Kap 7 Fourierransformanalys av idskoninuerliga signaler
Kap 7 Fourierransformanalys av idskoninuerliga signaler 2 Fourierransformen Fourierransformen ill x(): F { x() } = X(ω) = x() e jω d Inversa fourierransformen ill X(ω): Jfr. fourierserie: D n = T 0 T 0 2 T 0 2 x T0 ()e jnω 0 d F { X(ω) } = x() = 2π X(ω)e jω dω Jfr. fourierserie: x T0 () = n= D n e jnω 0 Exisensvillkor: F x() { } om x() d <
Kap 7 Fourierransformanalys av idskoninuerliga signaler 3 Några cenrala fourierransformpar e α α e u 0 u ( ) ; α > 0 α + jω ; α α ω > 0 j δ ( ) 2πδ ω e jω 0 2πδ ω ( ω ) 0 cos ( ω ) π δ ( ω + ω ) + δ ( ω ω ) 0 0 0 ( ω ) π δ( ω + ω ) δ ( ω ω ) sin j 0 0 0 e α α + jω cos( ω0) u( ) 2 2 ( α + jω) + ω0 e α sin ( α > 0) ( α > 0) ( ω ) u( ) ω 0 0 2 2 ( α + jω) + ω0
Kap 7 Fourierransformanalys av idskoninuerliga signaler 4 E vikig fourierransformpar: rec sinc Fyrkanpulsen rec() ( uni gae funcion ) rec() = u + 2 u 2 2 2 F rec = sinc ω 2 ω = sinc N 2π = sinc N f sinc ( x) sin( x) = sinc ( x) x = N sinc = sin ( π x) ( π x) π x = 0 då ω = n 2π f = n, n = ±, ± 2, ± 3,
Kap 7 Fourierransformanalys av idskoninuerliga signaler 5 Ex. på frekvensspekrum X(ω) Exempel, idsförskjuen puls med bredd & höjd : 0 /2 0 = rec x 0 + /2 0 X(ω) = sinc N ω 2π e jω 0 = X(ω) e j arg X (ω ) Im X(ω) X( ω) arg X(ω) Re Ampliudspekrum: X(ω) = sinc N ω 2π Fasspekrum: arg X(ω) = ω 0 ( ±π ) 2 π 2 2 π 3 2π ω ω 2 π 2 π 2 2 π 3 2π
Kap 7 Fourierransformanalys av idskoninuerliga signaler 6 Några cenrala fourierransformegenskaper Tidsförskjuning: Frekvensförskjuning: ( ω) jω 0 x X e 0 jω0 X( ω ω ) x e 0 Tidsskalning: ω x( a ) X a a Spec.fall, Spegling: x( ) X( ω ) Derivering: n d x d n n ( jω) X( ω) Dualie: Konjugering: X 2πx( ω) ( ω ) x X
Kap 7 Fourierransformanalys av idskoninuerliga signaler 7 Sysemanalys & usignalsberäkning x() (Sabil) Energifri LTI-sysem h() y() = ( x h) ( ) = x h d Y ( ω ) = F { y() } =! = X ( ω )H ( ω ) Frekvensfunkionen = F h( ) H ω { } = H ω e j argh ω H(ω) : Ampliudkarakerisiken arg H(ω): Faskarakerisiken Allmän, falningseoreme: F { m( ) c ( ) } = M ( ω )C ω Frekvensfalning: F m( )c { } = 2π M ( ω ) C ω al: M f C f
Kap 7 Fourierransformanalys av idskoninuerliga signaler 8 Sysemanalys & usignalsberäkning, fors Y ( ω ) = X ( ω )H ( ω ) Y ( ω ) 2 = X ( ω ) 2 H ω Y ( ω ) = X ( ω ) H ( ω ) argy ( ω ) = arg X ( ω ) + argh ( ω ) 2 H(ω) 2 : Energiöverföringsfunkionen X(ω) 2, Y(ω) 2 : Energispekrum ( energy specral densiy ) Parsevals formel/eorem för energisignaler: Energi mellan ω & ω 2 : E X = x( ) 2 d = 2π X ( ω ) 2 dω ΔE X = 2 2π ω 2 ω X ( ω ) 2 dω
Kap 7 Fourierransformanalys av idskoninuerliga signaler 9 Kresberäkningar, linjära RLC-nä (passiva kreselemen, fourierransformerbara källor) Meodik: jω -meoden för beräkning av godycklig spänning/sröm (begynnelsevillkor 0 kan ine haneras) Seg 3 = Gör om näe ill ekvivalen komplexschema ) F { } e() i 0 () E(ω) I 0 (ω) 2) v() i() Ändra beeckningar V(ω) I(ω)
Kap 7 Fourierransformanalys av idskoninuerliga signaler 0 Kresberäkningar, linjära RLMC-nä Komplexschema, fors 3) R L C Operaor- impedanser R jωl jωc 4) Liksrömseori Sök sorhes fourierransform ( Y(ω) ) 5) Inversransformera Sök sorhes idsuryck ( y() = F - { Y(ω) } )
Kap 7 Fourierransformanalys av idskoninuerliga signaler Tillämpningexempel: Digial kommunikaion Digial signalering med analoga signalvågformer Basbandsmodulaion, 0 0 Exempel : Exempel 2: Exempel 3:
Kap 7 Fourierransformanalys av idskoninuerliga signaler 2 Ex. på signalpulsformer för basbandskanaler: p( ) = u( + ) u( ) p = sinc N p( ) = sinc 2 N cos 2βπ 4β p() p() 2 p() f 2 2 f = 2 P(f) 2 2f P(f) f P(f) f Raised cosine 2 + β 2 β 2 2 + β 2 f
Kap 7 Fourierransformanalys av idskoninuerliga signaler 3 Vanlig: högfrekven signalerering (Ex: ADSL, mobilfn, radio, saelli, blueooh, WLAN m.m.) Typisk analog kommunikaionssysem: Sändare Meddelande H(ω) m() Modulaion ϕ() Basbandsignaler Bandpassignaler Kanal r() G(ω) e() Demodulaion!ϕ() Moagare
Kap 7 Fourierransformanalys av idskoninuerliga signaler 4 Exempel radiosysem & anennlängd Våglängd m, c = ljuses has. 300 0 6 m/s, f = radiovågens frekvens [Hz] λ = c f Moagande halvvågsanenn: Anennlängd L = λ 2 Moagande kvarsvågsanenn: Anennlängd L = λ 4 Sändare Frekvensområde f Våglängd Anennlängd 300 λ = f i MHz [m] L = λ 2 L = λ 4 Korvågsradio.ex. 7 MHz λ = 300 22 m m 7 = 43 m FM-rundradio 88 08 MHz λ = 300.5 m 0.75 m 00 = 3 m GSM 900/800 900/800 MHz λ = 300 = 33 cm 900 7 cm 8 cm 3G 200 MHz λ = 300 4 cm 200 7 cm 3.5 cm
Kap 7 Fourierransformanalys av idskoninuerliga signaler 5 Generell Ampliudmodulering Basbandsignal ( här: meddelandesignalen m() ): A M(ω) ω Ampliudmodulering (AM-DSB-SC): c() = bärvåg (.ex. c() = cos(ω c ) ) m() φ DSB-SC () = m() c()
Kap 7 Fourierransformanalys av idskoninuerliga signaler 6 Ampliudmodulering, fors Bandpassignal (AM-DSB-SC): Φ DSB-SC ( ω ) = F { m() c() } = ( 2π M C )( ω ) A 2 ω ω c ω c där C( ω ) = F { cos(ω c ) } = π δ ( ω + ω c ) + δ ( ω ω c ) Φ DSB-SC ω = 2 M ( ω + ω ) + M ( ω ω ) c c
Kap 7 Fourierransformanalys av idskoninuerliga signaler 7 Ampliudmodulering, fors Demodulering + LP-filer: d() = c() = cos(ω c )!ϕ ( ) (= ϕ() + brus) e() =!ϕ() d() LP-filer r() 2 m() Ideal LP-filer, H(ω) A 2 E(ω) = 2 M(ω) + 4 M ω + 2ω c + M ( ω 2ω c ) ω 2ω c 2ω c
Kap 7 Fourierransformanalys av idskoninuerliga signaler 8 Ampliudmodulering, (AM-DSB) m() φ AM () = (A+m()) cos(ω c ) A + m() > 0 A + m() /> 0 A A Envelope A + m() Envelope A + m() Välj A så a A+m() > 0! φ AM () φ AM () Fig. 7.38 AM-modulering, A + m(), vå fall
Kap 7 Fourierransformanalys av idskoninuerliga signaler 9 AM-demodulering m.h.a. envelopdeekor AM-signal φ AM () = (A+m()) cos(ω c ) RC för sor Envelopp Enveloppdeekorns usignal Fig. 7.40 AM-demodulering med hjälp av en envelopdeekor