PHYS-A5130 Elektromagnetism period III våren Vecka 2

Relevanta dokument
Vecka 2 ELEKTRISK POTENTIAL OCH KAPACITANS (HRW 24-25) Inlärningsmål

Tentamen ellära 92FY21 och 27

Tentamen i El- och vågrörelselära,

Tentamen Modellering och simulering inom fältteori, 21 oktober, 2006

1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( )

FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (1:a omtentan), tisdag 17 juni 2014, kl 9:00-14:00

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)

FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (2:a omtentan), fredag 30 augusti 2013, kl 9:00-14:00

FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00

FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (1:a omtentan), tisdag 16 juni 2015, kl 9:00-14:00

1. q = -Q 2. q = 0 3. q = +Q 4. 0 < q < +Q

Tentamen i El- och vågrörelselära,

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Vecka 4 INDUKTION OCH INDUKTANS (HRW 30-31) EM-OSCILLATIONER OCH VÄXELSTRÖMSKRETSAR

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (EITF85)

Strålningsfält och fotoner. Våren 2013

Tentamen i El- och vågrörelselära,

Strålningsfält och fotoner. Våren 2016

Tentamen i Fysik för M, TFYA72

Strålningsfält och fotoner. Kapitel 23: Faradays lag

4. Elektromagnetisk svängningskrets

Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig)

Prov (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)

Dugga i elektromagnetism, sommarkurs (TFYA61)

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Föreläsning 8. Ohms lag (Kap. 7.1) 7.1 i Griffiths

Bra tabell i ert formelblad

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007

Svaren på förståelsedelen skall ges på tesen som skall lämnas in.

Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514)

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar

r 2 C Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade.

Repetition kapitel 21

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:

Svaren på förståelsedelen skall ges direkt på tesen som ska lämnas in

Vågrörelselära och optik

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T.

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15

93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar

3.4 RLC kretsen Impedans, Z

Elektriska och magnetiska fält Elektromagnetiska vågor

Kaströrelse. 3,3 m. 1,1 m

Rep. Kap. 27 som behandlade kraften på en laddningar från ett B-fält.

Övningar. Nanovetenskapliga tankeverktyg.

Tentamen Elektromagnetism

Lösningar till seminarieuppgifter

Chalmers Tekniska Högskola Tillämpad Fysik Igor Zoric

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Du behöver inte räkna ut några siffervärden, svara med storheter som V 0 etc.

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Lösningsförslag Inlämningsuppgift 3 Kapacitans, ström, resistans

ETE115 Ellära och elektronik, tentamen oktober 2006

Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r:

Tentamen: Baskurs B i Fysik, del1, 4p kl

Oscillerande dipol i ett inhomogent magnetfält

OBS!

Vad betyder det att? E-fältet riktat åt det håll V minskar snabbast

Svar och anvisningar

The nature and propagation of light

Tentamen för TFYA87 Fysik och Mekanik

Ljusets polarisation

Vi börjar med en vanlig ledare av koppar.

Svaren på förståelsedelen skall ges direkt på tesen som ska lämnas in

Förståelsefrågorna besvaras genom att markera en av rutorna efter varje påstående till höger. En och endast en ruta på varje rad skall markeras.

Föreläsning 5, clickers

3. Potentialenergi i elfält och elektrisk potential

Tentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 24 augusti, 2009, kl

Final i Wallenbergs Fysikpris

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

Svaren på förståelsedelen skall ges direkt på tesen som ska lämnas in

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända!

OBS!

Strålningsfält och fotoner. Kapitel 23: Faradays lag

1 Grundläggande Ellära

Problemsamling i Elektricitetslära

Tentamen för TFYA87 Fysik och Mekanik

Hur funkar 3D bio? Laborationsrapporter. Räknestuga. Förra veckan kapitel 16 och 17 Böjning och interferens

Svaren på förståelsedelen skall ges direkt på tesen som ska lämnas in

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15

Spolen och Kondensatorn motverkar förändringar

Försättsblad till skriftlig tentamen vid Linköpings Universitet

ETE115 Ellära och elektronik, tentamen april 2006

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):

9. Magnetisk energi Magnetisk energi för en isolerad krets

Nordic-Baltic Physics Olympiad 2018

Mer om EM vågors polarisation. Vad händer om man lägger ihop två vågor med horisontell och vertikal polarisation?

4. Allmänt Elektromagnetiska vågor

VIKTIGA TILLÄMPNINGAR AV GRUNDLÄGGANDE BEGREPP

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

Transkript:

PHYS-A5130 Elektromagnetism period III våren 2017 Vecka 2 1. En kub med sidlängden L = 3,00 m placeras med ett hörn i origo (se figuren). Elfältet ges av E = ( 5,00 N/Cm)xî + (3,00 N/Cm)zˆk. (a) Bestäm det elektriska flödet genom varje sida i kuben. (b) Finns det laddning inom kuben? Ifall ja, hur mycket? Ifall nej, varför ej? 2. Den kilformade slutna ytan i figuren är i ett område med ett homogent elfält E = (600 N/C)î. (a) Bestäm det elektriska flödet genom varje enskild yta, (b) Bestäm nettoflödet genom hela den slutna ytan. Finns det någon laddning inom den slutna ytan? Lätt 3. En laddad sfär (radie R 1 ) har en total laddning +4q homogent fördelad över dess volym. (a) Härled uttrycket för elfältet i och kring sfären. (b) Sfären omges av ett ledande sfäriskt skal med inre radien R 2 och yttre radien R 3 (R 1 < R 2 < R 3 ). Skalet har en total laddning 2q. Hur fördelas denna laddning i det ledande skalet? Motivera.

4. En oändligt lång rak cylinder (radie R) av ett isolerande material har en homogen laddningsdensitet λ, ([λ]=c/m). Bestäm det elektriska fältet för alla avstånd r från cylinderns symmetriaxel. 5. En sfär av ett isolerande material med radien R har ett sfäriskt hål (inom sig) med radien a centrerad på ett avstånd b från sfärens mittpunkt (a < b < R). Den fasta delen av sfären (dvs. inte hålet) har en homogen laddningsdensitet ρ. Bestäm styrkan och riktingen för elfältet i hålet och visa att E är homogent över hela hålet. Svår

Vecka 3 1. I nedastående kopplingschema är C 1 = C 5 = 8,6 µf och C 2 = C 3 = C 4 = 4,3 µf. Potentialskillnaden V ab = 220 V. (a) Bestäm den ekvivalenta kapacitansen för systemet av kondensatorer mellan a och b. (b) Bestäm laddningen för kondensator C 4 samt potentialskillnaden över denna kondensator. Lätt 2. Mellan kondensatorskivorna i en skivkondensator finns ett okänt isolerande material, vars relativa permittivitet är ε r. Skivornas area är A = 10,0 cm 2 och avståndet mellan dem är d 1 = 1,00 mm. En laddning Q 1 tillförs kondensatorn, varefter brytaren S öppnas. Spänningsmätaren ger då utslaget V 1. Efter detta avlägsnas det isolerande materialet. (a) Hur förändras kondensatorns kapacitans och laddning, samt spänningen mellan skivorna då det isolerande materialet avlägsnas? Motivera. (b) Avståndet mellan skivorna ändras så att spänningsmätaren ger samma utslag V 1 som med det isolerande materialet mellan skivorna. Avståndet mellan skivorna mäts då till d 2 = 0,46 mm. Bestäm den relativa permittiviteten ε r för det isolerande materialet. Lätt 3. En ledande sfär med radien R 1 ges en laddning Q. Sfären omges av ett sfäriskt skal av ett oladdat dielektriskt material med inre radien R 1, yttre radien R 2 och med den dielektriska konstanten κ. (a) Bestäm elfältet för alla avstånd r från sfärens mittpunkt. (b) Bestäm den ledande sfärens potential i förhållande till V = 0 oändligt långt borta från sfären. (c) Bestäm den elektrostatiska potentialenergin för systemet.

4. I föreläsningstransparangerna visas att energidensiteten i elfältet mellan kondensatorskivorna i en skivkondensator är proportionellt mot elfältets kvadrat: u = 1 2 ε 0E 2. Visa att detta även gäller för en cylindrisk kondensator. Svår 5. Visa att den elektriska potentialen i elfältet från en dipol är V = p ˆr 4πε 0 r 2 då avståndet till dipolen är mycket större än avståndet a mellan dipolens laddningar. ˆr är en enhetsvektor som pekar från dipolens mittpunkt mot en punkt P där potentialen bestäms.

Vecka 4 1. I en stel cirkulär strömslinga med radien R och massan M går en ström I. Slingan är placerad på ett horisontellt bord. Strömslingan påverkas av ett horisontellt magnetfält B. Vad är minimivärdet på detta magnetfält som krävs för att lyfta en ända på strömslingan från bordsytan? 2. Visa med hjälp av att applicera Amperes lag att ett magnetfält inte abrupt kan falla till noll vid kanten av området mellan två magneter, dvs. randeffekter sker alltid (fältlinjerna böjs). Svår N S 3. Bestäm magnetfältet i intervallet r [0, ] för koaxialkabeln i figuren.

4. En metallstav roterar kring sin ena ända i ett homogent magnetfält, som är riktat vinkelrätt mot rotationsplanet. Magnetfältets magnetiska flödestäthet är 0,45 T. Stavens längd är 41 cm och dess vinkelhastighet är 31 rad/s. (a) Redogör för vilken av metallstavens ändor som är positivt laddad. (b) Bestäm det största värdet för elfältet som uppstår i metallstaven. Lätt 5. Figuren visar tvärsnittet av en lång cylindrisk ledare med radien a = 4,0 cm, som har ett cylindriskt hål parallellt med sin centralaxel med radien b = 1,50 cm. Avståndet mellan cylinderns och hålets centralaxlar är d = 2,00 cm. Strömmen i = 5,25 A är homogent distribuerad över figurens gråa område. (a) Bestäm storleken på den magnetiska flödestätheten i hålets mittpunkt. (b) Överenstämmer ditt resultat med specialfallen b = 0 och d = 0? Svår

Vecka 5 1. Betrakta nedansta ende kopplingar (i) och (ii). (a) Hur stor a r potentialskillnaden mellan punkterna a och b i kopplingarna da brytaren S a r o ppen? (b) I vilken potential a r punkt b i fo rha llande till jord efter att brytaren S slutits och ja mvikt uppna tts? (c) Hur mycket a ndrar laddningen pa de ba da kondensatorerna efter att brytaren S slutits? La tt (i) (ii) 2. En cyklotronmagnet besta r av tva cirkula ra polytor med radien R=50 cm. Na r magneten sa tts pa o kar magnetfa ltet linea rt under 2 s a nda tills det na r toppva rdet 2 T. (a) Ha rled ett uttryck fo r elfa ltet mellan polytorna. Ge svaret som funktion av B t och r. (b) Bera kna styrkan i elfa ltet da r = 40 cm. (c) Upprepa (a)-fallet fo r r > R. Medelsva r B R 3. Betrakta nedansta ende krets. Brytaren S sluts vid tidpunkten t = 0 och en stro m i1 bo rjar ga i den induktiva grenen av kretsen och en stro m i2 i den kapacitiva grenen. Kondensatorns laddning innan brytaren sluts a r noll och laddningen vid tidpunkten t a r q2. (a) Anva nd dig av Kirchhoffs lagar fo r att ha rleda uttryck fo r i1, i2 och q2. Ge svaret som funktion av E, L, C, R1, R2 och t. (b) La t R1 = 25 Ω, R2 = 5000 Ω, C = 20 µf, E = 48 V och L = 8,0 H. Hur stor a r stro mmen genom den induktiva grenen och den kapacitiva grenen o gonblicket efter att brytaren slutits? Sva r

4. En strömslinga formad som en rätvinklig triangel rör sig med hastigheten 4,0 m/s, igenom ett homogent magnetfält riktat vinkelrätt mot hastigheten och in i pappret, enligt figuren. Magnetfältets flödestäthet är B = 15 mt, längden på triangelns kortaste sida är a = 12 cm och magnetfältets bredd är b = 50 cm. a) I vilken riktning går den inducerade strömmen? Motivera. b) Rita den inducerade källspänningen som funktion av tiden. c) Bestäm det största värdet på källspänningen. 5. En laddad kondensator, med kapacitansen C, får urladda sig genom en spole, vars resistans är R 0 och induktans L = 42 mh. Härvid minskar den oscillerande laddningen i kondensatorn till hälften av sitt utgångsvärde på tiden 0,8 ms. Därpå kopplas ett motstånd med resistansen 3R 0 i serie med spolen och kondensatorn, varvid laddningens svängning nätt och jämnt upphör. Bestäm kondensatorns kapacitans.

Vecka 6 1. En elektromagnetisk våg har magnetfältet B(x, t) = (7,32 10 6 T) ĵ sin [ (1,28 10 4 rad/m)x ωt ] (a) I vilken riktning rör sig vågen? (b) Hur stor är vågens våglängd λ? (c) Skriv ner vågfunktionen för elfältet. (d) Bestäm vågens Poynting vektor och intensitet. Lätt 2. Ljus som rör sig vågrätt består av en opolariserad komponent I 0 och av en polariserad komponent I P. Polarisationsplanet för den polariserade komponenten är orienterad i en vinkel θ i förhållande till vertikalen. I tabellen nedan ges intensiteten mätt genom en polarisator, vars polarisationsplan är i vinkeln φ i förhållande till vertikalen. (a) Bestäm vinkeln θ, polarisationsplanet för den polariserade komponenten. (b) Bestäm värden för I 0 och I P. φ [ ] I total [W/m 2 ] φ [ ] I total [W/m 2 ] 0 18,4 100 8,6 10 21,4 110 6,3 20 23,7 120 5,2 30 24,8 130 5,2 40 24,8 140 6,3 50 23,7 150 8,6 60 21,4 160 11,6 70 18,4 170 15,0 80 15,0 180 18,4 90 11,6 3. Tre polarisatorer är placerade i rad så att polarisationsaxeln för den andra polarisatorn är i en vinkel θ med den första polarisatorns axel och den tredje polarisatorns axel är i en vinkel 90 med den första polarisatorns axel. Opolariserat ljus (intensitet I 0 ) träffar denna rad av polarisatorer. (a) Härled uttrycket för ljusets intensitet efter den tredje polarisatorn som funktion av I 0 och θ. (b) För vilket värde på θ antar denna intensitet sitt maximi värde?

4. En ljusstråle går igenom ett glasblock med brytningsindexet n och tjockleken t. Strålens infallsvinkel är θ a och brytningsvinkel är θ b. Visa att strålens parallellförskjutning d är ( ) cos θ a d = t 1 sin θ a n 2 sin 2 θ a 5. Härled brytningslagen (Snells lag). Vägledning: Utgå antingen från Fermats princip: Ljuset följer den väg som innebär den kortaste färdtiden, eller från principen att Tidsskillnaden mellan korresponderande punkter på två olika vågfronter är lika för alla par av korresponderande punkter. Svår