Vad betyder det att? E-fältet riktat åt det håll V minskar snabbast
|
|
- Georg Lundström
- för 8 år sedan
- Visningar:
Transkript
1 , V Vad betyder det att V? -fältet riktat åt det håll V minskar snabbast dv Om -fältet endast beror av x blir det enkelt: xˆ dx Om V är konstant i ett område är där. konst. V -x x Om är homogent så ges V för en sträcka d parallellt med -fältet av V - d. V är negativ om man går i fältets riktning. Om man rör sig vinkelrätt mot fältet är V. Vi ser att även [V/m] är en enhet för. Allmänt gäller: V V a V b b a dl
2 Viktiga samband! 1 q lektriskt fält från punktladdning : 4π r rˆ lektrisk potential från punktladdning : V 1 4π q r Gauss sats : Φ da A Q innesluten Kraft på laddning : F q Potentiell energiändring för laddning : U q V V för rörelse längs homogent fät : V d
3 Kapitel: 4 Kapacitans och dielektriska material Definition av kapacitans Plattkondensatorn Kapacitansberäkningar Serie och parallellkopplade kondensatorer nergilagring i kondensatorer Dielektriska material, polarisation Dielektricitetskonstantens inverkan
4 Kapacitans Två ledande kroppar anslutna till en spänningskälla V erhåller laddningen + respektive Q. V Systemet karaktäriseras av sin Kapacitans C som ges av: C Q C C C F (Farad) V V J/C J Kapacitansen beror enbart av: Systemets geometri genskaper hos det omgivande mediet Fig. 4.1 OBS! Här betyder C och C olika saker! C är kapacitans och C är enheten Coulomb.
5 Plattkondensator Fig. 4. Fältstyrka mellan plattorna (Kap. ) : Potentialskillnad : Kapacitans: V C ab Q V d Q / A Qd A A d Q A
6 lektronikkomponenter som har given kapacitans är mycket vanliga och kallas kondensatorer på svenska (capacitors på engelska) Figuren visar s.k. elektrolytkondensatorer med kapacitans i mikrofaradområdet. Fig. 4.4
7 x. 4.3, sfärisk kondensator
8 x. 4.4, cylindrisk kondensator Fig. 4.6
9 Seriekopplade kondensatorer Fig. 4.8
10 Parallellkopplade kondensatorer Fig. 4.9
11 x. 4.6, nätverk med kondensatorer. Finn den ekvivalenta kapacitansen. Fig. 4.1
12 nergilagring i kondensator I kap. 3 såg vi att laddningen Q som flyttades från potentialen V till potentialen V ändrade sin potentiella energi U QV. Betyder det att den energi som finns lagrad i en kondensator också ges av QV? NJ! Om vi delar upp laddningen i små paket dq, så är potentialen v över plattorna ej konstant under uppladdningsförloppet. dw W 1 Q 1 q Q W dw q dq C C C Dvs. potentiell energiu lagrad i kondensator : U Q C vdq 1 q dq C CV 1 QV Q (Dvs. hälften av uttrycket ovan)
13 Jämförelse kondensator och fjäder Båda systemen lagrar energi: U U fjäder kond. tt fjädersystem utjämnar mekaniska störningar, t.ex. i en bil n kondensator utjämnar elektriska störningar i olika kretsar 1 1 k 1 C x Q n fjäder och en massa utgör en oscillerande mekaniskt system n kondensator ingår i en elektrisk oscillatorkrets (kap. 3)
14 -fältets energitäthet För plattkondensatorn kan vi enkelt räkna ut energitätheten u hos det elektriska fältet, vars volym är volymen mellan plattorna, Ad. ( 1/ ) u nergitäthet CV J sort 3 Ad m A Använd C d och V d 1 u lektriska energitätheten i vakuum Kan visas att detta uttryck gäller för alla geometrier!
15 Kondensator med dielektrikum mellan plattorna(dielektrikum isolerande material) Om ett dielektrikum förs in mellan plattorna minskar spänningen, dvs, kapacitansen ökar. Q ftersom C V Vi definierar "dielektric K V C C V K V V constant"(obs engelska!) : Fig. 4.14
16 Dielektrikat mellan plattorna i en kondenstor fyller tre funktioner: 1.Isolerar dem från varandra trots liten separation.gör att högre spänning kan användas 3. Höjer kapacitansen Fig. 4.13
17 Varför påverkar ett dielektrikum kapacitansen? När en isolator utsätts för ett -fält kommer de negativa elektronerna och de positiva kärnorna att förskjutas lite relativt varandra, materialet polariseras. Detta ger upphov till ett motriktat fält, så att nettoeffekten blir att den ursprungliga fältstyrkan minskar. För vakuum är diel. constant K 1. För alla andra ämnen är K > 1. Fig. 4.19
18 Inducerad laddning och polarisation ) / ( Kalla den inducerade ytladdningen att dvs. även fältet minskar så 1 Med dielektrikum minskar potentialen en faktor K K i i i ( ) istället för dvs använd Def. av Permittivity 1 1 K K K K K K i i Problem! ng. K är dielectric constant, är permittivity Sv. K r är relativ dielektricitetskonstant, är dielektricitetskonstant Fig. 4.15
19
20 Gauss sats i dielektrikum Genom att använda istället för tar man hänsyn till att man har ett dielektrikum istället för vakuum och kan räkna som vanligt! Gauss sats lyder då: da A Q encl. free Fig. 4.
Vecka 2 ELEKTRISK POTENTIAL OCH KAPACITANS (HRW 24-25) Inlärningsmål
Vecka 2 ELEKTRISK POTENTIAL OCH KAPACITANS (HRW 24-25) Inlärningsmål Elektrisk potential Arbete och elektrisk potentialenergi Elektrisk potential Ekvipotentialytor Sambandet mellan elfält och elektrisk
1. q = -Q 2. q = 0 3. q = +Q 4. 0 < q < +Q
2.1 Gauss lag och elektrostatiska egenskaper hos ledare (HRW 23) Faradays ishinksexperiment Elfältet E = 0 inne i en elektrostatiskt laddad ledare => Laddningen koncentrerad på ledarens yta! Elfältets
Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken
Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika
r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).
1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas
Sensorer och elektronik. Grundläggande ellära
Sensorer och elektronik Grundläggande ellära Innehåll Grundläggande begrepp inom mekanik Elektriskt fält och elektrisk potential Dielektrika och kapacitans Ström och strömtäthet Ohms lag och resistans
Kapacitans, ström och resistans. Emma Björk
Kapacitans, ström och resistans Emma Björk Viktiga samband! 1 q Elektriskt fält från punktladdning : E 2 4πε 0 r rˆ Kraft på laddning : F QE Elektrisk potential från punktladdning : V Potentiell energiändring
Elektriska och magnetiska fält Elektromagnetiska vågor
1! 2! Elektriska och magnetiska fält Elektromagnetiska vågor Tommy Andersson! 3! Ämnens elektriska egenskaper härrör! från de atomer som bygger upp ämnet.! Atomerna i sin tur är uppbyggda av! en atomkärna,
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 23 2 8 Hjälpmedel: Physics Handbook, räknare. Ensfäriskkopparkulamedradie = 5mmharladdningenQ = 2.5 0 3 C. Beräkna det elektriska fältet som funktion av avståndet från
r 2 C Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).
1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas
Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig)
Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Elektrostatik 1. Ange Faradays lag i elektrostatiken. 2. Vad är kravet för att ett vektorfält F är konservativt? 3. En låda
Fysik TFYA68. Föreläsning 5/14
Fysik TFYA68 Föreläsning 5/14 1 tröm University Physics: Kapitel 25.1-3 (6) OB - Ej kretsar i denna kurs! EMK diskuteras senare i kursen 2 tröm Lämnar elektrostatiken (orörliga laddningar) trömmar av laddning
Rep. Kap. 27 som behandlade kraften på en laddningar från ett B-fält.
Rep. Kap. 7 som behandlade kraften på en laddningar från ett -fält. Kraft på laddning i rörelse Kraft på ström i ledare Gauss sats för -fältet Inte så användbar som den för E-fältet, eftersom flödet här
Lösningsförslag Inlämningsuppgift 3 Kapacitans, ström, resistans
Inst. för fysik och astronomi 2017-11-26 1 Lösningsförslag Inlämningsuppgift 3 Kapacitans, ström, resistans Elektromagnetism I, 5 hp, för ES och W (1FA514) höstterminen 2017 (3.1) En plattkondensator har
Tentamen ellära 92FY21 och 27
Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för
3. Potentialenergi i elfält och elektrisk potential
3. Potentialenergi i elfält och elektrisk potential 3.1 Potentiell energi i elfält Vi betraktar en positiv testladdning som förs i närheten av en annan laddning. I det första fallet är den andra laddningen
Repetition kapitel 21
Repetition kapitel 21 Coulombs lag. Grundbulten! Definition av elektriskt fält. Fält från punktladdning När fältet är bestämt erhålls kraften ur : F qe Definition av elektrisk dipol. Moment och energi
Fysik TFYA68. Föreläsning 2/14
Fysik TFYA68 Föreläsning 2/14 1 Elektrostatik University Physics: Kapitel 21 & 22 2 Elektrisk laddning Två typer av elektrisk laddning: positiv + och negativ Atom Atomkärnan: Proton (+1), neutron (0) elekton
Fysik TFYA68 (9FY321) Föreläsning 6/15
Fysik TFYA68 (9FY321) Föreläsning 6/15 1 ammanfattning: Elektrisk dipol Kan definiera ett elektriskt dipolmoment! ~p = q ~d dipolmoment [Cm] -q ~ d +q För små d och stora r: V = p ˆr 4 0 r 2 ~E = p (2
FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00
FK5019 - Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 Läs noggrant igenom hela tentan först Tentan består av 5 olika uppgifter med
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Fredagen 1/1 018, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 204 08 28. Beräkna den totala kraft på laddningen q = 7.5 nc i origo som orsakas av laddningarna q 2 = 6 nc i punkten x,y) = 5,0) cm och q 3 = 0 nc i x,y) = 3,4) cm.
FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (1:a omtentan), tisdag 16 juni 2015, kl 9:00-14:00
FK4010 - Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (1:a omtentan), tisdag 16 juni 2015, kl 9:00-14:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 19/4 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentamen i Elektromagnetisk fältteori för π (ETEF01 och F (ETE055 1 Tid och plats: 6 oktober, 016, kl. 14.00 19.00, lokal: Gasquesalen. Kursansvarig lärare: Anders Karlsson, tel. 40 89 och 07-5958.
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 10/1 017, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3
Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3 Tid och plats: 4 augusti 0, kl. 4.009.00, i Sparta C+D. Kursansvarig lärare: Christian Sohl, tel. 34 3. Tillåtna hjälpmedel: Formelsamling
Du behöver inte räkna ut några siffervärden, svara med storheter som V 0 etc.
(8) 27 augusti 2008 Institutionen för elektro- och informationsteknik Daniel Sjöerg ETE5 Ellära och elektronik, tentamen augusti 2008 Tillåtna hjälpmedel: formelsamling i kretsteori, ellära och elektronik.
Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)
Uppsala universitet Institutionen för fysik och astronomi Kod: Program: Tentamen i ELEKTROMAGNETISM I, 2016-03-19 för W2 och ES2 (1FA514) Kan även skrivas av studenter på andra program där 1FA514 ingår
Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken
Föreläsning 4 1 Potential Den andra av Maxwells ekvationer i elektrostatiken!" C E!dl = 0 eller # E = 0 innebär att E-fältet är konservativt. Det finns inga fältlinjer som bildar loopar. Alla fältlinjer
Tentamen Modellering och simulering inom fältteori, 21 oktober, 2006
Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, oktober, 006 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori Varje uppgift ger 0 poäng. Delbetyget
3. Lösning av elektrostatiska problem för dielektrika
[RMC] 3. Lösning av elektrostatiska problem för dielektrika Eftersom de minsta beståndsdelarna i ett dielektrikum är molekyler kan man definiera ett molekylärt dipolmoment Nu gäller p m = mol dqr (3.3)
3.7 Energiprincipen i elfältet
3.7 Energiprincipen i elfältet En laddning som flyttas från en punkt med lägre potential till en punkt med högre potential får även större potentialenergi. Formel (14) gav oss sambandet mellan ändring
isolerande skikt positiv laddning Q=CV negativ laddning -Q V V
1 Föreläsning 5 Hambley avsnitt 3.1 3.6 Kondensatorn och spolen [3.1 3.6] Kondensatorn och spolen är två mycket viktiga kretskomponenter. Kondensatorn kan lagra elektrisk energi och spolen magnetisk energi.
Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514)
Uppsala universitet Institutionen för fysik och astronomi Tentamen i ELEKTROMAGNETISM I, 05-06-04 för F och Q (FA54) Skrivtid: 5 tim Kan även skrivas av studenter på andra program där FA54 ingår Hjälpmedel:
Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (9FY321)
Tentamen för FYK (TFYA68), samt LKTROMAGNTM (9FY31) 013-10-1 kl. 14.00-19.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare -
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 05-0-05. Beräknastorlekochriktningpådetelektriskafältetipunkten(x,y) = (4,4)cm som orsakas av laddningarna q = Q i origo, q = Q i punkten (x,y) = (0,4) cm och q = Q i
3. Lösning av elektrostatiska problem för dielektrika
3. Lösning av elektrostatiska problem för dielektrika [RMC] Elektrodynamik, ht 2005, Krister Henriksson 3.1 3.1. Dielektrika Ett perfekt dielektrikum (isolator) är ett material som inte innehåller några
Lösningsförslag Inlämningsuppgift 1 elstatikens grunder
Inst. för fysik och astronomi 017-11-08 1 Lösningsförslag Inlämningsuppgift 1 elstatikens grunder Elektromagnetism I, 5 hp, för ES och W (1FA514) höstterminen 017 (1.1) Laddningen q 1 7,0 10 6 C placeras
Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor
Kapitel: 3 lektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge M-vågor genskaper hos M-vågor nergitransport i M-vågor Det elektromagnetiska spektrat Maxwell s ekvationer Kan
Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv
1 Elektrodynamik I det allmänna fallet finns det tidsberoende källor för fälten, dvs. laddningar i rörelse och tidsberoende strömmar. Fälten blir då i allmänhet tidsberoende. Vi ser då att de elektriska
Tentamen för FYSIK (TFYA68)
Tentamen för FYK (TFYA68) 014-08-18 kl. 14.00-19.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare - grafräknare är tillåtna (men
Hur elektromagnetiska vågor uppstår. Elektromagnetiska vågor (Kap. 32) Det elektromagnetiska spektrumet
Elektromagnetiska vågor (Kap. 32) Hur elektromagnetiska vågor uppstår Laddning i vila:symmetriskt radiellt fält, Konstant hastighet: osymmetriskt radiellt fält samt ett magnetfält. Konstant acceleration:
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Onsdagen 30/3 06, kl 08:00-:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Förståelsefrågorna besvaras genom att markera en av rutorna efter varje påstående till höger. En och endast en ruta på varje rad skall markeras.
Dugga i Elektromagnetisk fältteori för F2. EEF031 2006-11-25 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar
Tentamen för FYSIK (TFYA86)
Tentamen för FYK (TFYA86) 016-10-17 kl. 08.00-13.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare - grafräknare är tillåtna (men
ETE115 Ellära och elektronik, tentamen oktober 2006
(2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är
18. Sammanfattning Ursprung och form av fältena Elektrostatik Kraft, fält och potential 2 21, (18.3)
18. Sammanfattning 18.2. Ursprung och form av fältena Elektriska laddningar (monopoler) i vila ger upphov till elfält Elektriska laddningar i rörelse ger upphov till magnetfält Elektriska laddningar i
18. Sammanfattning Kraft, fält och potential. Krafter F är fysikaliskt mätbara storheter Elfält beror på kraften som F = Eq (18.
18. Sammanfattning Elektrodynamik, vt 2013, Kai Nordlund 18.1 18.1. Kraft, fält och potential Krafter F är fysikaliskt mätbara storheter Elfält beror på kraften som F = Eq (18.1) Potential φ är en matematisk
18. Sammanfattning. Elektrodynamik, vt 2013, Kai Nordlund 18.1
18. Sammanfattning Elektrodynamik, vt 2013, Kai Nordlund 18.1 18.1. Kraft, fält och potential Krafter F är fysikaliskt mätbara storheter Elfält beror på kraften som F = Eq (18.1) Potential φ är en matematisk
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen 1/8 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Tentamen för FYSIK (TFYA86)
Tentamen för FYK (TFYA86) 016-05-30 kl. 14.00-19.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare - grafräknare är tillåtna (men
1.1 Mätning av permittiviteten i vakuum med en skivkondensator
PERMITTIVITET Inledning Låt oss betrakta en skivkondensator som består av två parallella metalskivor. Då en laddad partikel förflyttas från den ena till den andra skivan får skivorna laddningen +Q och
Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar
Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Lektion 2: Automation. 5MT042: Automation - Lektion 2 p. 1
Lektion 2: Automation 5MT042: Automation - Lektion 2 p. 1 Lektion 2: Dagens innehåll Repetition av Ohms lag 5MT042: Automation - Lektion 2 p. 2 Lektion 2: Dagens innehåll Repetition av Ohms lag Repetition
Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:
Tentamen i : Vågor,plasmor och antenner Kurs: MTF108 Totala antalet uppgifter: 6 Datum: 2006-05-27 Examinator/Tfn: Hans Åkerstedt/491280/Åke Wisten070/5597072 Skrivtid: 9.00-15.00 Jourhavande lärare/tfn:
Elektromagnetism. Kapitel , 18.4 (fram till ex 18.8)
Elektromagnetism Kapitel 8.-8., 8.4 (fram till ex 8.8) Varför magnetism? Energiomvandling elektrisk magnetisk mekanisk Elektriska maskiner Reversibla processer (de flesta) Motor Generator Elektromagneter
Tentamen för FYSIK (TFYA86)
Tentamen för FYK (TFYA86) 015-08-17 kl. 8.00-13.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare - grafräknare är tillåtna (men
Poissons ekvation och potentialteori Mats Persson
1 ärmeledning Föreläsning 21/9 Poissons ekvation och potentialteori Mats Persson i vet att värme strömmar från varmare till kallare. Det innebär att vi har ett flöde av värmeenergi i en riktning som är
Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r:
Tenta 56 svar Uppgift a) På grund av sfäriskt symmetri ansätter vi att: E(r) = E(r)ˆr Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r: 2π π Q innesluten
FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (1:a omtentan), tisdag 17 juni 2014, kl 9:00-14:00
FK4010 - Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (1:a omtentan), tisdag 17 juni 2014, kl 9:00-14:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror
Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]
Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:
N = p E. F = (p )E(r)
1 Föreläsning 4 Motsvarar avsnitten 4.1 4.4. Kraftvekan på ipoler (Kap. 4.1.3) 1. Vrimoment N på elektrisk elementaripol p: N = p E p vill "ställa in sig" i E:s riktning. Exempel på elektriska ipoler:
Formelsamling till Elektromagnetisk
Formelsamling till Elektromagnetisk fältteori Lars-Göran Westerberg Avdelningen för strömningslära Luleå tekniska universitet 13 januari 2009 ammanfattning Den här formelsamlingen utgör tillsammans med
Bra tabell i ert formelblad
Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare
Vi ska diskutera polarisation i ett dielektriskt material samt kapacitans och plattkondensatorn med ett dielektrikum.
1 Vi ska iskutera polarisation i ett ielektriskt material samt kapacitans och plattkonensatorn me ett ielektrikum. A. Polarisation i ett ielektriskt material För ett material som innehåller ett stort antal
Föreläsning 8. Ohms lag (Kap. 7.1) 7.1 i Griffiths
1 Föreläsning 8 7.1 i Griffiths Ohms lag (Kap. 7.1) i är bekanta med Ohms lag i kretsteori som = RI. En mer generell framställning är vårt mål här. Sambandet mellan strömtätheten J och den elektriska fältstyrkan
3. Lösning av elektrostatiska problem för dielektrika
3. Lösning av elektrostatiska problem för dielektrika [RMC] Elektrodynamik, vt 2013, Kai Nordlund 3.1 3.1. Dielektrika Ett perfekt dielektrikum (isolator) är ett material som inte innehåller några fria
3. Lösning av elektrostatiska problem för dielektrika
3. Lösning av elektrostatiska problem för dielektrika [RMC] Elektrodynamik, vt 2013, Kai Nordlund 3.1 3.1. Dielektrika Ett perfekt dielektrikum (isolator) är ett material som inte innehåller några fria
9. Magnetisk energi Magnetisk energi för en isolerad krets
9. Magnetisk energi [RMC] Elektrodynamik, ht 005, Krister Henriksson 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets
Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T.
1. En elektron rör sig med v = 100 000 m/s i ett magnetfält. Den påverkas av en kraft F = 5 10 15 N vinkelrätt mot rörelseriktningen. Rita figur och beräkna den magnetiska flödestätheten. Förslag: En laddad
ETEF15 Krets- och mätteknik, fk Fältteori och EMC föreläsning 1
ETEF15 Krets- och mätteknik, fk Fältteori och EMC föreläsning 1 Daniel Sjöberg daniel.sjoberg@eit.lth.se Institutionen for Elektro- och informationsteknik Lunds universitet Oktober 2016 Outline 1 Introduktion
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen /8 016, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
9. Magnetisk energi Magnetisk energi för en isolerad krets
9. Magnetisk energi [RM] Elektrodynamik, vt 013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets anod
9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1
9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets
Tentamen för FYSIK (TFYA86 och 68)
Tentamen för FYK (TFYA86 och 68) 016-08-15 kl. 08.00-13.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare - grafräknare är tillåtna
Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01
Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik
Dugga i elektromagnetism, sommarkurs (TFYA61)
Dugga i elektromagnetism, sommarkurs (TFYA61) 2012-08-10 kl. 13.00 15.00, sal T1 Svaren anges på utrymmet under respektive uppgift på detta papper. Namn:......................................................................................
Extra kursmaterial om. Elektriska Kretsar. Lasse Alfredsson. Linköpings universitet November 2015
Extra kursmaterial om Elektriska Kretsar asse lfredsson inköpings universitet asse.lfredsson@liu.se November 205 Får kopieras fritt av ith-studenter för användning i kurserna TSDT8 Signaler & System och
14. Elektriska fält (sähkökenttä)
14. Elektriska fält (sähkökenttä) För tillfället vet vi av bara fyra olika fundamentala krafter i universum: Gravitationskraften Elektromagnetiska kraften, detta kapitels ämne Orsaken till att elektronerna
Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)
Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens
EDI615 Tekniska gränssnitt Fältteori och EMC föreläsning 1
EDI615 Tekniska gränssnitt Fältteori och EMC föreläsning 1 Daniel Sjöberg daniel.sjoberg@eit.lth.se Institutionen för elektro- och informationsteknik Lunds universitet Mars 2013 Outline 1 Introduktion
FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (2:a omtentan), fredag 30 augusti 2013, kl 9:00-14:00
FK4010 - Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (2:a omtentan), fredag 30 augusti 2013, kl 9:00-14:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror
Kursen är en obligatorisk kurs på grundnivå för en naturvetenskaplig kandidatexamen Fysik.
Naturvetenskapliga fakulteten Ellära, 7.5 credits Grundnivå / First Cycle Fastställande Kursplanen är en skiss men ännu ej fastställd. Allmänna uppgifter Kursen är en obligatorisk kurs på grundnivå för
λf=v Utbredningshastighet v Amplitud A Våglängd λ Periodtid T Frekvens f=1/t Vinkelfrekvens ω=2πf Vågtal k= 2π/λ y(x,t)=acos(kx-ωt+φ)
Utbredningshastighet v Amplitud A Våglängd λ Periodtid T Frekvens f=1/t Vinkelfrekvens ω=2πf Vågtal k= 2π/λ Tecknet ger utbredningsriktning y(x,t)=acos(kx-ωt+φ) Faskonstant, ges av begynnelse villkoren
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet (fylls i av ansvarig) Datum för tentamen 110326 Sal TER1 Tid 8-12 Kurskod Provkod BFL122 TEN1 Kursnamn/benämning Fysik B för tekniskt basår,
elektrostatik: laddningar I vila eller liten rörelse utan acceleration
Ellära 1 Elektrostatik, kap 22 Eleonora Lorek Begrepp elektricitet (franska électricité, till nylatin ele ctricus, till latin ele ctrum, av grekiska ē lektron 'bärnsten'), ursprungligen benämning på den
Övningar. Nanovetenskapliga tankeverktyg.
Övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Gör en skiss av funktionen f(t) = t, t [ π, π] (med period 2π) och beräkna dess fourierserie. 2. Gör en skiss
Tentamen Modellering och simulering inom fältteori, 8 januari, 2007
1 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori arje uppgift ger 10 poäng. Delbetyget
Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10)
Sammanfattning av kursen ETIA0 Elektronik för D, Del (föreläsning -0) Kapitel : sid 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd q mäts
Tentamen för FYSIK (TFYA86)
Tentamen för FYK (TFYA86) 015-10-19 kl. 8.00-13.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken, understrykningar och inringningar ok, dock ej formler, anteckningar miniräknare
Fysik 1 Rörelsemängd och Ellära, kap. 6 och 9
Fysik 1 Rörelsemängd och Ellära, kap. 6 och 9 Skrivtid: kl. 14:15-17:15 Hjälpmedel: Formelsamling, grafritande miniräknare, linjal Lärare: ASJ, HPN, JFA, LEN, MEN, NSC Möjliga poäng: 20 E-poäng + 12 C-poäng
Chalmers Tekniska Högskola Tillämpad Fysik Igor Zoric
Chalmers Tekniska Högskola 2002 05 28 Tillämpad Fysik Igor Zoric Tentamen i Fysik för Ingenjörer 2 Elektricitet, Magnetism och Optik Tid och plats: Tisdagen den 28/5 2002 kl 8.45-12.45 i V-huset Examinator:
ETEF15 Krets- och mätteknik, fk Fältteori och EMC föreläsning 1
ETEF15 Krets- och mätteknik, fk Fältteori och EMC föreläsning 1 Daniel Sjöberg daniel.sjoberg@eit.lth.se Institutionen for Elektro- och informationsteknik Lunds universitet Oktober 2014 Outline 1 Introduktion
OBS! Svaren på förståelsedelen skall ges direkt på tesen som skall lämnas in.
Dugga i Elektromagnetisk fältteori för F2. EEF031 2011-11-19 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar
ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation
ANDREA REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se oulombs lag och Maxwells första ekvation oulombs lag och Maxwells första ekvation Inledning Två punktladdningar q 1 samt q 2 i rymden
Magnetism. Beskriver hur magneter med konstanta magnetfält, t.ex. permanentmagneter, växelverkar med varandra och med externa magnetfält.
Magnetism Magnetostatik eskriver hur magneter med konstanta magnetfält, t.ex. permanentmagneter, växelverkar med varandra och med externa magnetfält. Vi känner till följande effekter: 1. En fritt upphängd
Svaren på förståelsedelen skall ges på tesen som skall lämnas in.
Dugga i Elektromagnetisk fältteori F. för F2. EEF031 2005-11-19 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar