalisering Christer Stuxberg christer.stuxberg@im.uu.se Institutionen för Informatik och Media Översikt Normalisering Dataredundans och Uppdateringsanomalier Anomalier vid insättning Anomalier vid borttagning

Läs mer

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: Anslås inom 3 veckor

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: Anslås inom 3 veckor TENTAMEN För kursen DATUM: 2014-11-07 TID: 9 14 Ansvarig för tentamen: Cecilia Sönströd Förfrågningar: 033-4354424 Resultat: Betygsskala: Hjälpmedel: Anslås inom 3 veckor Godkänt 20 p, Väl godkänt 32 p,

Läs mer

Karlstads Universitet, Datavetenskap 1

Karlstads Universitet, Datavetenskap 1 2003-01-20 DAV B04 - Databasteknik 2003-01-20 KaU - Datavetenskap - DAV B04 - MGö 26 Relationsmodellen En formell teori som baserar sig på (främst) mängdlära predikatlogik Föreslogs av E.F Codd 1970 i

Läs mer

Peanos axiomsystem för de naturliga talen

Peanos axiomsystem för de naturliga talen 5B1493, lekt 3, HT06 P1. Det finns ett naturligt tal 0. Peanos axiomsystem för de naturliga talen P2. Varje natutligt tal n har en s.k. efterföljare n +. P3. Om n + = m + så är n = m. P4. Inget naturligt

Läs mer

Konceptuella datamodeller

Konceptuella datamodeller Databasdesign Relationer, Nycklar och Normalisering Copyright Mahmud Al Hakim mahmud@webacademy.se www.webacademy.se Konceptuella datamodeller Om man ska skapa en databas som beskriver en del av verkligheten

Läs mer

K2 Något om modeller, kompakthetssatsen

K2 Något om modeller, kompakthetssatsen KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och fullständighetssatsen

Läs mer

Kongruens och likformighet

Kongruens och likformighet Kongruens och likformighet Torbjörn Tambour 23 mars 2015 I kompendiet har jag tagit kongruens- och likformighetsfallen mer eller mindre som axiom, vilket jag nu tycker är olyckligt, och de här sidorna

Läs mer

Lösningsförslag till Exempel tentamen

Lösningsförslag till Exempel tentamen Inst. för Data- och Systemvetenskap SU/KTH Maria Bergholtz, Paul Johannesson Lösningsförslag till Exempel tentamen 2I-1033 IT i Organisationer och Databasteknik Tentamenstiden är 5 timmar Skriv bara på

Läs mer

Trigonometri. Sidor i boken 26-34

Trigonometri. Sidor i boken 26-34 Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor

Läs mer

Algebra I, 1MA004. Lektionsplanering

Algebra I, 1MA004. Lektionsplanering UPPSALA UNIVERSITET Matematiska Institutionen Dan Strängberg HT2016 Fristående, IT, KandDv, KandMa, Lärare 2016-11-02 Algebra I, 1MA004 Lektionsplanering Här anges rekommenderade uppgifter ur boken till

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 3: Bevissystem, Hilbertsystem Henrik Björklund Umeå universitet 8. september, 2014 Bevissystem och Hilbertsystem Teorier och deduktionsproblemet Axiomscheman

Läs mer

Programdesign, databasdesign. Databaser - Design och programmering. Funktioner. Relationsmodellen. Relation = generaliserad funktion.

Programdesign, databasdesign. Databaser - Design och programmering. Funktioner. Relationsmodellen. Relation = generaliserad funktion. Databaser Design och programmering Relationsmodellen definitioner ER-modell -> relationsmodell nycklar, olika varianter Programdesign, databasdesign Databasdesign Konceptuell design Förstudie, behovsanalys

Läs mer

Sidor i boken Figur 1:

Sidor i boken Figur 1: Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan

Läs mer

Tentamen DATABASTEKNIK - 1DL116

Tentamen DATABASTEKNIK - 1DL116 Uppsala universitet Institutionen för informationsteknologi Kjell Orsborn Tentamen 2003-05-20 DATABASTEKNIK - 1DL116 Datum...Tisdagen den 20 Maj, 2003 Tid...12:00-17:00 Jourhavande lärare...kjell Orsborn,

Läs mer

TENTAMEN TDDD12 Databasteknik 7 januari 2010, kl 14-18

TENTAMEN TDDD12 Databasteknik 7 januari 2010, kl 14-18 Institutionen för datavetenskap Linköpings universitet TENTAMEN TDDD12 Databasteknik 7 januari 2010, kl 14-18 Jourhavande lärare: Jose M. Peña (1651) Poäng: Tentan består av 2 delar. För godkänd krävs

Läs mer

Nöjd Medarbetar Index 2012

Nöjd Medarbetar Index 2012 Kod: 35015273-4EDD20 Kod: 35015274-3B8D36 Kod: 35015275-0F4A36 Kod: 35015276-1F8B23 Kod: 35015277-860103 Kod: 35015278-BF5703 Kod: 35015279-84AD82 Kod: 35015319-26C3AF Kod: 35015545-8C9D82 Kod: 35015546-91D178

Läs mer

Idag. Hur vet vi att vår databas är tillräckligt bra?

Idag. Hur vet vi att vår databas är tillräckligt bra? Idag Hur vet vi att vår databas är tillräckligt bra? Vad är ett beroende? Vad gör man om det blivit fel? Vad är en normalform? Hur når man de olika normalformerna? DD1370 (Föreläsning 6) Databasteknik

Läs mer

Frågeoptimering. Frågeoptimering kapitel 14

Frågeoptimering. Frågeoptimering kapitel 14 Frågeoptimering kapitel 14 Frågeoptimering sid Introduktion 1 Transformering av relationsuttyck 4 Kataloginformation för kostnadsestimering Statisk information för kostnadsestimering Kostnadsbaserad optimering

Läs mer

Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga.

Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga. GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2005 MATEMATISK BASKURS Övningshäfte 6: Syftet med övningen är att utforska strukturen hos talsystemen under addition respektive multiplikation samt sambandet

Läs mer

Databasteori. Övningar

Databasteori. Övningar Databasteori Övningar Erik Prytz Uppdaterad november 2014, november 2015 Eva L. Ragnemalm November 2009, uppdaterad april 2010 Kapitel 1: ER- modellering Skapa ER- diagram för nedanstående övningar (läs

Läs mer

Föreläsning 7+8: NP-problem. Begreppet effektiv algoritm är alltså synonymt med går i polynomisk tid i den här kursen. Är detta en rimlig uppdelning?

Föreläsning 7+8: NP-problem. Begreppet effektiv algoritm är alltså synonymt med går i polynomisk tid i den här kursen. Är detta en rimlig uppdelning? Formalisering av rimlig tid Föreläsning 7+8: NP-problem En algoritm som har körtid O(n k ) för någon konstant k är rimligt snabb. En algoritm som har körtid Ω(c n ) för någon konstant c>1 är för långsam.

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =

Läs mer

TDDI60 Tekniska databaser

TDDI60 Tekniska databaser Lena Strömbäck 2006-10-13 Skriftlig tentamen i kursen TDDI60 Tekniska databaser Datum: 2006-10-13 Tid: 8-12 Lokal: T2, U3 Hjälpmedel: Engelsk ordlista tillåten ej elektronisk Poängränser: Tentamen består

Läs mer

Exempel tentamen. Skriv bara på en sida av pappret Skriv namn på varje papper Skriv läsligt, annars rättas inte tentamen Alla hjälpmedel är tillåtna

Exempel tentamen. Skriv bara på en sida av pappret Skriv namn på varje papper Skriv läsligt, annars rättas inte tentamen Alla hjälpmedel är tillåtna Inst. för Data- och Systemvetenskap SU/KTH Maria Bergholtz, Paul Johannesson Exempel tentamen 2I-1100 Informationssystem och Databasteknik Tentamen är öppen i så motto att läroböcker, föreläsningsanteckningar,

Läs mer

Föreläsning 8+9: NP-problem. Begreppet effektiv algoritm är alltså synonymt med går i polynomisk tid i den här kursen. Är detta en rimlig uppdelning?

Föreläsning 8+9: NP-problem. Begreppet effektiv algoritm är alltså synonymt med går i polynomisk tid i den här kursen. Är detta en rimlig uppdelning? Formalisering av rimlig tid Föreläsning 8+9: NP-problem En algoritm som har körtid O(n k ) för någon konstant k är rimligt snabb. En algoritm som har körtid Ω(c n ) för någon konstant c>1 är för långsam.

Läs mer

NORMALISERING. Mahmud Al Hakim

NORMALISERING. Mahmud Al Hakim NORMALISERING Mahmud Al Hakim mahmud@webacademy.se 1 SCHEMA Schema eller databasschema är en beskrivning av vilka data som kan finnas i en databas, oberoende av vilka data (innehållet) som råkar finnas

Läs mer

Sidor i boken 8-9, 90-93

Sidor i boken 8-9, 90-93 Sidor i boken 8-9, 90-93 Absolutbelopp Men först lite om Absolutbelopp., kallas absolutbeloppet av, och är avståndet för till origo på tallinjen. Som bekant är avståndet till origo för talet 4, 4. Detta

Läs mer

Digitalteknik syntes Arne Linde 2012

Digitalteknik syntes Arne Linde 2012 Digitalteknik, fortsättningskurs Föreläsning 3 Kombinatoriska nät 202 VHDL repetition + Strukturell VHDL Lite repetition + Karnaughdiagram(4-6var), flera utgångar + Quine-McCluskey + intro tid 2 Entity

Läs mer

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: 033-4354424. Anslås inom 3 veckor

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: 033-4354424. Anslås inom 3 veckor TENTAMEN För kursen DATUM: 2013-12-12 TID: 9 14 Ansvarig för tentamen: Cecilia Sönströd Förfrågningar: 033-4354424 Resultat: Betygsskala: Hjälpmedel: Anslås inom 3 veckor Godkänt 20 p, Väl godkänt 32 p,

Läs mer

Databaser - Design och programmering. Relationsmodellen. Relationer - som tabeller. Relationer som tabeller. Alternativa notationer: Relationsschema

Databaser - Design och programmering. Relationsmodellen. Relationer - som tabeller. Relationer som tabeller. Alternativa notationer: Relationsschema Databaser Design och programmering Relationsmodellen definitioner ER-modell -> relationsmodell nycklar, olika varianter Relationsmodellen Introducerades av Edward Codd 970 Mycket vanlig Stödjer kraftfulla

Läs mer

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:

Läs mer

ÖVNING 10 2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY! 3NF Hästnamn, Art, NY! NY! NY! NY! KursId, StartDatum, SlutDatum KursId NY!

ÖVNING 10 2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY! 3NF Hästnamn, Art, NY! NY! NY! NY! KursId, StartDatum, SlutDatum KursId NY! ÖVNING 10 2NF HÄST (Hästnamn, Mankhöjd, Favoritmat, Art, Medelvikt, Spiltnummer, Bredd, Höjd) PERSON(Personnummer, Namn, Adress, Telefon) RIDKURS(KursId, StartDatum, SlutDatum, Ledare) KURS(KursId, Svårighetsgrad)

Läs mer

SMD033 Digitalteknik. Digitalteknik F1 bild 1

SMD033 Digitalteknik. Digitalteknik F1 bild 1 SMD033 Digitalteknik Digitalteknik F1 bild 1 Vi som undervisar Anders Hansson A3209 91 230 aha@sm.luth.se Digitalteknik F1 bild 2 Registrering Registrering via email till diglabs@luth.se Digitalteknik

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter

Läs mer

1 som går genom punkten (1, 3) och är parallell med vektorn.

1 som går genom punkten (1, 3) och är parallell med vektorn. KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med

Läs mer

Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61.

Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61. Föreläning 8 Problem hämtade från boken idan 15 A 510 a) Rätvinklig triangel med vinkel och katet given. Mottående katet efterfråga. tan4 = x 5 x = 5tan 4 Svar:.6 cm x.6 A 510 b) Vinkel och hypotenuan

Läs mer

Induktionsprincipen Starka induktionsprincipen Välordningsprincipen Divisionsalgoritmen

Induktionsprincipen Starka induktionsprincipen Välordningsprincipen Divisionsalgoritmen Föreläsning 3 Induktionsprincipen Starka induktionsprincipen Välordningsprincipen Divisionsalgoritmen Mängder Induktion behöver inte börja från 1, Grundsteget kan vara P (n 0 ) för vilket heltal n 0 som

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentamen i Onsdagen den 7 mars 2007 Tillåtna hjälpmedel: Allt skrivet material Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera egna antaganden. Oläslig/obegriplig

Läs mer

ÖVNING 10 2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY! 3NF Hästnamn, Art, NY! NY! NY! NY! KursId, StartDatum, SlutDatum KursId NY!

ÖVNING 10 2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY! 3NF Hästnamn, Art, NY! NY! NY! NY! KursId, StartDatum, SlutDatum KursId NY! ÖVNING 10 2NF HÄST (Hästnamn, Mankhöjd, Favoritmat, Art, Medelvikt, Spiltnummer, Bredd, Höjd) PERSON(Personnummer, Namn, Adress, Telefon) RIDKURS(KursId, StartDatum, SlutDatum, Ledare) KURS(KursId, Svårighetsgrad)

Läs mer

Svar och arbeta vidare med Student 2008

Svar och arbeta vidare med Student 2008 Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

Tentamen EIT:DB Databastmetodik 11/1 2013 kl. 13 17 + Lösningsförslag

Tentamen EIT:DB Databastmetodik 11/1 2013 kl. 13 17 + Lösningsförslag Tentamen EIT:DB Databastmetodik 11/1 2013 kl. 13 17 + Lösningsförslag Inga hjälpmedel är tillåtna (annat än ordbok). Kort syntaxsamling för delar av SQL samt lista med symboler för relationsalgebraiska

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

DD1350 Logik för dataloger

DD1350 Logik för dataloger DD1350 Logik för dataloger Fö 8 Axiomatiseringar 1 Modeller och bevisbarhet Sedan tidigare vet vi att: Om en formel Φ är valid (sann i alla modeller) så finns det ett bevis för Φ i naturlig deduktion.

Läs mer

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS. Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät

Läs mer

Lösningsförslag till Tentamen,

Lösningsförslag till Tentamen, Institutionen för Data- och Systemvetenskap SU/KTH Maria Bergholtz och Paul Johannesson Lösningsförslag till Tentamen, 022 2I-00 Informationssystem och databasteknik För att erhålla betyget tre räcker

Läs mer

TENTAMEN. TDDD12 Databasteknik TDDD46 Databasteknik. 16 augusti 2010, kl 14-18

TENTAMEN. TDDD12 Databasteknik TDDD46 Databasteknik. 16 augusti 2010, kl 14-18 LiTH, Linköpings tekniska högskola IDA, Institutionen för datavetenskap Jose M. Peña 2010-08-10 Lokal TER1 och TERC. Tillåtna hjälpmedel Lexikon, miniräknare. TENTAMEN TDDD12 Databasteknik TDDD46 Databasteknik

Läs mer

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av Kapitel 2 Kombinatorik Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av det antal sätt, på vilket elementen i en given mängd kan arrangeras i delmängder på något sätt.

Läs mer

Block 1 - Mängder och tal

Block 1 - Mängder och tal Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Tentamen i Linjär algebra , 8 13.

Tentamen i Linjär algebra , 8 13. LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: ETE5 Provkod: TEN Tentamen i Linjär algebra 5 8, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik

DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik DD1350 Logik för dataloger Fö 7 Predikatlogikens semantik 1 Kryssprodukt av mängder Om A och B är två mängder så är deras kryssprodukt A B mängden av alla par (a,b), där a A och b B. Ex: A={1,2}, B={3,4},

Läs mer

Vektorer. 1. Vektorer - definition och räkneoperationer F H

Vektorer. 1. Vektorer - definition och räkneoperationer F H Vektorer Detta material bygger på valda och delvis omarbetade delar av kompendiet Vektoralgebra av Hasse Carlsson. Dessutom har ett helt nyskrivet avsnitt om strömtriangeln lagts in. Inledning Du är säkert

Läs mer

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19 Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium IV v. 2.0, den 29/4 2013 III. Metalogik 17-19 Modeller för satslogiken 18.1 Vi har tidigare sagt att en modell är en tolkning av en teori

Läs mer

Databaser och databasdesign. Den relationella modellen, normalisering och modellering (2)

Databaser och databasdesign. Den relationella modellen, normalisering och modellering (2) Databaser och databasdesign Den relationella modellen, normalisering och modellering (2) Varför databaser (DB)? Vi vill och måste kunna lagra data på sätt som motsvarar olika verksamheters behov Vad är

Läs mer

Föreläsning 3 Transformation från konceptuell datamodell till relationsschema ( Syntetisk databasdesign ) Vad är ett databashanteringssystem?

Föreläsning 3 Transformation från konceptuell datamodell till relationsschema ( Syntetisk databasdesign ) Vad är ett databashanteringssystem? Föreläsning 3 Transformation från konceptuell datamodell till relationsschema ( Syntetisk databasdesign ) Vad är ett databashanteringssystem? En mängd program som tillåter användaren att skapa och underhålla

Läs mer

Isometrier och ortogonala matriser

Isometrier och ortogonala matriser Isometrier och ortogonala matriser (Delvis resultat som kunde kommit tidigare i kursen) För att slippa parenteser, betecknas linära avbildningar med A och bilden av x under en lin avbildn med Ax i stället

Läs mer

Reducering till relationsscheman

Reducering till relationsscheman E-R-modellen, Reducering till rel.scheman 6-26 Reducering till relationsscheman En databas som överensstämmer med ett E-R-databasschema kan representeras som en mängd relationsscheman ty E-R-modellen och

Läs mer

Webprogrammering och databaser. Konceptuell datamodellering med ER-modellen

Webprogrammering och databaser. Konceptuell datamodellering med ER-modellen Webprogrammering och databaser Konceptuell datamodellering med ER-modellen 2 Programutveckling Interaktionsdesign, behovsanalys Programdesign, databasdesign Implementation 3 Programdesign, databasdesign

Läs mer

Tentamen i. Databasteknik

Tentamen i. Databasteknik Tentamen i Databasteknik Torsdagen den 10/3 2005 14.00-19.00 Tillåtna hjälpmedel: Allt tänkbart material Använd bara framsidan på varje blad Skriv max en uppgift per blad. Skriv tydligt. Motivera allt.

Läs mer

1 Minkostnadsflödesproblem i nätverk

1 Minkostnadsflödesproblem i nätverk Krister Svanberg, april 2012 1 Minkostnadsflödesproblem i nätverk Ett nätverk består av en given mängd noder numrerade från 1 till m (där m är antalet noder) samt en given mängd riktade bågar mellan vissa

Läs mer

1. Ekvationer 1.1. Ekvationer och lösningar. En linjär ekvation i n variabler x 1,..., x n är en ekvation på formen. 2x y + z = 3 x + 2y = 0

1. Ekvationer 1.1. Ekvationer och lösningar. En linjär ekvation i n variabler x 1,..., x n är en ekvation på formen. 2x y + z = 3 x + 2y = 0 1. Ekvationer 1.1. Ekvationer och lösningar. En linjär ekvation i n variabler x 1,..., x n är en ekvation på formen a 1 x 1 + a 2 x 2 + a n x n = b, med givna tal a 1,..., a n och b. Ett linjärt ekvationssystem

Läs mer

TENTAMEN TDDB77 Databaser och Bioinformatik 15 mars 2002, kl 14-18

TENTAMEN TDDB77 Databaser och Bioinformatik 15 mars 2002, kl 14-18 Institutionen för datavetenskap Linköpings universitet TENTAMEN TDDB77 Databaser och Bioinformatik 15 mars 2002, kl 14-18 Jourhavande lärare: Patrick Lambrix, 2605 Poäng: Tentan består ut av 2 delar. För

Läs mer

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2 Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π

Läs mer

TDDI 60 Tekniska databaser

TDDI 60 Tekniska databaser Lena Strömbäck 2004-08-19 Skriftlig tentamen i kursen TDDI 60 Tekniska databaser Datum: 2004-08-19 Tid: 14-18 Lokal: TER1 Hjälpmedel: Engelsk ordlista tillåten ej elektronisk Miniräknare ej programmerbar

Läs mer

Diskret matematik: Övningstentamen 4

Diskret matematik: Övningstentamen 4 Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 44, 1961 Årgång 44, 1961 Första häftet 2298. Beräkna för en triangel (med vanliga beteckningar) ( (b 2 + c 2 )sin2a) : T (V. Thébault.) 2299. I den vid A rätvinkliga triangeln OAB är OA

Läs mer

Tentamen Databasteknik

Tentamen Databasteknik Försättsblad Tentamen Databasteknik 2003 04 29, 8.00 13.00 Inga hjälpmedel. Bedömning (preliminär): uppgifterna ger maximalt 14 + 11 + 11 + 6 + 4 + 4 = 50 poäng. För godkänt krävs 25 poäng (3/25, 4/33,

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 12 Anton Grensjö grensjo@csc.kth.se 10 december 2015 Anton Grensjö ADK Övning 12 10 december 2015 1 / 19 Idag Idag Komplexitetsklasser Blandade uppgifter

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer