Teori :: Diofantiska ekvationer v1.2

Storlek: px
Starta visningen från sidan:

Download "Teori :: Diofantiska ekvationer v1.2"

Transkript

1 Teori :: Diofantiska ekvationer v1. 1 Definitioner och inledande exempel Låt oss börja med att göra klart för vad vi menar med en diofantisk ekvation: S:def+ex Definition 1.1. Betrakta ekvationen D:diofantiskEkv ax + by = c, där a, b och c är heltal. Om x och y tillåts vara godtyckliga reella tal så bildar lösningarna en rät linje i planet. När man bara är intresserade av heltalslösningar, dvs x, y Z så kallar man ekvationen för en diofantisk 1 ekvation x 6y 3 1 4x 6y 4 x 3y 0 3 3x 3y 1 Figur 1: Linjer som hör ihop med exemplen 1. och 1.3. Röda prickade linjen är lösningen till 4x + 6y = 3 som saknar heltalslösningar (vilket följer eftersom den undviker alla rutnätets skärningspunkter). DenBlå kortstreckade linjen är lösningarna till 4x+6y = 4 och här noterar man hur den går genom heltalspunkterna (, ), ( 5, 4), (1, 0) och (4, ) plus oändligt många som inte syns i bilden. De övriga linjerna x+3y = 0 (grön och storstreckad) och x + 3y = 1 (svart heldragen) är de linjer som vi använder för att kunna skriva upp slutna uttryck för alla lösningar. Satserna i detta dokument visar hur vi ska göra. Exempel 1.. Ekvationen ex:diof-w-sol 4x + 6y = 4 div. båda led med x + 3y = 1 Ordet Diofantisk härstammar från matematikern Diofantos som studerade ekvationer av denna typ i Alexandria för länge sedan. Läs mer om Diofantos på wikipedia: 1

2 har reella lösningar i form av en linje (blå kortstreckad linje) i figur 1. Heltalslösningarna får man i de punkter där linjen skär rutsystemet i Figuren. Det är inte svårt att se att vi får en oändlig mängd sådana lösningspunkter eftersom lutningen av linjen har en sådan egenskap. Exempel 1.3. Ekvationen ex:diof-nosol 4x + 6y = 3 har reella lösningarna beskrivna av den röda prickad linjen i figuren ovan. Notera att denna linje inte går genom rutnätets skärningspunkter och saknar därför heltalslösningar. Ett annat och mer precist sätt att visa detta är: om x och y vore heltal så kan man säga att delar vänster led. Likheten skulle då kräva att också måste dela 3 vilket alltså inte är sant. Eftersom en eventuell heltalslösning leder till en omöjlighet så kan det därför inte finnas några heltalsvärden som löser vår ekvation. Lösbarhet för Diofantiska ekvationer Givet en Diofantisk ekvation ax + by = c så har vi i de ovanstående exemplen sett att lösbarheten beror på de ingående heltalen a, b och c. Om ekvationen ska ha heltalslösningar så ställer det krav på ekvaitionens parametrar. Om t.ex ett tal delar både a och b så betyder det att för x och y heltal att detta tal delar vänster led. Likheten ger då att detta tal också måste dela c som utgör höger led. Detta är det så kallade lösbarhetskravet: S:solvability Proposition.1. Om ekvationen P:solvecondition ax + by = c har heltalslösningar så måste SGD(a, b) c. Bevis. Om x, y båda är heltal som löser ekvationen så gäller att SGD(a, b) måste dela vänster led eftersom båda termerna har a respektive b som faktor varför vänster led kan faktoriseras som ax + by = M m, där M = SGD(a, b) och m Z. Om nu ekvationen är uppfylld så måste c också ha M som faktor eftersom vi annars skulle få motsägelsen att vänster led är delbar men inte höger led. Proposition.. Varje lösbar Diofantisk ekvation kan skrivas som P:genericDio ax + by = c, SGD(a, b) = 1 Bevis. Lösbarhetskravet ger för en godycklig ekvation a x + b y = c att båda led är delbara med SGD(a, b) och då kan man dividera båda led med detta tal och få en ekvation ax + by = c där a = a SGD(a, b), b = b SGD(a, b) och c = c SGD(a, b) som vi alltså får om vi dividerar båda led med SGD(a, b). Eftersom vi dividerat bort den största gemensamma faktorn så följer det att SGD(a, b) = 1

3 3 Huvudsatsen och dess hjälpsatser Vi ska nu redogöra för hur man löser en diofantisk ekvation. Vi ska visa följande huvudsats som exakt talar om hur vi ställer upp lösningarna. S:huvudsats Theorem 3.1. Låt a, b Z och SGD(a, b) = 1. Då har den diofantiska ekvationen T:SolDiofant lösningarna ax + by = c (1) x = bn + cx 0 y = an + cy 0, där nz och där (x 0, y 0 ) är lösning till den diofantiska ekvationen ax + by = 1 E:Diofant Lösningen kan också uttryckas på vektorform som x b = n + c y a x0 y 0, och här är x y = heltalslösningarna till den homogena ekvationen b a n ax + by = 0 och vektorn ( b, a) är skillnadsvektorn mellan två på varandra följande heltalslösningarn. Beviset för satsen beror av ett antal hjälpsatser Lemma 3.. Heltalslösningarna till L:homogena ax + by = 0 kan skrivas på formen xh = y h b a Bevis. (av lemma 3.) Vi har att ax + by = 0 ger oss att x = b ay. Om vi sätter y = t så kan vi alltså skriva lösningarna på vektorform som x b = a b t = sätt t = as = s, y 1 a som ger oss heltalslösningar om s = n Z. Eftersom sgd(a, b) = 1 så är vektorn ( b, a) den kortaste vektor som kan bildas mellan två heltalslösningar. n Lemma 3.3. Om (x 0, y 0 ) löser ekvationen ax + by = 1 så löser c(x 0, y 0 ) ekvationen ax + by = c. L:partikular Bevis. (Av lemma 3.3) Beviset är busenkelt: Följande räkningar ger oss direkt lemmats utsaga. a(cx 0 ) + b(cy 0 ) = c (ax 0 + by 0 ) = c =1 En hjälpsats kallas i matematiken ofta för ett Lemma 3

4 Lemma 3.4. Givet en prtikulär lösning (x p, y p ) till ax + by = c så får man övriga lösningar L:superposition genom genom att addera de homogena lösningarna dvs x xh xp = n + y y h Bevis. Vi är klara om vi kan visa att två olika lösningar till (1) skiljer sig åt med en lösning till motsvarande homogena ekvation. Eller, uttryckt på annat sätt: Om (x p, y p ) och (x 1, y 1 ) är två partikulära lösningar till (1) så behöver vi visa att det finns ett heltal n så att (x 1, y 1 ) = ( b, a)n + (x p, y p ). Detta ger direkt att vi behöver visa att (x 1, y 1 ) (x p, y p ) = (x 1 x p, y 1 y p ) är en lösning till den homogena ekvationen, vilket vi gör så här. Vi sätter in denna vektor i vänster led av den homogena ekvationen. Vi behöver då visa att detta blir noll: a(x 1 x p ) + b(y 1 y p ) = ax 1 + by 1 (ax p + by p ) = c c = 0 =c =c Detta visar att skillnaden mellan två lösningar till en diofantisk ekvation är en lösning till motsvarande homogena ekvation. y p Lemma 3.5. En partikulärlösning till ax + by = 1 får man fram genom att använda Euklides L:partikEuklid algoritm baklänges. Bevis. (Lemma 3.5) Med Euklides algoritm så kan vi beräkna största gemensamma delare till a och b. Eftersom SGD(a, b) = 1 så ger Genom att gå baklänges i Euklidesschemat så kjan vi skriva SGD(a, b), dvs 1 sin en linjärkombination av a och b: dvs ak + bm = 1 som alltså ger en lösning till ax + by = 1. Låt oss exemplifiera metoden i Lemma 3.5: Exempel 3.6. Vi söker en partikulärlösning (x 0, y 0 ) till 35x + 33y = 1: ex:euklid Med a = 35 och b = 33. Euklides algoritm ger oss 35 = = Här ser vi alltså att SGD(35, 33) = 1. Med början av den sista ekvationen så har vi att 1 = = uttrycks mha den första ekvationen = = ( ) = = = = ( 16) 35 + ( 15) 33 =x 0 =y 0 4 Bevis för huvudsats Vi är nu redo för att visa huvudresultatet Theorem 3.1. Tack vare alla hjälpsatser (lemmorna) så blir beviset av satsen väldigt rättframt: S:theProof 4

5 Bevis. (Av Theorem 3.1) Vi börjar med att beräkna en partikulärlösning (x 0, y 0 ) till ax + by = 1 genom att använda Euklides algoritm som vi visade i Lemma 3.5. Sedan visar Lemma 3.3 att c(x 0, y 0 ) är en partikulärlösning till (1). Från Lemmorna 3.4 och 3. har vi att alla lösningar till (1) kan skrivas på formen vilket slutför beviset för vår sats. x y = b a n + c x0 y 0, 5 Exempel S:exempel Exempel 5.1. Vi använder nu satsen för att beräkna lösningarna till exempel 1.. ex:example Först beräknar vi en lösning till x + 3y = 1. Denna ekvation är så enkel att vi snabbt kan hitta en heltalslösning utan att använda Euklides algoritm: Om vi tar t.ex. x 0 = och y 0 = 1 så får vi tydligen en lösning. Detta ger nu att (, 1) = (4, ) är en lösning till x + 3y =. Vi bestämmer nu lösningarna till den homogena ekvationen x + 3y = 0. Om vi löser ut x som funktion av y och betecknar y med parametern t så får vi på vektorform xh = y h 3 1 t = sätt t = s = 3 Genom att kombinera lösningen (m.h.a. Lemma 3.4 )till den homogena ekvationen med den partikulära lösningen så får vi slutligen den allmänna lösningen till vårt problem: x 3 4 = s +, s Z y dvs x = 3s + 4 och y = s. s Exempel 5.. Beräkna alla heltalslösningar till ekvationen ex:normalisera 70x + 18y =. Vi börjar med att notera ekvationen inte är på formen given i sats 3.1 så vi behöver börja med att dividera båda led med SGD(70, 18) =. (Notera att om inte höger led också är delbar med denna gemensamma delare så har inte ekvationen någon heltalslösning. See nästa exempel för en sådan situation) Vi får då den diofantiska ekvationen 35x + 9y = 11, där vi har att SGD(35, 9) = 1 Genom att gå baklänges mha Euklides algoritm får vi att 1 = , vilket ger att x 0 = 1 och y 0 = 4 är en partikulärlösning till 35x + 9y = 1. Det följer då från Lemma 3.3 att x p = 11 och y p = 44 är en partikulärlösning till 35x + 9y = 11. Lemma 3. ger oss nu den homogena lösningen x h = 9n, y h = 35n och då kan vi skriva upp lösningen till vår diofantiska ekvation x = 9n 11, y = 35n + 44, n Z. () E:exampleSol Exempel 5.3. Beräkna den diofantiska ekvationen ex:nosols 5x + 39y = 11. Vi noterar att om x och y är heltal så är 13 en delare till vänster led. Men eftersom höger led inte är delbar med 13 så tillåter inte ekvationen att x och y är heltal, eftersom vi i så fall skulle få en omöjlighet. Vår ekvation saknar alltså lösningar. 5

6 6 Övningsuppgifter S:uppgifter Övning 1. Verifiera att lösningarna () verkligen är lösningar till 35x + 9y = 11 för alla n Z. ovn:verifiera Övning. Beräkna alla heltalslösningar till ekvationen ovn:nosolution 63x + 7y = 4 Övning 3. Lös den diofantiska ekvationen 45x + 84y = 33 ovn:a 6

7 7 Lösningar till uppgifterna Lösning till uppgift 1 S:solutions För att verifiera att () löser 35x + 9y = 11 så måste vi sätta in dem i ekvationen och visa att vänster led blir lika med höger led. Vi får att vänster led (VL) blir: V L = 35( 9n 11) + 9(35n + 44) = 9 35n n = =4 11 = = = (36 35) 11 = 11 Eftersom höger led är just 11 så har vi alltså visatt att () verkligen är lösningarna till 35x+9y = 11 Lösning till uppgift I denna uppgift så noterar man att 63 och 7 båda är delbara med 9. För att ekvationen ska ha heltalslösningar så krävs det att även högerledet ska vara delbart med 9. Men höger led är bara bara delbar med 3 och multiplar av vilket betyder att denna ekvation saknar heltalslösningar. Detta är också synligt om vi plottar linjen, vilket kan ses i figur Figur : Bild till uppgift. Om ekvationen har heltalspunkter så måste linjen gå genom rutnätets skärningspunkter (som ju betyder att både x och y är heltal. Lösning till uppgift 3 I ekvationen 45x + 84y = 33 så är siffrorna i både vänster och höger led delbara med 3 och gör vi det så får vi ekvationen 15x + 8y = 11 Vi börjar med att beräkna en lösning till 15x + 8y = 1, vilket vi gör med euklides algoritm som ger oss Som ger att 8 = = = = 13 6 = 13 6(15 13) = = = = 7 (8 15) + ( 6) 15 = = = 15 ( 13)

8 vilket alltså ger oss lösningen ( 13, 7) till 15x+8y = 1 och därför får vi att 11( 13, 7) = ( 143, 77) är en partikulär lösning till vår ekvation. Lösningen kan nu ställas upp mha av sats 3.1: x = 8n 143 y = 15n + 77 För säkerhets skull kan man göra en kontroll att detta verkligen är en lösning genom att sätta in dessa värden i vår ekvation. Vi får då att vänster led blir: 15x + 8y = 15( 8n 143) + 8(15n + 77) = = 15 8n n = = = 11 Eftersom höger led också är 11 kan vi vara trygga i att vår lösning verkligen är den rätta! 8

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om heltal Mikael Hindgren 17 september 2018 Delbarhet Exempel 1 42 = 6 7 Vi säger: 7 är en faktor i 42 eller 7 delar 42 Vi skriver: 7 42 Definition 1 Om a, b

Läs mer

Hela tal LCB 1999/2000

Hela tal LCB 1999/2000 Hela tal LCB 1999/2000 Ersätter Grimaldi 4.3 4.5 1 Delbarhet Alla förekommande tal i fortsättningen är heltal. DEFINITION 1. Man säger att b delar a om det finns ett heltal n så att a Man skriver b a när

Läs mer

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana

Läs mer

Grupper och RSA-kryptering

Grupper och RSA-kryptering UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 26 oktober 2007 Grupper och RSA-kryptering Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen

Läs mer

x2 6x x2 6x + 14 x (x2 2x + 4)

x2 6x x2 6x + 14 x (x2 2x + 4) Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Måndagen den 5:e november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. För vilka reella tal x gäller olikheten x 6x + 14? Lösningsalternativ 1: Den

Läs mer

Kapitel 2: De hela talen

Kapitel 2: De hela talen Kapitel 2: De hela talen Divisionsalgoritmen ( a a Z, d Z\{0} q, r Z : d = q + r ) d, 0 r d c 2005 Eric Järpe Högskolan i Halmstad där q kallas kvoten och r kallas principala resten vid heltalsdivision.

Läs mer

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C Sats 1.3 De Morgans lagar för mängder För alla mängder A och B gäller att (A B) C = A C B C och (A B) C = A C B C. (A B) C = A C B C : A B A C (A B) C B C A C B C (A B) C = A C B C : A B A C (A B) C B

Läs mer

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p.

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p. HH / Georgi Tchilikov DISKRET MATEMATIK,5p. 8 juni 007, 40 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 5p. för Godkänd, 4p. för Väl Godkänd (av maximalt 36p.). Förenkla (så mycket som

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet 27 augusti 2013 Innehåll Linjära ekvationssystem

Läs mer

Talteori (OBS en del frågor gäller diofantiska ekvationer och de tas inte upp från och med hösten 2012)

Talteori (OBS en del frågor gäller diofantiska ekvationer och de tas inte upp från och med hösten 2012) Talteori (OBS en del frågor gäller diofantiska ekvationer och de tas inte upp från och med hösten 2012) T4.4-T4.7, 4.3, 4.7,T4.13-T4.14 S: Jag har svårt för visa-uppgifter. i kapitel 4 Talteori. Kan du

Läs mer

MA 11. Hur starkt de binder. 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi

MA 11. Hur starkt de binder. 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi MA 11 Talteori och logik 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi propositionssymboler: bokstäver konnektiv Paranteser konnektiv

Läs mer

A B A B A B S S S S S F F S F S F S F F F F

A B A B A B S S S S S F F S F S F S F F F F Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 17. Logik När man utför matematiska resonemang så har man alltid vissa logiska spelregler att förhålla

Läs mer

Kappa 1. Robin Kastberg. 10 oktober 2014

Kappa 1. Robin Kastberg. 10 oktober 2014 Kappa 1 Robin Kastberg 10 oktober 2014 Sammanfattning Vi visar att uppgiften är lösbar för en generell triangel genom att visa att det är en trivial egenskap för en särskild, och att alla dessa egenskaper

Läs mer

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +

Läs mer

Diofantiska ekvationer

Diofantiska ekvationer Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 19. Diofantiska ekvationer Vi börjar med en observation som rör den största gemensamma delaren till

Läs mer

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t)

z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t) Tentamenskrivning MATA15 Algebra: delprov 2, 6hp Fredagen den 16 maj 2014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Låt l vara linjen genom punkten (5, 4, 4) som är vinkelrät mot planet 2x+2y +3z

Läs mer

Lösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl

Lösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl 1 Matematiska Institutionen KTH Lösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl 08.00 13.00. Examinator: Petter Brändén Kursansvarig: Olof Sisask Hjälpmedel:

Läs mer

Polynom över! Till varje polynom hör en funktion DEFINITION. Grafen till en polynomfunktion

Polynom över! Till varje polynom hör en funktion DEFINITION. Grafen till en polynomfunktion Polynom över Under baskursen bekantade du dig med polynomen över de komplexa talen. Nedanstående material är till stora delar en repetition av detta stoff. DEFINITION Ett polynom över är ett uttryck av

Läs mer

PRIMTALEN, MULTIPLIKATION OCH DIOFANTISKA EKVATIONER

PRIMTALEN, MULTIPLIKATION OCH DIOFANTISKA EKVATIONER Explorativ övning 4 PRIMTALEN, MULTIPLIKATION OCH DIOFANTISKA EKVATIONER Syftet med detta avsnitt är att bekanta sig med delbarhetsegenskaper hos heltalen. De viktigaste begreppen är Aritmetikens fundamentalsats

Läs mer

Lösningar till utvalda uppgifter i kapitel 5

Lösningar till utvalda uppgifter i kapitel 5 Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar

Läs mer

Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer

Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Dagens ämnen Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Linjära ekvationer Med en linjär ekvation i n variabler,

Läs mer

, S(6, 2). = = = =

, S(6, 2). = = = = 1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF161 och SF160, den 17 april 2010 kl 09.00-14.00. Examinator: Olof Heden. DEL I 1.

Läs mer

POLYNOM OCH POLYNOMEKVATIONER

POLYNOM OCH POLYNOMEKVATIONER Explorativ övning 8 POLYNOM OCH POLYNOMEKVATIONER Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med en del nya egenskaper hos polynom.

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

Övningshäfte 3: Polynom och polynomekvationer

Övningshäfte 3: Polynom och polynomekvationer LMA100 VT2005 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 3: Polynom och polynomekvationer Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med

Läs mer

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:

Läs mer

KTHs Matematiska Cirkel. Talteori. Andreas Enblom Alan Sola

KTHs Matematiska Cirkel. Talteori. Andreas Enblom Alan Sola KTHs Matematiska Cirkel Talteori Andreas Enblom Alan Sola Institutionen för matematik, 2008 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Innehåll 0 Mängdlära 1 0.1 Mängder...............................

Läs mer

1. (a) Lös ekvationen (2p) ln(x) ln(x 3 ) = ln(x 6 ). (b) Lös olikheten. x 3 + x 2 + x 1 x 1

1. (a) Lös ekvationen (2p) ln(x) ln(x 3 ) = ln(x 6 ). (b) Lös olikheten. x 3 + x 2 + x 1 x 1 Högskolan i Halmstad Tentamensskrivning 6 hp ITE/MPE-lab MA2047 Algebra och diskret matematik Mikael Hindgren Onsdagen den 26 oktober 2016 035-167220 Skrivtid: 9.00-13.00 Inga hjälpmedel. Fyll i omslaget

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll

Läs mer

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 28 oktober 2001 1 Heltalen Det första kapitlet handlar om heltalen och deras aritmetik, dvs deras egenskaper som

Läs mer

1 De fyra fundamentala underrummen till en matris

1 De fyra fundamentala underrummen till en matris Krister Svanberg, mars 2012 1 De fyra fundamentala underrummen till en matris 1.1 Definition av underrum En given delmängd M av IR n säges vara ett underrum i IR n om följande gäller: För varje v 1 M,

Läs mer

TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning

TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning Johan Thim 23 april 2018 1 Differentialoperatorer För att underlätta notation och visa på underliggande struktur introducerar vi begreppet

Läs mer

.I Minkowskis gitterpunktssats

.I Minkowskis gitterpunktssats 1.I Minkowskis gitterpunktssats Minkowskis sats klarar av en mängd problem inom den algebraiska talteorin och teorin för diofantiska ekvationer. en kan ses som en kontinuerlig, eller geometrisk, variant,

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

Sats 2.1 (Kinesiska restsatsen) Låt n och m vara relativt prima heltal samt a och b två godtyckliga heltal. Då har ekvationssystemet

Sats 2.1 (Kinesiska restsatsen) Låt n och m vara relativt prima heltal samt a och b två godtyckliga heltal. Då har ekvationssystemet Avsnitt 2 Tillägg om kongruensräkning Detta avsnitt handlar om två klassiska satser som används för att förenkla kongruensräkning: Kinesiska restsatsen och Fermats lilla sats. Den första satsen används

Läs mer

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av

Läs mer

Lösningar till Algebra och kombinatorik

Lösningar till Algebra och kombinatorik Lösningar till Algebra och kombinatorik 090520 1. Av a 0 = 0, a 1 = 1 och rekursionsformeln får vi successivt att a 2 = 1 4 a 1 a 0 + 3 2 = 1 4 1 0 + 32 = 4, a 3 = 1 4 a 2 a 1 + 3 2 = 1 4 4 1 + 32 = 9,

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Några satser ur talteorin

Några satser ur talteorin Några satser ur talteorin LCB 997/2000 Fermats, Eulers och Wilsons satser Vi skall studera några klassiska satser i talteori, vilka är av betydelse bland annat i kodningsteknik och kryptoteknik. De kan

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 1.1Introduktion Introduktion Avsnitt 1 handlar till att börja med om hantering av bråkstreck. Samtidigt ges exempel och övningar

Läs mer

Matematisk kommunikation för Π Problemsamling

Matematisk kommunikation för Π Problemsamling Problemsamling Niels Chr. Overgaard & Johan Fredriksson 3 september 205 Problem 0. Skriv följande summor mha summationstecken. ( Dvs på formen q k=p a k där k är en räknare som löper med heltalssteg mellan

Läs mer

Linjär algebra I, vt 12 Vecko PM läsvecka 4

Linjär algebra I, vt 12 Vecko PM läsvecka 4 Linjär algebra I, vt 12 Vecko PM läsvecka 4 Lay: 2.8-2.9, 4.1-4.6 Underrum i R n, dimension och rang. Vektorrum. Innehållet i avsnitten 2.8 och 2.9 täcks av kapitel 4, men presenterar begreppen på ett

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

4. Bestäm alla trippler n 2, n, n + 2 av heltal som samtliga är primtal. 5. Skriv upp additions- och multiplikationstabellen för räkning modulo 4.

4. Bestäm alla trippler n 2, n, n + 2 av heltal som samtliga är primtal. 5. Skriv upp additions- och multiplikationstabellen för räkning modulo 4. Uppvärmningsproblem. Hur kan man se på ett heltal om det är delbart med, 2, 3, 4, 5, 6, 7, 8, 9, 0 respektive? Varför? 2. (a) Tänk på ett tresiffrigt tal abc, a 0. Bilda abcabc genom att skriva talet två

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet

Läs mer

NÅGOT OM KRYPTERING. Kapitel 1

NÅGOT OM KRYPTERING. Kapitel 1 Kapitel 1 NÅGOT OM KRYPTERING Behovet av att skydda information har funnits mycket länge, men först i samband med utvecklingen av datatekniken har det blivit ett allmänt problem för alla moderna samhällen.

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer I Innehåll

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2 Kapitel 4 Bisektionsalgoritmen Vi ska konstruera lösningar till algebraiska ekvationer av formen f(x) = 0 med hjälp av bisektionsalgoritmen (intervallhalveringsmetoden). På samma gång ska vi se hur man

Läs mer

Avsnitt 2, introduktion.

Avsnitt 2, introduktion. KTHs Sommarmatematik Introduktion 2:1 2:1 Bråkstreck Avsnitt 2, introduktion. Gemensamt bråkstreck. Två fall: Ingen gemensam faktor i nämnarna (Ex: ) Se Exempel 1 Gemensam faktor i nämnarna (Ex: ) Se Exempel

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF63 och SF63, den 25 maj 2 kl 8.-3.. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

Lösningar till utvalda uppgifter i kapitel 1

Lösningar till utvalda uppgifter i kapitel 1 Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln

Läs mer

Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då

Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34 Planet Ett plan i rummet är bestämt då två icke parallella riktningar, v 1 och v 2, och en punkt P 1 i planet är givna.

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8)

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8) De naturliga talen. Vi skall till att börja med stanna kvar i världen av naturliga tal, N 3. Vi har redan använt (i beviset av Euklides primtalssats) att de naturliga talen är uppbyggda (genom multiplikation)

Läs mer

Linjära differentialekvationer av andra ordningen

Linjära differentialekvationer av andra ordningen Linjära differentialekvationer av andra ordningen Matematik Breddning 3.2 Definition: En differentialekvation av typen y (x) + a(x)y (x) + b(x)y(x) = h(x) (1) där a(x), b(x) och h(x) är givna kontinuerliga

Läs mer

Lösningar för tenta i TMV200 Diskret matematik kl. 14:00 18: Svar: Ja, det gäller, vilket kan visas på flera sätt (se nedan).

Lösningar för tenta i TMV200 Diskret matematik kl. 14:00 18: Svar: Ja, det gäller, vilket kan visas på flera sätt (se nedan). Lösningar för tenta i TMV200 Diskret matematik 208-0-2 kl. 4:00 8:00. Ja, det gäller, vilket kan visas på flera sätt (se nedan). Alternativ (induktionsbevis): Vi inför predikatet P (n) : 2 + 2 3 + + n(n

Läs mer

Finaltävling i Uppsala den 24 november 2018

Finaltävling i Uppsala den 24 november 2018 SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Finaltävling i Uppsala den 4 november 018 1. Låt ABCD vara en fyrhörning utan parallella sidor, som är inskriven i en cirkel. Låt P och Q vara skärningspunkterna

Läs mer

Diskret matematik: Övningstentamen 4

Diskret matematik: Övningstentamen 4 Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF64 Algebra och geometri Sjätte föreläsningen Mats Boij Institutionen för matematik KTH 5 januari, 07 Repetition Ett delrum i R n är slutet under addition x + y V om x, y V multiplikation med skalär a

Läs mer

Ekvationer och system av ekvationer

Ekvationer och system av ekvationer Modul: Undervisa matematik utifrån problemlösning Del 4. Strategier Ekvationer och system av ekvationer Paul Vaderlind, Stockholms universitet Ekvationslösning är ett av de viktiga målen i skolmatematiken.

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera

Läs mer

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Moment 5.1-5.5 Viktiga exempel 5.1-5.10 Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Kvadratiska linjära ekvationssystem Vi startar vår utredning med det vi känner bäst till, ekvationssystem

Läs mer

Kontinuitet och gränsvärden

Kontinuitet och gränsvärden Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:

Läs mer

RSA-kryptering. Torbjörn Tambour

RSA-kryptering. Torbjörn Tambour RSA-rytering Torbjörn Tambour RSA-metoden för rytering har den seciella och betydelsefulla egensaen att metoden för rytering är offentlig, medan metoden för derytering är hemlig. Detta an om man funderar

Läs mer

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 1-4.

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 1-4. Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna -. Föreläsningarna, 6/9 /9 : I sammanfattningen kommer en del av det vi tagit

Läs mer

Algebra I, 1MA004. Lektionsplanering

Algebra I, 1MA004. Lektionsplanering UPPSALA UNIVERSITET Matematiska Institutionen Dan Strängberg HT2016 Fristående, IT, KandDv, KandMa, Lärare 2016-11-02 Algebra I, 1MA004 Lektionsplanering Här anges rekommenderade uppgifter ur boken till

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Om a 2 är ett jämnt tal, så är också a ett jämt tal sant. = 4n 2 + 4n + 1

Om a 2 är ett jämnt tal, så är också a ett jämt tal sant. = 4n 2 + 4n + 1 1127 Påstående betecknas med P Motsatsen till påsteåendet betecknas P = icke P = inte P = ej P P n är ett udda tal P n är ett jämnt tal Kommentar: n kan enbart vara udda eller jämnt, P a + 2b 15 P a +

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 6, 977 Årgång 6, 977 Första häftet 36. Lös ekvationssystemet { x y = 8 y log x + x log y = 2 (Svar: x = y = 8) 36. lös ekvationen 6sin x 6sin2x + 5sin3x =. (Svar: x = n 8, 84,26 + n 36,

Läs mer

M0043M Integralkalkyl och Linjär Algebra, H14, Linjär Algebra, Föreläsning 11

M0043M Integralkalkyl och Linjär Algebra, H14, Linjär Algebra, Föreläsning 11 M0043M Integralkalkyl och Linjär Algebra, H14, Linjär Algebra, Föreläsning 11 Staffan Lundberg / Ove Edlund Luleå Tekniska Universitet Staffan Lundberg / Ove Edlund M0043M H14 1/ 41 Linjär Algebra, Föreläsning

Läs mer

Resträkning och ekvationer

Resträkning och ekvationer 64 Resträkning och ekvationer Torsten Ekedahl Stockholms Universitet Beskrivning av uppgiften. Specialarbetet består i att sätta sig in i hur man räknar med rester vid division med primtal, hur man löser

Läs mer

Matematisk kommunikation för Π Problemsamling

Matematisk kommunikation för Π Problemsamling Problemsamling Charlotte Soneson & Niels Chr. Overgaard september 200 Problem. Betrakta formeln n k = k= n(n + ). 2 Troliggör den först genom att exempelvis i summan +2+3+4+5+6 para ihop termer två och

Läs mer

= ( 1) ( 1) = 4 0.

= ( 1) ( 1) = 4 0. MATA15 Algebra 1: delprov 2, 6 hp Fredagen den 17:e maj 2013 Skrivtid: 800 1300 Matematikcentrum Matematik NF Lösningsförslag 1 Visa att vektorerna u 1 = (1, 0, 1), u 2 = (0, 2, 1) och u 3 = (2, 2, 1)

Läs mer

Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1

Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1 Kattis Lektion 1 I kursen används onlinedomaren Kattis (från http://kattis.com) för att automatiskt rätta programmeringsproblem. För att få ett konto på Kattis anmäler du dig på Programmeringsolympiadens

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

8 Minsta kvadratmetoden

8 Minsta kvadratmetoden Nr, april -, Amelia Minsta kvadratmetoden. Ekvationssystem med en lösning, -fallet Ett linjärt ekvationssystem, som ½ +7y = y = har en entydig lösning om koefficientdeterminanten, här 7, är skild från

Läs mer

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002 Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002 1. Bestäm det minsta positiva heltal n sådant att 31n + 13 är delbart

Läs mer

Föreläsning 13 Linjär Algebra och Geometri I

Föreläsning 13 Linjär Algebra och Geometri I Föreläsning 13 Linjär Algebra och Geometri I Se slide 1: det är i rymden oftast lättast att jobba med parametrar för linjer och ekvationer för plan. Exempel: Låt l : (x, y, z) = (1 t, 3 + t, 4t), t R och

Läs mer

Metriska rum, R och p-adiska tal

Metriska rum, R och p-adiska tal Metriska rum, R och p-adiska tal Tony Johansson 1MA239: Specialkurs i Matematik II Uppsala Universitet VT 2018 När vi säger avståndet mellan punkt X och punkt Y där X och Y är punkter i planet (säg) är

Läs mer

Mer om faktorisering

Mer om faktorisering Matematik, KTH Bengt Ek november 2013 Material till kursen SF1662, Diskret matematik för CL1: Mer om faktorisering Inledning. Är alla ringar som Z? De första matematiska objekt vi studerade i den här kursen

Läs mer

SF1661 Perspektiv på matematik Tentamen 20 oktober 2011 kl Svar och lösningsförslag

SF1661 Perspektiv på matematik Tentamen 20 oktober 2011 kl Svar och lösningsförslag Hans Thunberg KTH Matematik SF66 Perspektiv på matematik Tentamen 0 oktober 0 kl 08.00.00 Svar och lösningsförslag () Bestäm ekvationen för den cirkel som passerar genom punkten (, 4) och har sin medelpunkt

Läs mer

Låt n vara ett heltal som är 2 eller större. Om a och b är två heltal så säger vi att. a b (mod n)

Låt n vara ett heltal som är 2 eller större. Om a och b är två heltal så säger vi att. a b (mod n) Uppsala Universitet Matematiska institutionen Isac Hedén Algebra I, 5 hp Sammanfattning av föreläsning 9. Kongruenser Låt n vara ett heltal som är 2 eller större. Om a och b är två heltal så säger vi att

Läs mer

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604 för D, den 5 juni 2010 kl

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604 för D, den 5 juni 2010 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF164 för D, den 5 juni 21 kl 9.- 14.. Examinator: Olof Heden. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd.

Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd. Tentamen i Linjär algebra, HF94 Datum: 4 okt 8 Skrivtid: 4:-8: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C,

Läs mer

Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl

Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL och Media, SF60 och 5B8, onsdagen den 7 augusti 0, kl 4.00-9.00. Examinator: Olof Heden Hjälpmedel: Inga

Läs mer

MATEMATIKENS SPRÅK. Avsnitt 1

MATEMATIKENS SPRÅK. Avsnitt 1 Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

Lösningar till Matematisk analys

Lösningar till Matematisk analys Lösningar till Matematisk analys 685. Sätt fx x. Rotationskroppens volym är π fx dx π ] x 6 dx π 7 x7 π 7. Rotationskroppens area är summan av arean av kroppens mantelyta och arean av kroppens cirkulära

Läs mer

FULLSTäNDIGHETSAXIOMET, SATSEN OM MELLANLIGGANDE VäRDE OCH SATSEN OM STöRSTA OCH MINSTA VäRDE

FULLSTäNDIGHETSAXIOMET, SATSEN OM MELLANLIGGANDE VäRDE OCH SATSEN OM STöRSTA OCH MINSTA VäRDE FULLSTäNDIGHETSAXIOMET, SATSEN OM MELLANLIGGANDE VäRDE OCH SATSEN OM STöRSTA OCH MINSTA VäRDE JAN-FREDRIK OLSEN I detta dokumentet ämnar vi bevisa följande två satser: Sats 1 (Satsen om mellanliggande

Läs mer

Föreläsning 3: Ekvationer och olikheter

Föreläsning 3: Ekvationer och olikheter Föreläsning 3: Ekvationer och olikheter En ekvation är en likhet som innehåller en flera obekanta storheter. Exempel: x = 9, x är okänd. t + t + 1 = 7, t är okänd. Vi säger att ett värde på den obekanta

Läs mer