Välkommen till studier i Matematik kurs B

Storlek: px
Starta visningen från sidan:

Download "Välkommen till studier i Matematik kurs B"

Transkript

1 Innehåll Välkommen till studier Matematik kurs B...4 Studietips...5 Kursens uppläggning och mål...8 Examination...8 Kursmaterial...9 Webbtips...10 Litteraturtips...10 Övrigt om kursen...11 Problemlösning...12 Studieenhet Sannolikhetslära...14 Studieenhet Linjära modeller...17 Studieenhet Icke-linjära modeller...22 Studieenhet Geometri...25 Studieenhet Statistik...28

2 Välkommen till studier i Matematik kurs B Matematik kurs B är ett karaktärsämne inom gymnasieskolan och förutsätter matematikkunskaper från grundskolan och gymnasiets A-kurs. För dig som inte varit kontakt med gymnasiematematiken på ett tag rekommenderar vi att du försöker repetera lite innan du sätter igång med kursen. Låna gärna någon lärobok på biblioteket. Matematik är roligt och tränar logiskt tänkande som man har nytta av inom vardagsliv och yrkesliv. Alla kan lära sig bli bra i matematik men det kräver förstås en del arbete och det finns inga genvägar. Matematik kräver tid för arbete och matematik kräver tid för eftertanke. Arbeta metodiskt, noggrant och målmedvetet, det lönar sig. Du utvecklas som tänkande människa och om du tänker studera mer matematik lönar det sig än mer. Lycka till önskar matematiklärarna på Nationellt centrum för flexibelt lärande 4

3 Studietips Innan du börjar titta på närmare på kursen vill vi att du läser om och reflekterar runt studieteknik, lärande och räknande. Om man läser helt eller delvis på distans är det extra viktigt att man har en studieteknik som fungerar. Därför vill vi poängtera några saker. Din tid är viktig, det gäller att vara "ekonomisk" med tiden och utnyttja den på bästa sätt. Just nu kan det kännas att vägen till kursens slut är lång men du kan göra mycket för att underlätta ditt arbete för att nå dit. Ja, du anar säkert vart vi vill komma? Just det. Man kan planera. Allmänna tips Skaffa en översikt. Gå igenom läroboken och annat som behövs i de olika momenten i denna kurs. Titta i innehållsförteckningen. Bläddra igenom några kapitel för att se hur de är uppbyggda. Läs skolverkets kursmål och betygskriterier. Formulera målet med dina studier. Varför vill du lära dig detta? Försök att motivera dig själv på så många olika sätt som möjligt. Reflektera över dina egna strategier för att lära dig detta ämne. Förlita dig på dina egna resurser och det du faktiskt redan kan! Vilket sätt att lära dig föredrar du till exempel? Lär du dig främst genom att se? Kanske genom att höra eller göra? Eller möjligen kombinationer av dessa? Det kanske t o m är olika för olika ämnesområden. Gör en plan. Lägg upp det hela som ett veckoschema, där du har speciella, fasta tider olika dagar i veckan då du studerar, ingenting annat. Dina studier måste nämligen få ta tid. Det är en sysselsättning att studera, precis som att jobba. Om man exempelvis vill bli en duktig simmare, så måste man naturligtvis träna. Det gäller samma sak när man studerar. Försök också att planera när du kan vara ledig. Om man inte har någon studieplan är det lätt hänt att man blir så fixerad vid att plugga att man alltid har det över sig som ett dåligt samvete. Till sist har man knappt någon fritid och studierna fungera inte heller. Man är mycket aktivare om man tar ett par timmar i taget. Sedan kan man känna att man gjort sitt och kan syssla med något annat. 5

4 Dela in ditt mål i konkreta delmål. Bestäm dig till exempel för att du tills på fredag ska ha gjort två delkapitel i boken. Belöna dig själv när du nått ett delmål. Film, en bra bok, umgås med vänner, ett varmt bad, en fisketur? Använd gärna tankekarta. Rita in bilder och egna associationer. Använd olika färger. Allt som underlättar för minnet är bra. Originella associationer är speciellt effektiva. Använd helst stolpar, tänk dig att du ska göra sammanfattande rubriker på det du läser. Skapa en god studiemiljö. En bra studieplats är trivsam och hjälper dig att vara effektiv. När du väljer plats för dina studier är det bra om du kan stänga dörren om dig och vara ifred och koncentrera dig, du har plats för och ordning på dina böcker, miniräknare, formelsamling med mera, så att du inte behöver ödsla tid på att leta saker, du har bra belysning så att du inte blir så trött i ögonen en bra stol och ett lagom högt bord, du inreder så att det känns inbjudande att gå dit. Var positiv. Gläd dig åt det du faktiskt gjort. Repetera! Vad var det du övade nyss? Sitter dina nyvunna kunskaper från förra veckan kvar? Försök att hitta någon som du kan studera tillsammans med och bolla idéer och tankar med. 6

5 Matematiktips Rita och skriv upp det du känner (vet) i uppgiften på ett papper så klarnar ofta bilden av vad du skall räkna ut. Stryk under dina delresultat och ditt slutresultat. Redovisa till sist svaret separat. På proven bedömer vi inte bara svaren utan också hur figurer ritas, hur du tänker, motiverar och räknar uppgifterna. När du löser problem - använd dig av dina förkunskaper för att förstå sammanhanget. Gör upp en plan för hur du skall lösa problemet. Följ din plan. Kontrollera att din lösning verkar rimlig. Är den inte det börjar du om med en ny plan. Bli vän med din miniräknare. Att sitta på ett prov med en räknare som man inte är van att använda kan ge dig oväntade problem. Nya kunskaper innebär ofta nya sätt att tänka. Träna därför främst förståelse, inte en massa "lösryckta regler". Våga testa dina kunskaper genom att delta i diskussioner. Försök att hitta tillämpningar av dina nya kunskaper i ditt vardagsliv. Att lära sig nya saker är att glänta på porten till en ny kultur! Var nyfiken, ta del av det nya och släng eventuella fördomar om matematik Traggla inte i timtal om du kör fast på någon uppgift. Lägg bort den ett tag och gör en annan uppgift i stället. Gå till den besvärliga uppgiften vid ett senare tillfälle. Till sist: Gör små pauser eftersom för långa pass gör dig trött. Ät och drick gärna lite mellan varven; hjärnan arbetar när du tänker. En tur i motionsspåret, en promenad eller annan fysisk aktivitet är också bra avbrott. Kroppen behöver röra på sig och det du läst, skrivit eller räknat faller på plats under tiden. 7

6 Kursens uppläggning och mål Kursen består av 5 studieenheter. Två av dessa avslutas med diagnostiska test och tre avslutas med studiearbeten. Studiearbetena är obligatoriska och skall skickas till din lärare för bedömning och kommentarer. De är till för din individuella handledning i kursen och är inte betygsgrundande. Studieenhet Handlar om Att göra Sannolikhetslära Enkla slumpförsök, försök med flera föremål, flerstegsförsök och komplementhändelse Diagnostiskt test Linjära modeller Icke-linjära modeller Geometri Räta linjens ekvation, ekvationssystem och linjära olikheter Andragradsfunktioner, andragradsekvationer och icke-linjära olikheter Vinklar, yttervinkelsatsen och randvinkelsatsen, likformighet, transversalsatsen, Pythagoras sats och koordinatgeometri Studiearbetet Sannolikheter och linjära modeller Studiearbetet Icke-linjära modeller Diagnostiskt test Anmäl dig till examinationen Statistik Lägesmått, spridningsmått och statistiska undersökningar Studiearbetet Geometri och statistik Examination I kursen ingår ett eller flera skriftliga och eller muntliga prov. Din lärare talar om för dig vad som gäller för just dig. Tips inför ett prov Börja repetera i god tid. Du har väl tid avsatt för repetition i din studieplanering? Räkna igenom uppgifter du hoppat över tidigare. Träna gärna på några gamla prov. När du går till ett prov tar 8

7 du med giltig legitimation, pennor, suddgummi, miniräknare och linjal. Om det är ett skriftligt prov skall du 1. Fylla i personuppgifterna och läsa instruktionerna på försättsbladet. 2. Läsa igenom alla uppgifter noga så du vet vad provet innehåller och kan disponera tiden väl. 3. Först lösa de uppgifter du tycker är lättast, sedan de svårare uppgifterna. 4. Kontrollera dina lösningar och renskriv dem ifall det behövs. Märka alla papper du lämnar in med namn, personnummer och kurs. Ta gärna med dig lite att äta och dricka till provet. Hjärnan gör av med mycket energi vid tankearbete, detta är ett tillfälle då choklad och godis faktiskt är relativt nyttigt att äta. Kursmaterial Läromedel Matematik 3000 Kurs B för Komvux från Natur och Kultur (ISBN ) är en bok vi rekommenderar. I den finns studietips för matematik, en studiehandledning, lösningsförslag till många av bokens uppgifter och i flera fall även ledtrådar till hur man skall komma igång med uppgifterna. Där finns även flera tester där man själv kan prova hur bra man har förstått olika avsnitt. Till denna bok har Nationellt centrum för flexibelt lärande utarbetat kompletterande lösningsförslag som finns på kursens webbsidor. Hör efter med din lärare vilken bok han eller hon rekommenderar. Grafritande räknare Du behöver en grafritande räknare av någon sort, till exempel Casio fx-9750g. Köp inte någon "värsting", om du bara tänker läsa mer matematik än kurs B, ftsik eller kemi. Du kan också ha nytta av gratisdataprogrammet Graphmatica. I slutet av denna kursguide finns en bilaga med ett litet instruktionsblad till detta program. Kalkylprogram Något kalkylprogram, t ex Excel, är nödvändigt när du skall göra diagram i den statistik som ingår i kursen. Det kan använ- 9

8 das även vid grafisk lösning av matematiska problem. Graphmatica är dock bättre till sådant. Graphmatica laddar du med fördel hem från kursens webbsidor. Formelsamling Det formelblad som används på det nationella provet i Matematik kurs ABC räcker bra. På provet kommer du att få en likadan eller snarlik. Övrigt Du behöver även linjal, gradskiva och passare samt naturligtvis papper och penna. Webbtips Inför Matematik kurs A: (bra repetition för alla!) Fråga Lund om matematik: Nationella prov i matematik: Gamla högskoleprov: Litteraturtips Ibland kan det vara en fördel att se saker förklarade på andra sätt eller mer ingående. Nedan följer några tips på böcker att låna och läsa. Läromedel Räkna med Vux Kurs B, Danielsson m fl, Gleerups Förlag. Formelsamling.Tabeller och formler, Ekbom, L., Lillieborg, S. och Bergström, L., Liber AB, Böcker om matematik och matematiker Matematikhistoria ingår i kursmålen. Matematikens kulturhistoria, John McLeish, Forum Människorna bakom matematiken, Jan Unenge, Studentlitteratur Om mått och män, Sten von Friesen, Bra Böcker Liten guide för matematiska problemlösare, Bengt Ulin, Natur och Kultur 10

9 Matematik med kalkylprogram, D. Sjöstrand och P. Melander, YD Science&Arts Matematiska nedslag i historien, Stig Olsson, Ekelunds Förlag AB Matematiska nedslag i talens värld, Stig Olsson, Ekelunds Förlag AB Att känna till något om hur dagens matematiska kunskap växt fram i olika kulturer och veta lite om de människor som bidragit till detta är dessutom både intressant och allmänbildande. Låna gärna böcker på biblioteket eller stöd en lokal bokhandel ifall du vill köpa böcker. Om de inte har boken hemma kan de beställa hem den. Du kan även beställa själv direkt från förlag. Prova gärna prisjämförelsetjänsten på Nätbokhandel Akademibokhandeln Internetbokhandeln , Förlag Ekelunds Förlag AB Forum Gleerups AB Natur och Kultur Studentlitteratur , , , , , Övrigt om kursen Din lärare Din lärare är en av de viktigaste personerna för dina studier. Du är alltid välkommen att kontakta med din lärare. Det gäller både om du vill ha hjälp med enstaka uppgifter eller om det är större avsnitt som känns svåra. Telefonnummer och epost-adress finns på välkomstbrevet från din lärare. Är din lärare inte tillgänglig och hjälpbehovet är stort kan du ringa till dagtid och be att få prata med en annan lärare. Studievägledning och studiestödsinformation Har du funderingar kring studietakt, studieupplägg med mera tar du kontakt med en studievägledare. 11

10 Problemlösning Att bli bra i matematik handlar mycket om att ha en bra tanketeknik. Därför är det bra att börja med några tips om hur man angriper ett matematiskt problem. Om du har boken Matematik 3000 kurs A kan du läsa de första sidorna i kapitel 5.6 som handlar om problemlösning och studera exemplen där. 1. Förstå problemet. Vad söker man? Vad är givet? Verkar problemet rimligt? Rita en figur om det går. Inför lämpliga beteckningar. 2. Gör upp en plan. Har du sett detta tidigare? Har du sett eller löst något liknande förut? Kan du dela in i delproblem? Kan du lösa eventuella delproblem? Vilka fakta saknas? Var får du tag på fakta som saknas? 3. Genomför planen. Kontrollera varje steg. Fungerar det inte gör du upp en ny plan. 4. Se tillbaka. Glöm inte detta steg! Är resultatet rimligt? Kan man lösa problemet på ett annat sätt? Är resultatet eller metoden användbar i andra sammanhang? Ovanstående tips är användbara inom fler ämnesområden än matematik. Läs dem noga och fundera på hur du själv brukar göra när du löser problem. 12

11 Studieenheter På de följande sidorna presenteras kursen studieenheter lite mer ingående. Öva du så mycket du behöver på motsvarande avsnitt i läroboken, Därefter gör du det studiearbete som hör till och skickar det till din lärare. Följ de anvisningar som finns på försättsbladet på studiearbetet. Ett tips är att jobba med studiearbetet som om det är ett prov: lägg undan läroboken, ta fram formelsamling, papper, penna, miniräknare med mera och lös uppgifterna. Du behöver inte ha rätt på alla uppgifter för att skicka in studiearbetet men du bör ha försökt lösa dem. Du kommer väl ihåg detta? Gällande siffror: Med hur många siffrors noggrannhet kan man ange ett svar egentligen? Det beror på hur många siffrors noggrannhet man har i talen man arbetar med. Till vardags arbetar vi ofta med närmevärden, inte med exakta tal. De tumregler som gäller är: Addition och subtraktion: Lika många decimaler i svaret som termen med minst antal decimaler. EX 1, ,4431 = 15, ,46 Multiplikation och division: Lika många gällande siffror i svaret som i talet med det minst antal gällande siffror EX 4,2 13,63 = 57, Ha med så många siffror som möjligt i dina beräkningar. Avrunda till ett lämpligt antal gällande siffror i svaret. Hur vet man hur många gällande siffror det är i ett tal? Närmevärde Gällande siffror Kommentar 23,6 3 Alla siffror gäller 3, Nollor inuti gäller 0, Nollor i början gäller ej 0, Decimalnollor i slutet gäller 13

12 Studieenhet Sannolikhetslära Denna studieenhet handlar om enkla sannolikheter, försök med flera föremål, flerstegsförsök och komplementhändelser. På kursens webbplats finns en förtest som du kan göra innan du börjar lösa uppgifterna i boken, några interaktiva övningar att jobba med allt eftersom du arbetar dig framåt i avsnittet och ett diagnostiskt test att göra innan du börjar med nästa avsnitt. Mål för avsnittet: Kunna beräkna sannolikheter vid enkla slumpförsök och slumpförsök i flera steg samt uppskatta sannolikheter genom att studera relativa frekvenser Exempel på frågeställningar och uppgifter Du singlar slant, hur stor är sannolikheten att få krona? Du kastar en tärning, hur stor är sannolikheten att få en fyra? Du kastar två tärningar samtidigt, hur stor är chansen att få en femma och en etta? I källaren finns 5 burkar hallonsylt och 3 burkar blåbärssylt. Din syster går ner och hämtar en burk sylt som hon lämnar på köksbordet. Sedan går även du ner och hämtar en burk sylt, utan att kolla vilken sort du tar. Hur stor chans är det att ni tagit en burk av varje sort? Sannolikheten för att vinna i ett visst lotteri är 0,08. Hur stor är chansen att inte vinna? Enkla sannolikheter Se till att Du uppfattar betydelsen av begreppen slumpförsök, utfallsrum, händelse och sannolikhet ordentligt. För beräkningarna av sannolikheter är det viktigt att Du håller ordning på vilka utfall som är gynnsamma i den aktuella situationen. Det är naturligtvis viktigt att ha klart för sig vilka utfall som är möjliga också. Vad som här behandlas är likformig sannolikhetsfördelning, vilket innebär att alla utfall (händelser) har samma sannolikhet eller med andra ord är lika troliga. 14

13 Försök med flera föremål och flerstegsförsök Den klassiska introduktionen till försök i flera steg är kast med två tärningar. Utfallsrummet kommer här att bestå av 36 element, nämligen alla kombinationer av vad tärningarna kan visa. Oberoende av vad tärning nummer 1 visar kan ju tärning nummer 2 visa 1, 2, 3, 4, 5 eller 6. Träddiagram är en smidig metod att grafiskt avbilda ett händelseförlopp om det inte är alltför mångförgrenat. Hur skulle Du rita ett träddiagram för kast med två tärningar? Komplementhändelser Komplementhändelse är som namnet anger komplementet till en händelse, d.v.s. att händelsen inte inträffar. Betrakta som ett enkelt exempel att Du skjuter att skott med ett eldhandvapen. Det finns då en viss sannolikhet för träff, P(träff) och en viss sannolikhet för bom, P(bom). Det måste ju med naturnödvändighet bli antingen eller, vilket medför att P(träff) + P(bom) = 1. Detta kan, som Du säker inser, i vårt exempel utvecklas till P(träff) = 1 - P(bom), eller språkligt uttryckt : Sannolikheten för en händelse är lika med 1 minus sannolikheten för komplementhändelsen. Om du har tillgång till Internet skall du göra diagnostiskt test på sannolikhet som finns på kursens webbplats. I annat fall tar du kontakt med din lärare så skickar hon eller han ett motsvarande test till dig. Förklara med egna ord Utfallsrum... Händelse... Sannolikhet... Träddiagram... Komplementhändelse

14 Reflektera över vad du lärt dig, hur du lärt dig, vad som var svårt och så vidare i detta avsnitt. Skriv gärna ner det på raderna här under. Kontakta din lärare om du vill diskutera något. 16

15 Studieenhet Linjära modeller Denna studieenhet handlar om räta linjens ekvation, att lösa ekvationssystem och linjära olikheter. På kursens webbplats finns en förtest som du kan göra innan du börjar lösa uppgifterna i boken, några interaktiva övningar att jobba med allt eftersom du arbetar dig framåt i avsnittet. När du arbetat klart med avsnittet gör du studiearbete 1 och skickar det till din lärare. Mål för avsnittet: Kunna arbeta med räta linjens ekvation i olika former samt lösa linjära olikheter och ekvationssystem med grafiska och algebraiska metoder Exempel på frågeställningar och uppgifter I. Var skär linjen y=2x-10 y-axeln respektive x-axeln? II. Vilken lutning (riktningskoefficient) har en linje som går genom punkterna (2, 7) och (5, 19)? III. Att hyra en viss bil och köra 30 mil kostar 450 kr och kör man 45 mil kostar det 615 kr. Skriv en ekvation för kostnaden y kr om man kör x mil. IV. Vad är x och y i ekvationssystemet V. Att köpa två liter mjölk och fem kg potatis kostar 39 kr, att köpa fyra liter mjölk och tre kg potatis kostar 43 kr. Vad kostar det att köpa fem liter mjölk och fyra kg potatis? VI. För vilka x är 3x + 5 > 8x - 9? VII. Ett visst företag ABC har telefonabbonemang med månadsavgift 80 kr och samtalsavgift 2 kr/min. Konkurrenten KLM har månadsavgiften 110 kr och samtalsavgiften 1,50 kr/min. Hur mycket skall man ringa för per månad för att KLM-alternativet skall bli billigare? 17

16 De flesta problemställningar du möter i detta avsnitt kan lösas både grafiskt eller algebraiskt. En grafisk lösning innebär att du ritar grafer i koordinatsystem och avläser skärningspunkter. Det är en snabb metod, i synnerhet om du använder dig av en grafritande räknare eller något datorprogram, men ger ofta inte tillräckligt noggranna svar. En algebraisk (analytisk) lösning innebär att du räknar dig fram till svaret. Denna metod kan vara lite arbetsammare men ger mer noggranna svar. Gör gärna en grafisk lösning på din miniräknare för att kolla om du har räknat rätt. Om du löser ett ekvationssystem algebraiskt och den första variabeln blir ett bråktal så måste du använda detta bråktal då du skall lösa ut den andra variabeln. Gör du inte utan sätter in ett avrundat värde, t ex 0,33 istället för bråktalet 1/3, blir den andra variabeln fel. Det avrundade talet är ju behäftat med ett litet fel och detta fel kommer att följa med i de fortsatta beräkningarna. Träna därför på att använda bråktal istället för decimaltal. Funktionsbegreppet Se till att du uppfattar betydelsen av begreppen funktion, definitionsmängd och värdemängd ordentligt. Att y är en funktion av x brukar man uttrycka som y = f(x), och ofta skriver man f(x) i stället för y i funktionsuttrycken. Man talar om oberoende och beroende variabler. Den oberoende variabeln, som ofta betecknas med x, förfogar man över fritt frånsett eventuella begränsningar till intervall. Ett valt värde på den oberoende variabeln ger direkt ett värde på den beroende, och det värdet (funktionsvärdet) räkna man fram med hjälp av funktionsuttrycket. En graf ( kurva ) är en bild av en funktion och visar hur funktionsvärdena varierar med värdena för den oberoende variabeln. Tänk på att beteckningen x för den oberoende variabeln inte är självklar. Många andra beteckningar är vanliga i tillämpade sammanhang, t.ex. t för tider. Räta linjens ekvation Det vanligaste sättet att ange en linjär funktion är den s.k. k -formen, d.v.s.: y = kx+ m, men lägg märke till en linjär funktion kan anges även på annat sätt, t.ex.: ax + by + c = 0. 18

17 Säkert inser du att två parallella linjer måste ha samma k-värde. Det är ju k-värdet som anger lutningen. För linjer som är vinkelräta mot varandra måste rimligen gälla att om den ena är stigande så måste ju den andra vara fallande, eller m.a.o. ha negativ lutning. Om kvoten y-skillnad/x-skillnad för den ena linjen är lika med 4 så måste motsvarande kvot för den andra linjen vara lika med 1/4. Här har bara längdmåtten angivits utan hänsyn till tecken. Mycket som Du stöter på i vardagslivet kan beskrivas med en linjär funktion. El-räkningen till exempel innehåller ju en fast avgiftsdel (som motsvarar m) och pris per kwh (som motsvarar k). Antalet använda kilowattimmar motsvarar x, och totalkostnaden kan då beräknas med ett uttryck av typen y = kx+ m Telefonräkningen och taxiresor är ju också prissatta på motsvarande sätt. I många situationer måste man komma ihåg att funktionens definitionsmängd i praktiken är begränsad. Ett drastiskt exempel: Anders tänker banta inför sommaren och gör följande studie av utvecklingen under ett antal veckor : Vecka Vikt (kg) Om den här utvecklingen fortsätter linjärt kommer Anders att helt försvinna, vilket knappast inte är hans målsättning. Ekvationssystem Det förekommer att man ibland har två okända variabler att lösa ut. För att lyckas med det måste man i så fall ha två ekvationer. Har man två eller fler ekvationer som hör ihop bildar dessa ett ekvationssystem. När man löser dessa kan man välja att göra det grafiskt (med hjälp av grafer) eller analytiskt (med hjälp av beräkningar). Grafisk lösning: Rita graferna till de ekvationer du har och avläs skärningspunkten. Det skall också nämnas att det inte nödvändigtvis måste vara räta linjer (förstagradsekvationer) det handlar om. Även ekvationer av högre grad kan lösas grafiskt mera om detta längre fram i kursen. Den grafiska lösningsmetoden är snabb Du behöver ju bara två punkter för att rita en rät linje, men den är i praktiken ofta inte exakt. För att göra en grafisk lösning med tillräckligt hög precision kan man rita i flera steg. Först en grov lösning som visar ungefär var den sökta skärningspunkten ligger. Därefter ritar man en förstorad bild av det området med en skala t.ex. 1 dm = 19

18 1 enhet. Det här medför ju att 1 mm på pappret motsvarar 0,01. Förstoringen kan naturligtvis drivas ännu längre om det är nödvändigt. Analytiska metoder: Det handlar om substitutionsmetoden och additionsmetoden. Hur det fungerar förklaras bra i läroböckerna. Substitutionsmetoden fungerar bra med två olika ekvationer inblandade och kan väl i de flesta fall vara hanterbar även med tre ekvationer. Med efterhand fler och fler ekvationer tenderar den här metoden att ge väldigt komplicerade och svåröverskådliga uttryck. Så man kan med viss generalisering säga att ju större ekvationssystem man har desto säkrare ska man använda additionsmetoden. Linjära olikheter Olikheter kan i stort sätt lösas på samma sätt som ekvationer om man håller tungan rätt i mun. Vad man behöver komma ihåg är att ifall man multiplicerar eller dividerar med ett negativt tal måste man byta olikhetstecken. Från > till < eller tvärtom beroende på uppgiften. Nu är det dags att göra studiearbete 1, Sannolikheter och linjära modeller, och skicka till din lärare. Förklara med egna ord k-värde... Räta linjens ekvation på k-form... Räta linjens ekvation på allmän form... Substitutionsmetoden... Additionsmetoden... 20

19 Reflektera över vad du lärt dig, hur du lärt dig, vad som var svårt och så vidare i detta avsnitt. Skriv gärna ner det på raderna här under. Kontakta din lärare om du vill diskutera något. 21

20 Studieenhet Icke-linjära modeller Denna studieenhet handlar främst om andragradsfunktioner, andragradsekvationer och icke-linjära olikheter. På kursens webbplats finns en förtest som du kan göra innan du börjar lösa uppgifterna i boken, några interaktiva övningar att jobba med allt eftersom du arbetar dig framåt i avsnittet. När du arbetat klart med avsnittet gör du studiearbete 2 och skickar det till din lärare. Mål för avsnittet: Kunna tolka, förenkla och omforma uttryck av andra graden samt lösa andragradsekvationer och tillämpa kunskaperna vid problemlösning. Kunna förklara vad som kännetecknar en funktion samt kunna ställa upp, tolka och använda några icke-linjära funktioner som modeller för verkliga förlopp och i samband därmed kunna arbeta både med och utan dator och grafritande hjälpmedel Exempel på frågeställningar och uppgifter 2 I. Lös ekvationen ( x+ 4)( x 36) = 0 2 II. Låt f( x) = 3x + 2. Förenkla uttrycket f ( x+ h) f( x) så långt som möjligt. 14 III. För vilket värde på x är inte y = definierad? 2 x IV. Lös ekvationen x 2 + 4x 21= 0. V. Banan för en fotboll kan beskrivas med funktionen y=0,75x-0,020x 2 där y m är fotbollens höjd över marken och x m är avståndet i x-led från utsparken. Hur högt når bollen och hur långt från utsparkspunkten slår den ner? VI. För vilka x är 3x 2 + 6> 6x + 15? VII. Pia tjänar kr i år. Hon skall nu välja mellan två alternativ till löneförhöjning. Alt 1: 4800 kr/år under en följd av år. Alt 2: 3% per år under en följd av år. Hur många år skall det nya löneavtalet gälla för att alternativ 2 skall vara förmånligare? 22

21 Lär Dig begreppen polynom, variabelterm, konstantterm, koefficient, exponent och gradtal mycket noga. Det är oerhört viktigt att Du är klar över deras betydelse, då Du annars inte behärskar det matematiska språket i fortsättningen. Andragradsfunktioner 2 En andragradsfunktion kan skrivas som f ( x) = ax + bx+ c där a inte får vara noll. Rita några grafer med olika värden på a, b och c och se hur grafernas utseende ändras. Vad händer när c blir större? Vad händer när a byter tecken?.. Använd gärna din grafritande miniräknare till detta eller dataprogrammet Graphmatica som kan hämtas gratis från kursens webbplats. Världens enklaste andragradsfunktion ser ut så här : y = x 2. Som Du ser kommer x-värdet 0 att ge funktionsvärdet 0. Alla andra funktionsvärden blir > 0 eftersom x 2 = (-x) 2. Grafen blir symmetrisk kring y-axeln av samma skäl. Polynommultiplikation Avsnittet behandlar multiplikation av polynom, eller som det också kallas, multiplikation av parentesuttryck. Det handlar också om tre av de viktigaste reglerna som du stöter på i kursen, nämligen kvadreringsreglerna och konjugatregeln. Andragradsekvationer En andragradsekvation brukar kallas fullständig om den innehåller x 2 -termer, x-termer och siffertermer. Om x-termer eller siffertermer saknas talar man om en ofullständig andragradsekvation. Ofullständiga 2 I) ax + c = 0 II) ax 2 Fullständig 2 + bx = 0 III) ax + bx + c = 0 Lösningsmetoder Vilken lösningsmetod man väljer beror på vilken andragradsekvation man har, se tabellen ovan. FallI I) Variabeltermen är noll ( x-termen saknas ) är enklast 2 Ex: 5x 80= 0 2 5x = 80 2 x = 16 x = ± 16 =± 4 1,2 23

22 Fall II) Konstanttermen är noll ( siffertermen saknas ), löses problemet med lättast med hjälp av faktorisering. 2 Ex 3x 12x= 0 3 xx ( 4) = 0 x1 = 0 x2 = 4 Om en produkt är 0 är minst en faktor = 0. x och (x a) kan inte vara 0 samtidigt eftersom (x a) alltid är a enheter mindre än a. Därför är både x1 och x 2 lösningar. Fall III) En fullständig andragradsekvation löser man enklas genom att tillämpa den så kallade pq-formeln. Läs om den i din lärobok. Icke-linjära olikheter Det gäller samma sak för icke-linjära olikheter som för linjära olikheter: Att tänka sig för när det gäller tecknen. Det är till stor hjälp att rita graferna till funktionerna när man skall lösa olikheterna. Varför? Nu är det dags att göra det andra studiearbetet, Icke-linjära modeller, och skicka till din lärare. Förklara med egna ord Polynom... Konjugatregeln Kvadratkommplettering pq-formel Reflektera över vad du lärt dig, hur du lärt dig, vad som var svårt och så vidare i detta avsnitt. Kontakta din lärare om du vill diskutera något. 24

23 Studieenhet Geometri Denna studieenhet handlar om vinklar, några geometriska satser och koordinatgeometri. På kursens webbplats finns en förtest som du kan göra innan du börjar lösa uppgifterna i boken, några interaktiva övningar att jobba med allt eftersom du arbetar dig framåt i avsnittet och ett diagnostiskt test att göra innan du börjar med nästa avsnitt. Mål för avsnittet: Kunna förklara, bevisa och vid problemlösning använda några viktiga satser från klassisk geometri Exempel på frågeställningar och uppgifter I. Medelpunktsvinkeln är 50 grader. Hur stor är randvinkeln? II. I en likbent triangel är en vinkel 30 grader. Hur stora är de andra vinklarna? (Det finns två fall) III. Triangeln T1 har sidlängderna 14 cm, 28 cm och 36 cm och i triangeln T2 är sidlängderna 2 m, 4 m och 5 m. Är trianglarna likformiga? IV. Är en triangel med sidorna 8 m, 11 m och 17 m rätvinklig? V. Punkten A ligger i (2, 19) och punkten B i (-3, 7). Hur långt är det mellan punkterna A och B? VI. Var ligger mittpunkten på den linje som går mellan (8, 9) och (2, 11)? När du skall lösa geometriproblem är det extra viktigt att rita figurer till de uppgifter du skall lösa och att som vanligt införa lämpliga beteckningar för det du skall räkna ut. Att vinkelsumman i en triangel är 180 vet du säkert redan. I det här sammanhanget bör kanske nämnas att vinkelenheten grader ( ) inte på något sätt är av naturen given. Att dela upp varvet i 360 är människors påfund och det finns även andra vinkelenheter, t.ex. s.k. nygrader ( c ) där varvet delas upp i 400 c. 25

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor Våren 010 PRÖVNINGSANVISNINGAR Prövning i Matematik B Kurskod MA 10 Gymnasiepoäng 50 Läromedel Prov Muntligt prov Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag Skriftligt

Läs mer

Matematik 3000 kurs B

Matematik 3000 kurs B Studieanvisning till läroboken Matematik 3000 kurs B Innehåll Kursöversikt...4 Så här jobbar du med boken...5 Studieenhet Sannolikhetslära...6 Studieenhet Linjära modeller...8 Studieenhet Icke-linjära

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Välkommen till studier i Matematik kurs C

Välkommen till studier i Matematik kurs C Innehåll Välkommen till studier Matematik kurs C...2 Studietips...2 Kursens uppläggning och mål...5 Examination...6 Kursmaterial...7 Webbtips...8 Litteraturtips...8 Övrigt om kursen...10 Problemlösning...11

Läs mer

Matematik 2b 1 Uttryck och ekvationer

Matematik 2b 1 Uttryck och ekvationer Matematik 2b 1 Uttryck och ekvationer Repetera grunderna i ekvationslösning Lära dig parentesmultiplikation, kvadreringsreglerna och konjugatregeln Lära dig lösa fullständiga andragradsekvationer Få en

Läs mer

MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs.

MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. MA 202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5 freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre

Läs mer

Studieanvisning till Matematik 3000 kurs C/Komvux

Studieanvisning till Matematik 3000 kurs C/Komvux Studieanvisning till Matematik 3000 kurs C/Komvu ISBN 91-27-51027-1 Förord Vår ambition med denna studiehandledning är att den skall guida dig genom boken Matematik 3000 kurs C/Komvu av Lars-Eric Björk,

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7

Läs mer

Matematik B (MA1202)

Matematik B (MA1202) Matematik B (MA10) 50 p Betygskriterier med exempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och tillvägagångssätt

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

Tal Räknelagar. Sammanfattning Ma1

Tal Räknelagar. Sammanfattning Ma1 Tal Räknelagar Prioriteringsregler I uttryck med flera räknesätt beräknas uttrycket i följande ordning: 1. Parenteser 2. Potenser. Multiplikation och division. Addition och subtraktion Exempel: 5 22 1.

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6 freeleaks NpMaB vt2001 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2001 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 9 uppgifter med miniräknare 6 Förord Skolverket har endast

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Delkursplanering MA Matematik A - 100p

Delkursplanering MA Matematik A - 100p Delkursplanering MA1201 - Matematik A - 100p som du skall ha uppnått efter avslutad kurs Du skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5 freeleaks NpMaB ht2002 1(7) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 2002 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 5 Förord Skolverket har endast

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT

HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv

Läs mer

Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov

Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov År Startvecka 2013 2 Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov Vecka Lektion (2h) Datum Kapitel Avsnitt 2 Ti 08-jan Kap 1: Räta linjen

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Matematik 3000 kurs A

Matematik 3000 kurs A Studieanvisning till läroboken Matematik 3000 kurs A Innehåll Kursöversikt...4 Vad skall du kunna efter Matematik kurs A?...5 Så här jobbar du med boken...6 Studieenhet Arbeta med tal...7 Studieenhet Procent...12

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

14 min 60 s min 42 s 49m 2 =18 s m 2, alltså samma tid. Vi kan säga att den tid som mamman behövde åt dammsugning var beroende av husets storlek.

14 min 60 s min 42 s 49m 2 =18 s m 2, alltså samma tid. Vi kan säga att den tid som mamman behövde åt dammsugning var beroende av husets storlek. PASS 10. FUNKTIONER 10.1 Grundbegrepp om funktioner Mamman i den finländska modellfamiljen från pass fyra brukade dammsuga det 100 m 2 stora huset varje lördag. Det tog 30 minuter. Efter att pappan hade

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1

Läs mer

Sammanfattningar Matematikboken Z

Sammanfattningar Matematikboken Z Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Centralt innehåll. I årskurs 1.3

Centralt innehåll. I årskurs 1.3 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

Tips 1. Skolverkets svar 14

Tips 1. Skolverkets svar 14 JENSEN vux utbildning Np Mac vt01 1(0) Kursprov Mac Innehåll Förord 1 Tips 1 Kursprov Mac vt01 Del B: Digitala verktyg är inte tillåtna. Endast svar krävs. #1 10...... 3 Del C: Digitala verktyg är inte

Läs mer

MATEMATIK 5.5 MATEMATIK

MATEMATIK 5.5 MATEMATIK 5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Kap1 1.1 Tal i olika former Mål Mål Mål Mål Mål Mål Rek. uppgifter 1101, 1106, 1107, 1113, 1118, 1120 Talmängder

Kap1 1.1 Tal i olika former Mål Mål Mål Mål Mål Mål Rek. uppgifter 1101, 1106, 1107, 1113, 1118, 1120 Talmängder Kap1 1.1 Tal i olika former Mål Mål Mål Mål Mål Mål Rek. uppgifter Känna till de vanligaste talmängderna och de Veta hur talmängderna betecknas Ha kunskap om hur de olika talmängderna är 1101, 1106, 1107,

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Sammanfattningar Matematikboken X

Sammanfattningar Matematikboken X Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för

Läs mer

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs

Läs mer

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 1.1Introduktion Introduktion Avsnitt 1 handlar till att börja med om hantering av bråkstreck. Samtidigt ges exempel och övningar

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Matematik 1B. Taluppfattning, aritmetik och algebra

Matematik 1B. Taluppfattning, aritmetik och algebra Matematik 1a Centralt innehåll Metoder för beräkningar med reella tal skrivna på olika former inom vardagslivet och karaktärsämnena, inklusive överslagsräkning, huvudräkning och uppskattning samt strategier

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod: SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Lgr 11 matriser i Favorit matematik 4 6

Lgr 11 matriser i Favorit matematik 4 6 Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Studiehandledning för Matematik 1a

Studiehandledning för Matematik 1a Studiehandledning för Matematik 1a Innehåll Studiehandledning för Matematik 1a... 1 Inledning och Syfte... 2 Ämne - Matematik... 3 Ämnets syfte... 3 Matematik 1a... 4 Centralt innehåll... 4 Kunskapskrav...

Läs mer

8-6 Andragradsekvationer. Namn:..

8-6 Andragradsekvationer. Namn:.. 8-6 Andragradsekvationer. Namn:.. Inledning Nu har du arbetat en hel del med ekvationer där du löst ut ett siffervärde på en okänd storhet, ofta kallad x. I det här kapitlet skall du lära dig lösa ekvationer,

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.

Läs mer

SKOLUTVECKLIGSPROJEKT MED GEOGEBRA. Jaana Zimmerl Suneson (Älvkullegymnasiet) jaana.zimmerl.suneson@alvkullegymnasiet.se

SKOLUTVECKLIGSPROJEKT MED GEOGEBRA. Jaana Zimmerl Suneson (Älvkullegymnasiet) jaana.zimmerl.suneson@alvkullegymnasiet.se ERFARENHETER FRÅN SKOLUTVECKLIGSPROJEKT MED GEOGEBRA Jaana Zimmerl Suneson (Älvkullegymnasiet Karlstad) jaana.zimmerl.suneson@alvkullegymnasiet.se mirela.vinerean@kau.se GeoGebra i matematikundervisningen

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6 freeleaks NpMaD ht2007 för Ma4 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2007 2 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 6 Förord Kom ihåg Matematik

Läs mer

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter: Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Matematik 1A 4 Potenser

Matematik 1A 4 Potenser Matematik 1A 4 Potenser förklara begrepp t ex. potens, bas, exponent och grundpotensform (Nivå E C) tolka, skriva och räkna med tal i grundpotensform (Nivå E A) helst kunna redogöra för räkneregler för

Läs mer

a) Ange ekvationen för den räta linjen L. (1/0/0)

a) Ange ekvationen för den räta linjen L. (1/0/0) Delprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. Ange det uttryck som ska stå i parentesen för att likheten ska gälla. ( ) ( x 5) = x 5 (1/0/0).

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik

Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.

Läs mer

Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte

Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande

Läs mer

Kursprov i matematik, kurs E ht Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5

Kursprov i matematik, kurs E ht Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5 freeleaks NpMaE ht1997 för Ma4 1(6) Innehåll Förord 1 Kursprov i matematik, kurs E ht1997 2 Del I: Uppgifter utan miniräknare Del II: Uppgifter med miniräknare 5 Förord Kom ihåg Matematik är att vara tydlig

Läs mer

geometri ma B 2009-08-26

geometri ma B 2009-08-26 OP-matematik opyright Tord Persson geometri ma 2009-08-26 Uppgift nr 1 Uppgift nr 3 26 13 z s Hur stor är vinkeln z i den här figuren? Uppgift nr 2 Hur stor är vinkeln s i den här figuren? Uppgift nr 4

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2 Kapitel.1 101, 102 Exempel som löses i boken 10 a) x= 1 11+ x= 11+ 1 = 2 c) x= 11 7 x= 7 11 = 77 b) x= 5 x 29 = 5 29 = 6 d) x= 2 26 x= 26 2= 1 10 a) x= 6 5+ 9 x= 5+ 9 6= 5+ 5= 59 b) a = 8a 6= 8 6= 2 6=

Läs mer

7E Ma Planering v45-51: Algebra

7E Ma Planering v45-51: Algebra 7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar

Läs mer

Funktionsstudier med derivata

Funktionsstudier med derivata Funktionsstudier med derivata Derivatan ett kraftfullt verktyg för att studera och tolka funktioner Det här avsnittet handlar om att man kan använda derivatan till att bestämma en funktions egenskaper

Läs mer

A. Kunna arbeta med de varierade arbetssätt som förekommer. B. Eleven ska kunna redovisa lösningar så att de kan följas av läraren.

A. Kunna arbeta med de varierade arbetssätt som förekommer. B. Eleven ska kunna redovisa lösningar så att de kan följas av läraren. Vifolkaskolan Utdrag ur Bedömning och betygssättning : Det som sker på lektionerna och vid lektionsförberedelser hemma, liksom närvaro och god ordning är naturligtvis i de flesta fall förutsättningar och

Läs mer

Kurskod: GRNMAT2 Verksamhetspoäng: 600

Kurskod: GRNMAT2 Verksamhetspoäng: 600 Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005 Anvisningar Provtid Hjälpmedel Provmaterialet NpMaB vt 2005 Version 1 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.

Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften. MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas, såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Sidor i boken 8-9, 90-93

Sidor i boken 8-9, 90-93 Sidor i boken 8-9, 90-93 Absolutbelopp Men först lite om Absolutbelopp., kallas absolutbeloppet av, och är avståndet för till origo på tallinjen. Som bekant är avståndet till origo för talet 4, 4. Detta

Läs mer

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1)

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) NATUR OCH KULTURS PROV VÅRTERMINEN 1997 MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) Provets omfattning: t o m kapitel 5.6 i Matematik 2000 NV kurs AB. Provets omfattning: t o m kapitel 3.5

Läs mer

Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 2 digitala övningar med TI 82 Stat, TI 84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel

Läs mer

Ma3bc. Komvux, Lund. Prov kap

Ma3bc. Komvux, Lund. Prov kap Ma3bc. Komvux, Lund. Prov kap1-3.1. 150513 (Lärare: Ingemar Carlsson) Anvisningar Del B, C och Del D Provtid Hjälpmedel Del A Del B Del C och D Kravgränser Övrigt 140 minuter för Del B, C och Del D. Du

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till!

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till! Matematik 4-6 II Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 4 hp Studenter i lärarprogrammet LAG 4-6 T3 15 högskolepoäng Tentamensdatum: 15-01-15 Tid: 09.00 13.00 Hjälpmedel: Lgr 11,

Läs mer

Planering Funktioner och algebra år 9

Planering Funktioner och algebra år 9 Planering Funktioner och algebra år 9 Innehåll Övergripande planering... 2 Begrepp... 3 Metoder... 4 Bedömning... 4 Kommer du ihåg dessa begrepp från årskurs 8?... 5 Facit till Diagnos... 6 Arbetsblad...

Läs mer

Anvisningar. 240 minuter utan rast. Miniräknare och Formler till nationellt prov i matematik

Anvisningar. 240 minuter utan rast. Miniräknare och Formler till nationellt prov i matematik Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 00. Anvisningar Provtid

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer