Subsystem. Klasser är ett bra sätt att organisera små system. Klasser är för små enheter för att organisera stora system
|
|
- David Eriksson
- för 8 år sedan
- Visningar:
Transkript
1 Desig av subsystem
2 Subsystem Klasser är ett bra sätt att orgaisera små system Klasser är för små eheter för att orgaisera stora system Större eheter behövs för orgaiserige Subsystem Sex priciper diskuteras Tre beskriver kohesio hos subsystem Hjälper till att allokera klasser till subsystem De tre sista beskriver kopplig mella subsystem Beskriver hur subsystem ska relatera till varadra
3 Subsystem i Java I Java - package E klass C sätts till ett subsystem sub med, package sub; Sätts i börja av file C.java Ma ka aväda e klass C i paket sub geom att Referera till sub.c Referera till C, me först importera klasse sub.c, import sub.c; Referera till C, me först importera alla klasser i sub, import sub.*; Subsystem ka vara hierarkiska Subsystem iaför subsystem package deklaratioera måste motsvara orgaiserige av filer i filsystemet
4 Desig med subsystem I UML ka subsystem (packages) avädas för att gruppera klasser Med hjälp av subsystem ka ma ka aalysera systemet på e högre abstraktiosivå De ka också hjälpa till att hatera utvecklig och distributio av programmet Målet är att partitioera klassera i systemet eligt ågot kriterium och seda allokera dessa partitioer till paket
5 Desig med subsystem Klasser beror av varadra Beroede korsar ofta subsystem gräser Subsystem beror därför på varadra Dessa beroede beskriver högivå strukture på applikatioe Följade frågor fis Vilka priciper fis för allokerig av klasser till subsystem? Vilka desig priciper fis för beroede mella subsystem? Ska subsystem desigas före klasser (eller tvärtom)? När subsysteme har skapats, hur ska de avädas?
6 The reuse-release equivalece priciple (REP) The graule of reuse is the graule of release E ehet som ma återaväder är också e ehet som ma publicerar Klasser ofta oödigt små eheter för återavädig Flera klasser hör ofta ihop Återaväd subsystem Allt som återaväds måste också publiceras och spåras Olika versioer måste hateras Återavädig edast möjlig, om det fis garatier om stöd, uderhåll, meddelade om uppdaterig osv.
7 The reuse-release equivalece priciple (REP) Ger e pricip för att allokera klasser till subsystem Återavädbarhet baserar sej på subsystem Återavädbara subsystem måste iehålla återavädbara klasser För att få återavädbar kod måste ma ha delar som är lätta att aväda Om ett subsystem är ämat för återavädig så ska det ite iehålla klasser som ite är återavädbara
8 The commo-reuse priciple (CRP) The classes i a package are reused together. If you reuse oe of the classes i the package, you reuse them all. Klassera i ett subsystem återaväds tillsammas. Om e applikatio återaväder e klass i ett subsystem, återaväds alla klasser i subsystemet Klasser som återaväds tillsammas ska placeras i samma subsystem Klasser som ofta har stark kopplig mella sej Om kod ädras i ett subsystem kommer edast de som verklige behöver fuktioalitete att påverkas Aars påverkar det också avädare som aväder paketet me ite ödvädigtvis fuktioalitete som ädrats
9 The commo-reuse priciple (CRP) Ger också e pricip är ma ite ska sätta klasser i samma subsystem Exempel: om e applikatio bara aväder e klass ur ett subsystem Applikatioe beror alltså på subsystemet Applikatioe måste valideras (och möjlig omkompilers och avädaras istallatioer uppdateras) på ytt om subsystemet modifieras, också om applikatioe ite aväder klasse.
10 The commo-reuse priciple (CRP) Ofta har subsystemet e fysisk represetatio JAR fil för java DLL eller.so fil för kompilerade språk (C/C++) Uppdaterig av subsystemet skapar e uppdaterig av JAR, DLL, so-file. Måste distribueras till avädare Om ett subsystem iehåller klasser med hög kohesio miskar ma problem med uppdaterigar Uppdaterigar görs då det är ödvädigt
11 The commo-closure priciple (CCP) The classes i the package should be closed together agaist the same kid of chages. A chage that affects the package affects all the classes i that package ad o other package Klassera i ett subsystem ska vara sluta för samma typ av ädrigar. E ädrig som påverkar ett subsystem påverkar alla klasser i subsystemet och iga adra subsystem Ett subsystem ska ite ha flera orsaker för att modifieras på grud av förädrade avädarkrav Ofta är uderhållbarhet viktigare ä återavädbarhet Ma vill göra ädrigar på bara ett ställe
12 The commo-closure priciple (CCP) Om två klasser hör ihop fysiskt eller koceptuellt så att dom ataglige kommer att bli modifierade av samma orsak så hör dom i samma subsystem Pricipe är ära besläktad med Ope-Closed Priciple (OCP) 100% slutehet är ite möjlig Måste välja oga vilke typ av modifikatioer som subsystemet (klasse) är slute för
13 Priciper för koppligar mella subsystem De tre följade pricipera behadlar koppligar (beroede) mella subsystem Beroede mella subsystem Två fall: Avädig eller arv mella två klasser i olika subsystem X Y X Y A (from X) B (from Y) C (from X) D (f rom Y)
14 The acyclic-depedecy priciple (ADP) Allow o cycles i the package-depedecy graph. Tillåt iga cykler i subsystemes beroedegraf Problem: Flera utvecklare jobbar med samma system Det blir lätt att modifikatioer och ya fuktioer som sätts till av olika utvecklare är ikompatibla med varadra Mycket tid går åt att itegrera bidrag frå olika persoer Midre tid att sätta till y fuktioalitet
15 The acyclic-depedecy priciple (ADP) Lösig: dela upp utvecklige i idividuella subsystem Subsysteme utvecklas idividuellt När e versio är klar för avädig publiceras de till adra utvecklare Det ger e stabil versio att jobba mot Utvecklig av subsystemet fortsätter efter seda med e y versio Adra utvecklare ka aväda vilke versio av subsystemet som de öskar Itegrerig av y fuktioalitet går smidigt Det här fugerar bara om det ite fis cykler i subsystemes beroede graf
16 ADP exempel Beroede mella subsysteme bildar e a-cyklisk graf MyApplicatio MessageW idow TaskW idow MyTasks Database Tasks MyDialogs Widows
17 ADP exempel Nu e graf med cykliskt beroede MyApplicatio MessageWidow TaskW idow MyTasks Dat abase Tas ks MyDialogs Widows
18 ADP problem med cykler Ett subsystem i systemet blir lätt beroede av måga adra subsystem Här blir subsystemet MyDialogs beroede av alla subsystem Validerig kräver att vi testar att ett subsystem fugerar då ågot av subsysteme det beror av uppdateras Cykler ökar beroede betydligt Ökade beroede - svårare att göra tester Kompilerigs tider ökar med ökade beroede Speciellt C++ Me också java kompilerig ka få problem
19 ADP Hur ta bort cykliska beroede? Tillämpa Depedecy Iversio Priciple (DIP) och Abstrakt server desig möstret X (from MyDi alo gs) Y (from M yapplicatio) X (from MyDialogs) XServer (from MyDialogs) Y (from MyApplicatio) MyDialogs MyApplicatio MyDialogs MyApplicatio
20 ADP Hur ta bort cykliska beroede? Skapa ett ytt subsystem som både MyDialogs och MyApplicatio beror av. Flytta klassera som båda beror av dit.
21 Idetifierig av subsystem - top-dow desig Ett sätt att hitta subsystem strukture är att dela upp systemet eligt högivå fuktio (top-dow) Logiskt sätt att dela upp systemet i subsystem frå börja Verkar ite riktigt stämma överes med beroedea i grafe tidigare Subsystem har ofta lite att göra med fuktio Beskriver hur systemet ka kompileras/byggas (buildability) Subsystemet beskriver e build map Aväd REP och CCP för att gruppera klasser Aväd CRP för återavädbarhet Aväd ADP för att hatera beroede
22 The stable-depedecies priciples (SDP) Deped i the directio of stability Beroede pekar mot stabilitet Vissa paket är desigade för att kua modifieras Ska ite bero av subsystem som är svåra att modifiera Måga beroede på ett subsystem som är lätt att modifiera i sej själv ka göra att subsystemet ite ka modifieras uta att störa adra subsystem Subsystem som ska vara lätta att modifiera ska ite bero på subsystem som är svårare att modifiera
23 Stabilitet Subsystem X asvarig för tre subsystem X är oberoede för X har iga extera orsaker att modifieras X är stabilt (stable) X
24 Istabilitet Y är ett istabilt subsystem Beror av tre adra subsystem tre orsaker att modifieras Ite asvarigt för ågot aat subsystem Y
25 Stabilitets mått Stabilitet ka mätas Räka atalet beroede mella klasser iaför och utaför subsystemet (C a ) Affaret coupligs Atalet klasser utaför subsystemet som beror av klasser i subsystemet (C e ) Efferet coupligs Atalet klasser i subsystemet som beror av klasser utaför subsystemet (I) istabilitet I = C a Ce + C e I=1 idikerar istabilt subsystem, och I=0 idikerar stabilt subsystem
26 SDP Tumregel Stabilitete ökar då ma går eråt i subsystem hierarki Stabila subsystem behöver ite vara lätta att modifiera Måga beroede på dem svårt att modifiera i alla fall Vissa delar av programmet borde ite ädra ofta Högivå arkitektur Desigbeslut Dessa typer av klasser borde vara i stabila subsystem Aväd OCP för att få tillräcklig flexibilitet i systemet
27 The stable abstractios priciple (SAP) A package should be as abstract as it is stable Ett subsystem ska vara så abstrakt som det är stabilt Relatio mella abstrakthet och stabilitet Ett stabilt subsystem ska också vara abstrakt Stabilitete förhidrar ite att subsystemet utvidgas Ett istabilt subsystem ska ite vara abstrakt - ekelt att modifiera kode ädå DIP ka avädas för att ädra riktig på beroede SAP och SDP för subsystem motsvara DIP för klasser
28 Exempel: java.soud.sampled Hög abstrakthet Består av grässitt Hög stabilitet Appli katio Aväds av applikatioer Grässitte implemeteras av olika audiosystem Flexibelt system Ekelt att lägga till y fuktioalitet Ekelt att aväda java.sou d.sampl ed Ba cked1 Backed2
29 Mått på abstrakthet Ma mäter förhålladet mella abstrakta klasser (och grässitt) och valiga klasser N c Atalet klasser i subsystemet N a Atalet abstrakta klasser i subsystemet. E abstrakt klass är e klass ma ite ka skapa istaser av. A - Abstrakthet A = N N a c
30 Abstrakthet vs Istabilitet Ma ka rita upp abstrakthet och istabilitet (0,1) (1,1) Oavädbar A The mai sequece Svår att modifiera I (1,0)
31 Abstrakthet vs. Istabilitet Ma vill valige att subsystem ska vara ära lije the mai sequece i diagrammet. Ma ka defiiera ett mått på avstådet Normaliserat avståd D Ger ett värde i itervallet [0,1] D' = A + + I 1 Desige ka utvärderas eligt det här kriteriet Subsystem med stort värde på D ska udersökas ärmare Är ite ett absolut mått på e desigs godhet
Systemdesign fortsättningskurs
Systemdesig fortsättigskurs Orgaisatio Föreläsare Potus Boström Assistet? Tider mådagar och tisdagar kl. 8-10 Börjar 3.9 och slutar 16.10 Rum B3040 Orgaisatio Iga föreläsigar 24.9, 25.9, 1.10 och 2.10
Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator
Desig möster Desig möster Commad Active object Template method Strategy Facade Mediator Commad Ett av de eklaste desig möstre Me också mycket avädbart Ett grässitt med e metod Comm ad do()
Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering
Databaser desig och programmerig Desig processe Databasdesig Förstudie, behovsaalys ER-modellerig Kravspecifikatio För att formulera e kravspecifikatio: Idetifiera avädare Studera existerade system Vad
Återanvändning. Två mekanismer. Nedärvning av egenskaper (inheritance) Objekt komposition
Iheritace Återavädig Två mekaismer Nedärvig av egeskaper (iheritace) Objekt kompositio A A +a +b B B Iheritace Återavädig geom att skapa subklasser kallas ofta white box reuse Ekelt att aväda Relatioe
Vi har... Diskuterat olika objektorienterade mekanismer. Ha också tagit upp några krav på hur dom här mekanismerna ska användas
Desig priciper Vi har... Diskuterat olika objektorieterade mekaismer Nedärvig Delegerig Typ-parametriserig Kotrakt baserad desig Ha också tagit upp ågra krav på hur dom här mekaismera ska avädas Hur ska
Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:
Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering
Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell
101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Lösningar och kommentarer till uppgifter i 1.1
Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )
c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.
P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt
MARKNADSPLAN Kungälvs kommun 2010-2014
MARKNADSPLAN Kugälvs kommu 2010-2014 Fastställd av KF 2010-06-17 1 Iehåll Varför e markadspla? 3 Mål och syfte 4 Markadsförutsättigar 5 Processer, styrig och orgaisatio 6 Politisk styrig 7 Politisk styrig,
Mönster. n n n n n n n n n n. Singleton Monostate Null object Factory Composite Observer Abstract server Adapter Bridge Proxy
Desig möster Möster Sigleto Moostate Null object Factory Composite Observer Abstract server Adapter Bridge Proxy Sigleto Preseterades reda Exempel: objekt med kofiguratios data Avädig: Cofig.getIstace().
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
Mönster. n n n n n. Visitor Decorator Extension Object State Taskmaster
Desig möster Möster Visitor Decorator Extesio Object State Taskmaster Visitor Aväds för komplicerade datastrukturer där det fis e växade mägd operatioer på dea Grafik exempel ige: Shape draw() ps() ik()
Föreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
Egna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions)
- 1 - Vad är si? si är amet på e av måga ibyggda fuktioer i Ada (och de återfis i paketet Ada.Numerics.Elemetary_Fuctios) si är deklarerad att ta emot e parameter (eller ett argumet) av typ Float (mätt
Kontrakt baserad design. Design by contract
Kotrakt baserad desig Desig by cotract Motiverig Objekt ka valige ite avädas på ett godtyckligt sätt Metoder ska aropas med vissa parametervärde I rätt ordig Svårt att veta hur ett objekt ka avädas uta
Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)
KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),
Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?
Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober
Borel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
b 1 och har för olika värden på den reella konstanten a.
Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras
Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter.
1(10) Svar lämat av (kommu, ladstig, orgaisatio etc.): Remiss Remissvar lämas i kolume Tillstyrkes term och Tillstyrkes (iitio) och evetuella sypukter skrivs i kolume Sypukter. Begreppe redovisas i Socialstyrelses
Fakta om plast i havet
SIDAN 1 Lärarmaterial VAD HANDLAR BOKEN OM? Boke hadlar om att vi mäiskor måste fudera över all plast som vi aväder. Vad häder med plaste är vi har avät de? I boke får vi lära oss varför plaste är farlig
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade frå saolikhetsteori:
Datastrukturer och algoritmer
Iehåll Föreläsig 6 Asymtotisk aalys usammafattig experimetell aalys uasymtotisk aalys Lite matte Aalysera pseudokode O-otatio ostrikt o Okulärbesiktig 2 Mäta tidsåtgåge uhur ska vi mäta tidsåtgåge? Experimetell
IAB Sverige Juni 2017
+ IAB Sverige Jui 2017 Realtidsstudie med sveska Mediebyråer E realtidsstudie av Native Advertisig i Sverige IAB Sverige har tillfrågat sveska mediebyråer om Native Advertisig. + Vad har vi gjort? IAB
Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor
Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.
Allmänna avtalsvillkor för konsument
Godkäare 7.2 Kudakuta Godkät Kommuikatio Distributio Kudservice Kommuikatio, deltagade och samråd Allmäa avtalsvillkor för kosumet för leveras av fjärrvärme Allmäa avtalsvillkor för kosumet för leveras
Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 5/11 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10 2 8
Universitetet: ER-diagram e-namn
Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för Statistik Tetame i Statistik, STA A10 och STA A13 (9 poäg) 6 mars 004, klocka 14.00-19.00 Tillåta hjälpmedel: Bifogad formelsamlig (med
Höftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan
Höftledsdysplasi hos dask-svesk gårdshud - Exempel på tavla Sjö A Sjö B Förekomst av parasitdrabbad örig i olika sjöar Exempel på tavla Sjö C Jämföra medelvärde hos kopplade stickprov Tio elitlöpare spriger
Föreläsning 10: Kombinatorik
DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd
DEL I. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Lösig till tetamesskrivig på kurse Diskret Matematik, momet A, för D2 och F, SF1631 och SF1630, de 5 jui 2009 kl 08.00-13.00. DEL I 1. (3p) Bestäm e lösig till de diofatiska
Databaser - Design och programmering. Databasdesign. Funktioner. Relationsmodellen. Relationsmodellen. Funktion = avbildning (mappning) Y=X 2
Databaser Desig och programmerig Relatiosmodelle Databasdesig Förstudie, behovsaalys defiitioer ER-modell -> relatiosmodell ycklar Relatiosmodelle Itroducerades av Edward Codd 1970 Mycket valig Stödjer
Genomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.
Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk
z Teori z Hypotesgenerering z Observation (empirisk test) z Bara sanningen : Inga falska teser z Hela sanningen : Täcker alla sanna teser
Teoribildig Översikt forskigsmetodik Mål för veteskape: Att kostruera bättre och bättre teorier De veteskapliga processe z Teori z Hypotesgeererig z Observatio (empirisk test) z Abduktio (det observerade
(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?
Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt
Digital signalbehandling Fönsterfunktioner
Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers
S0005M V18, Föreläsning 10
S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är
Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10
MS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret
2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
PTKs stadgar. Fastställda vid stämman 2009 06 16
PTKs stadgar Fastställda vid stämma 2009 06 16 INNEHÅLLSFÖRTECKNING SYFTE OCH UPPGIFTER Syfte och uppgifter 3 Medlemskap 4 Orgaisatio 7 Stämma 8 Överstyrelse 12 Styrelse 15 Förhadligsorgaisatio 17 PTK-L
Universitetet: ER-diagram e-namn
Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig
SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på?
SveTys Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2 Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2008 SveTys, Uta Schulz, Reibek 3 Iledig När ma gör affärer i Tysklad eller
Jag läser kursen på. Halvfart Helfart
KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:
Andra ordningens lineära differensekvationer
Adra ordiges lieära differesekvatioer Differese Differese f H + L - f HL mäter hur mycket f :s värde förädras då argumetet förädras med de mista ehete. Låt oss betecka ämda differes med H Df L HL. Eftersom
Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].
MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella
Förfrågan till Klockarens redaktörer
Förfråga till Klockares redaktörer 1. Hur öjd är du med Klockare? Ge Klockare ett geerellt vitsord. Atal svarade: 29 1 2 3 4 5 6 7 8 9 10 Totalt Medelvär Usel 1 0 2 1 2 5 5 9 3 1 Utmärkt 29 6,72 3,45%
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00
0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:
Stort massflöde Liten volym och vikt Hög verkningsgrad. Utföranden Kolv (7) Skruv (4) Ving (4) Roots (1,5) Radial (2-4) Axial (1,3) Diagonal.
Komressorer F1 F Skillad mot fläktar: Betydade desitetsförädrig, ryk mäts ormalt som absolut totaltryk. vå huvudgruer av komressorer: Förträgigskomressorer urbokomressorer Egeskaer Lågt massflöde Höga
Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.
Tekiska Högskola i Lud Istitutioe för Elektroveteskap Tetame i Elektroik, ESS010, del 2 de 14 dec 2009 klocka 14:00 19:00. Uppgiftera i tetame ger totalt 60p. Uppgiftera är ite ordade på ågot speciellt
Lärarhandledning Att bli kvitt virus och snuva - När Lisa blev av med förkylningen
Lärarhadledig Att bli kvitt virus och suva - När Lisa blev av med förkylige För ytterligare iformatio kotakta projektledare: Charlotte.Kristiasso@phs.ki.se 1 Iledig Atibiotikaresistes är ett växade problem
SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.
Många tror att det räcker
Bästa skyddet Måga vet ite hur familje drabbas ekoomiskt om ågo dör eller blir allvarligt sjuk. Här berättar Privata Affärer vilket skydd du har och hur du ka förbättra det. Av Aika Rosell och Igrid Kidahl
H1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a
POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING Defiitio Polyom är ett uttryck av följade typ P( ) a a a, där är ett icke-egativt heltal (Kortare 0 P k ( ) a a 0 k ) k Defiitio
Kontrollskrivning 3 i SF1676, Differentialekvationer med tillämpningar. Tisdag kl 8:15-10
KH Matematik Kotrollskrivig 3 i SF676, Differetialekvatioer med tillämpigar isdag 7-5-6 kl 8:5 - illåtet hjälpmedel på lappskrivigara är formelsamlige BEA För godkäd på module räcker 5 poäg Bara väl motiverade
Introduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
Leica Lino. Noggranna, självavvägande punkt- och linjelasers
Leica Lio Noggraa, självavvägade pukt- och lijelasers Etablera, starta, klart! Med Leica Lio är alltig lodat och perfekt apassat Leica Lios projekterar lijer eller pukter med millimeterprecisio och låter
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-
UTVECKLINGSTRAPPA BOXARE VÄRDEGRUND DIPLOMBOXNING
alla r ö f g i s Box världsklas jare till frå ybör UTVECKLINGSTRAPPA BOXARE VÄRDEGRUND Glädje Allt vi gör ska käeteckas av positiv ada och positiva takar. Vi ska ha roligt och må bra på väge för att å
Exempel. En klass för att inkapsla funktionen hos ett tangentbord. Nu kan många objekt skapas av klassen
Desigmöster Exempel E klass för att ikapsla fuktioe hos ett tagetbord E applikatio aväder edast ett tagetbord public class Keyboard{... public char getcurretchar(){...}... } Nu ka måga objekt skapas av
Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
Uppgifter 3: Talföljder och induktionsbevis
Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e
Räkning med potensserier
Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som
Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15
Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt
Applikationen kan endast användas av enskilda användare med förtroenderapportering.
Aktiverig mobil app 1 Aktiverig mobil app Aktiverig mobil app aväds för att koppla e eskild avädare till Visma Agdas mobilapplikatio. Applikatioe ka edast avädas av eskilda avädare med förtroederapporterig.
2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad.
Masshaterig Ca 415.000m 3 = 600.000 to Dessa mägder ska Stockholms Stad trasportera varje måad. The Capital of Scadiavia Sida 2 Till varje km väg som ska byggas behövs ytor på ca 4000m 2 för: Etablerig
Föreläsning F3 Patrik Eriksson 2000
Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive
Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén
FACIT Tetame i matematisk statistik, Statistisk Kvalitetsstyrig, MSN3/TMS7 Lördag 6-1-16, klocka 14.-18. Lärare: Ja Rohlé Ugift 1 (3.5 ) Se boke! Ugift (3.5) Se boke! Ugift 3 (3) a-ugifte Partistorlek:
1. Ange myndighet och kontaktperson
Uppföljig av förekligsarbete för år 2017 Filtrerigsvillkor: Villkor: 1: : 1 respodeter valda Respodet ade på: kersti.backma-haerz@aturvardsverket.se 12.01.2018, 13:27-26.02.2018, 09:55 1. Age mydighet
. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje
Kontextfri grammatik (CFG)
Kotextfri grammatik (CFG) Mats Dahllöf Ist. f ligvistik och filologi December 2015 1 / 23 Frasstrukturträd hud studt Aalys av de ord som häger lägst ed, hud studt. E graf med fler oder ä depdsaalys (fem
Jag läser kursen på. Halvfart Helfart
KOD: Tetame Psykologi Kurskod: PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC145 Datum: 5/5-013 Hel- och halvfart VT 13 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig
1. Hur gammalt är ditt barn?
Förskoleekät 2017 Filtrerigsvillkor: Villkor: 1: Svarsalterativ Björkduge (Fråga: Vilke förskola går ditt bar i?) 1. Hur gammalt är ditt bar? 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 1-2 22% 3-4 50% 5-6
vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då
LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:
LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,
Bilaga 1 Formelsamling
1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste
KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!
Göteborgs uiversitet Psykologiska istitutioe Tetame Psykologi kurskod PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC 145. Tid för tetame: 6/5-01. Hel och halvfart VT 1. Provmomet: Socialpsykologi
Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z
Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad
NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Föreläsning G70 Statistik A
Föreläsig 7 73G70 Statistik A Hypotesprövig för jämförelse av populatiosadelar Krav: vi har dragit två OSU p( p) > 5 för båda stickprove Steg : Välj sigifikasivå och formulera hypoteser H 0 : π - π = d
Lycka till! I(X i t) 1 om A 0 annars I(A) =
Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig
================================================
rmi Halilovic: ETR ÖVNINGR TVÅ STICKPROV Vi betraktar två oberoede ormalfördelade sv och Låt x, x,, x vara ett observerat stickprov, av storleke, på N (, ) och låt y, y,, y vara ett observerat stickprov,
Armin Halilovic: EXTRA ÖVNINGAR
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för
INSTALLATIONSMANUAL COBRA 8800/8900 CAN
INSTALLATIONSMANUAL COBRA 8800/8900 CAN DRA UT MITTSEKTIONEN MED INSTALLATIONSSCHEMAT. INNEHÅLL 8808 8805 Larmehet 03CB0364A 10SA0623A Kablage Moterigspåse KA0001STSAA Ultraljudsesorer 04PC3600B 8800USER
1. Test av anpassning.
χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler
Bertrands postulat. Kjell Elfström
F r å g a L u d o m m a t e m a t i k Matematikcetrum Matematik NF Bertrads ostulat Kjell Elfström Bertrads ostulat är satse, som säger, att om > är ett heltal, så fis det ett rimtal, sådat att < < 2 2.
Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1
Duo HOME Duo OFFICE Programmerigs maual SE 65.044.20-1 INNEHÅLL Tekiska data Sida 2 Motage Sida 3-5 Programmerig Sida 6-11 Admiistrerig Sida 12-13 Hadhavade Sida 14-16 TEKNISKA DATA TEKNISK SPECIFIKATION
Utlandskyrkans krisberedskap
Utladskyrkas krisberedskap hadbok för beredskapsplaerig Kyrkokasliet Uppsala Sveska kyrkas kriscetrum 2 Kotaktiformatio veska kyrka i utladet S Kyrkokasliet 751 70 Uppsala Tel. 018-16 95 00 www.sveskakyrka.se
Handbok i materialstyrning - Del F Prognostisering
Hadbok i materialstyrig - Del F Progostiserig F 71 Absoluta mått på progosfel I lagerstyrigssammahag ka progostiserig allmät defiieras som e bedömig av framtida efterfråga frå kuder. Eftersom det är e
Avtalet End user software licence agreement skall gälla, och finns att läsa på VAIO Info Centre.
Läs detta först Läs detta först För käedom Dea produkt iehåller dels programvara som ägs av Soy och dels programvara uder lices frå tredje part. Avädig av såda programvara skall ske eligt villkore i det
Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1
duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a
Örserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed
Föroreade område Årsredovisig Örserumsvike Birgit Fleig Auktoriserad revisor Sustaiability Director birgit.fleig@se.ey.com 19 september 2005 1 2 Årsredovisigslage och god redovisigssed Föroreade område
Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm