Linjära ekvationssystem

Relevanta dokument
Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a

Sidor i boken f(x) = a x 2 +b x+c

x+2y+3z = 14 x 3y+z = 2 3x+2y 4z = 5

Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då

Funktioner. Räta linjen

Ekvationslösning genom substitution, rotekvationer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment Viktiga exempel Övningsuppgifter

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.

Sidor i boken Figur 1: Sträckor

Talmängder. Målet med första föreläsningen:

Gamla tentemensuppgifter

Lösningar och kommentarer till uppgifter i 1.1

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

ANDREAS REJBRAND NV1A Matematik Linjära ekvationssystem

Komplexa tal med Mathematica

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L.

Ekvationer och system av ekvationer

Linjär algebra F1 Ekvationssystem och matriser

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4.

Repetition inför tentamen

x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

Sidor i boken KB 6, 66

Formelhantering Formeln v = s t

Moment Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.52, P 0 P = t v OP och OP 0 är ortsvektorer för punkterna P och P 0, så

2+t = 4+s t = 2+s 2 t = s

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2

Lösningar och kommentarer till uppgifter i 3.1

Vektorgeometri för gymnasister

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

KOKBOKEN 1. Håkan Strömberg KTH STH

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Fler uppgifter på andragradsfunktioner

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.

Den räta linjens ekvation

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y

Konsten att lösa icke-linjära ekvationssystem

2x+y z 5 = 0. e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,5) n 3 = n 1 n 2 =

TENTAMEN. Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum:

Matematik CD för TB. x + 2y 6 = 0. Figur 1:

Trigonometri. Sidor i boken 26-34

Ekvationer och olikheter

a = a a a a a a ± ± ± ±500

Den räta linjens ekvation

f(x) = x 2 g(x) = x3 100

1 Addition, subtraktion och multiplikation av (reella) tal

6 Derivata och grafer

Moment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6

Moment 4.3.1, Viktiga exempel 4.44, 4.46, 4.48 Handräkning 4.53, 4.59, 4.60, 4.61, 4.62, 4.63, 4.64, 4.65 Datorräkning 1-15 i detta dokument

f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100

4 Fler deriveringsregler

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.

Problemlösning Lösningar

Repetition kapitel 1, 2, 5 inför prov 2 Ma2 NA17 vt18

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22

Övningstentammen 1. 3x 2 3x+a = 0 ax 2 2ax+5 = 0

Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor

5 Blandade problem. b(t) = t. b t ln b(t) = e

Lösningar och kommentarer till Övningstenta 1

1 Förändingshastigheter och derivator

När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort. x 2 x 1 +2 = 1. x 1

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Vektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p)

ÖVNINGSTENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 10:15-13:15. Torsdagen 20 maj Tentamen består av 4 sidor.

Inga vanliga medelvärden

y y 1 = k(x x 1 ) f(x) = 3 x

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.4, 4.5, 4.6, 4.7, 4.13 Handräkning 4.1, 4.2, 4.3, 4.4, 4.5, 4.7 Datorräkning 1-9 i detta dokument

Veckoblad 4, Linjär algebra IT, VT2010

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

9 Skissa grafer. 9.1 Dagens Teori

Kvalificeringstävling den 30 september 2008

Lösningar och kommentarer till uppgifter i 2.2

Övningstenta 6. d b = 389. c d a b = 1319 b a

13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till

Matematik för sjöingenjörsprogrammet

KOKBOKEN. Håkan Strömberg KTH STH

KTH Matematik SF1633 Differentialekvationer I, för I1 Kontrollskrivning nr 2, Måndag den 31 mars 2008, kl Version: A Namn:... Personnr:...

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Mathematica. Utdata är Mathematicas svar på dina kommandon. Här ser vi svaret på kommandot från. , x

Lästal från förr i tiden

10.1 Linjära första ordningens differentialekvationer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Notera att tecknet < ändras till > när vi multiplicerar ( eller delar) en olikhet med ett negativt tal.

8-5 Ekvationer, fördjupning. Namn:.

Repetition inför kontrollskrivning 2

November 6, { b1 = k a

Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x)

Sidor i boken 8-9, 90-93

Transkript:

Sidor i boken KB 7-15 Linjära ekvationssystem Exempel 1. Kalle och Pelle har tillsammans 00 kulor. Pelle har dubbelt så många som Kalle. Hur många kulor har var och en? Lösning: Antag att Kalle har x kulor. Då har Pelle 2x kulor, som leder till ekvationen som ger x = 100 Svar: Kalle har 100 kulor och Pelle har 200. x+2x = 00 Detta problem ledde till en ekvation av första graden. Här ett alternativt sätt att lösa problemet Lösning: Antag att Kalle har x kulor och Pelle y kulor. Vi får då två ekvationer som vi sätter samman till ett ekvationssystem x+y = 00 y = 2x Då vi vet att y = 2x från den andra ekvationen kan vi substituera detta i den första och får x+2x = 00 som är identisk med den första lösningen. När vi löst ut och fått x = 100, sätter vi in detta resultat i den andra ekvationen och får y = 2 100 200. Samma svar förstås. Om du skriver om ekvationerna i systemet till y = 00 x y = 2x ser du att detta är två räta linjer. Lösningen kan då åskådliggöras med hjälp av en graf. 250 200 150 100 50 0 50 100 150 200 Lösningen hittar vi där linjerna skär varandra, (100,200). Klassificering av ekvationssystem Det inledande ekvationssystemet ovan är ett linjärt ekvationssystem med 2 obekanta. Det är linjärt därför att det de obekanta har gradtalet ett. Håkan Strömberg 1 KTH STH

Här har vi ett linjärt ekvationssystem med obekanta. x+y+z = 6 2x y+z = 9 x+4y 2z = med lösningen x = 1, y = 2, z =. Systemet är lite svårare att lösa än det med 2 obekanta och mycket svårare att åskådliggöra i en graf. Det finns förstås ingen övre gräns för hur många obekanta man kan ha i ett ekvationssystem. Det finns tillämpningar där antalet obekanta är flera tusen! Då är man förstås tvungen att använda en dator för att hitta lösningen. Här har vi ett icke linjärt ekvationssystem med 2 obekanta. Systemet är icke linjärt därför att x (och även y) förekommer med graden 2. (x 2) 2 +(y ) 2 = 6 2y+x = 10 Den första ekvationen beskriver en ellips och den andra en rät linje. Vi kan läsa av de två rötterna på ett ungefär, ( 1.78,7.66) och (4.85, 2.28) Som tur är kommer vi här bara att syssla med linjära ekvationssystem av 2 obekanta. En, ingen eller oändligt många lösningar Ett linjärt ekvationssystem kan ha en, ingen eller oändligt många lösningar. Detta är ett system med en lösning 2x+y = 12 4x 6y = 0 Med substitutionsmetoden löser vi ut x eller y ur en av ekvationerna och substituerar dess värde i den andra ekvationen. Vi löser ut x ur den andra ekvationen 4x 6y = 0 x = y 2 Vi sätter in y 2 för x i den första ekvationen 2 y 2 +y = 12 6y = 12 y = 2 Från x = y 2 får vi x = 2 2. Om vi löser ut y ur de två ekvationerna får vi: y = 2x +4 y = 2x Håkan Strömberg 2 KTH STH

Två räta linjer som vi kan plotta Svar: x =, y = 2 Det här systemet har ingen lösning. y 9x 9 = 0 4y 12x+8 = 0 Hur kan man se det? Vi löser ut y ur första ekvationen och får y = x+. Resultatet substituerar vi i den andra ekvationen och får: 4(x+) 12x+8 = 0 12x+12 12x+8 = 0 20 = 0 vilket bevisar detta. Hade vi kunna se det på något annat sätt? Om vi löser ut y även ur den andra ekvationen får vi y = x+ y = x 2 Ekvationerna representerar nu två räta linjer. Att de inte skär varandra förstår vi då båda linjerna har k =. Här har vi grafen Det här systemet har oändligt många lösningar y x 6 = 0 6y 6x 12 = 0 Hur kan man se det då? Vi gör som i förra exemplet löser ut y i första ekvationen och får y = x+2, sätter in det i andra ekvationen 6(x+2) 6x 12 = 0 6x+12 6x 12 = 0 0 = 0 Detta betyder att för varje värde på x så finns det ett värde på y som satisfierar båda ekvationerna. Hade vi kunna se det på något annat sätt? Om vi löser ut y även ur den andra ekvationen får vi y = x+2 y = x+2 Håkan Strömberg KTH STH

De båda ekvationerna representerar samma linje! Grafen ger då endast en linje och självklart finns det då till varje x-värde ett y-värde. Problem 1. Givet x 2 +ax+b = 0 Bestäm a och b, som är reella tal då man vet att ekvationen har rötterna x 1 = 7 och x 2 = 9. Bestäm Substitutionsmetoden och Additionsmetoden I systemen vi löst ovan har vi använt oss av substitutionsmetoden som innebär 1 Lös ut en obekant ur den ena ekvationen 2 Ersätt denna lösning med den denna obekanta i den andra ekvationen Lös denna ekvation som nu består av en obekant 4 Sätt in denna lösning i lösningen från steg 2 Vi löser detta system 2y 6x = 10 6x y 12 = 0 efter schemat ovan. (1) Vi löser ut y ur den första ekvationen 2y 6x = 10 2y = 10+6x y = 5+x (2) Vi ersätter y med 5+x i den andra ekvationen och löser ekvationen (). (4) Vi sätter in x = 9 i lösningen från (1) Svar: x = 9 och y = 22 6x (5+x) 12 = 0 6x 15 9x 12 = 0 6x 15 9x 12 = 0 27 = x x = 9 y = 5+( 9) y = 22 Vi löser så samma system med additionsmetoden. Först städar vi lite grann. 2y 6x = 10 y+6x = 12 Håkan Strömberg 4 KTH STH

När vi nu adderar V.L. i första ekvationen med V.L. i andra och H.L. i första ekvationen med med H.L. i den andra får vi y = 22 y = 22 Med lite tur fick vi direkt y = 22. Detta värde sätter vi så in i vilken som helst i ekvationerna. Vi väljer den första: 2( 22) 6x = 10 6x = 10+44 x = 9 Svar: x = 9 och y = 22 Så där enkelt blir det förstås inte alltid. Vi tar ett exempel till: y 5x 2 = 0 y+2x 40 = 0 Här multiplicerar vi först båda sidor av första ekvationen med, innan vi adderar (y 5x 2) = 0 y+2x 40 = 0 och får y+15x+6 = 0 y+2x 40 = 0 Efter additionen har vi 17x 4 = 0 x = 2 Vi sätter in x = 2 i den andra ekvationen y+2 2 40 = 0, som ger y = 12. Svar: x = 2 och y = 12. Ett ännu mer krävande exempel 7x y = 1 x+2y = 1 Här multiplicerar vi båda leden i första ekvationen med 2 och båda leden i den andra med 2(7x y) = 2 ( 1) Vi får Efter additionen har vi (x+2y) = 1 14x 6y = 26 9x+6y = 2x = 2 x = 1 x = 1 insatt i den andra ekvationen ger 9( 1)+6y = ger y = 2. Svar: x = 1 och y = 2. Vilken metod ska man då välja? Ibland leder den ena till enklare räkningar än den andra. Eftersom båda leder till rätt svar kan man låta smaken avgöra. Håkan Strömberg 5 KTH STH

Läxa 1. Lös ekvationssystemet grafiskt 4y 2x = 0 2y+x = 21 Läxa 2. Lös ekvationssystemet (x 2) 4(y+5) = y 2x+5y+x = 11 Läxa. Lös ekvationssystemet 1x+15y = 19 6x+8y = 12 Läxa 4. Bonden Per Olsson har har på sin gård kor och höns. Räknar han huvudena på sina djur kommer han fram till 2. Räknar han benen kommer han fram till 66. Hur många kor och hur många höns har Per Olsson? Läxa 5. HT 1958. Lös ekvationssystemet exakt x+ 15y 10 = 7 5x y = 1 Läxa 6. En arbetare arbetade en vecka dels 48 timmar efter en viss timlön och dels 5 timmar övertid. Totalt fick han då ut 19 kr. En annan vecka arbetade han 40 timmar med samma timlön och 4 timmar övertid med samma övertidsersättning. Denna vecka tjänade han 160 kr. Beräkna timlönen för det ordinarie arbetet och för övertidsarbetet. Läxa 7. VT 1956. Lös ekvationssystemet exakt x 5 + 4y 7 = 8 5 5x 6 + y 8 = 61 8 Läxa 8. Lös ekvationssystemet x+y+z+u = 10 y+z+u = 6 z+u = u = 1 Läxa 9. Adam kunde ta sig från A-stad till D-stad på två olika sätt. Dels kunde han gå de 12 km till B-stad och därefter cykla 24 km till D-stad. Eller så kunde han gå 14 km till C-stad och fortsätta 16 km på cykel till D-stad. Resan tog i båda fallen 4.5 timmar. Bestäm Adams hastighet till fots och på cykel. Håkan Strömberg 6 KTH STH

Läxa 10. En linje med k = går genom punkten (0, 14). En annan med k = 2 går genom punkten (8,0). I vilken punkt skär de två linjerna varandra? Läxa 11. Kalle köpte bananer för 7 kr/st och apelsiner för 6 kr/st. Totalt handlade han för 4 kr. Hur många bananer och apelsiner köpte han? Läxa 12. Lös de två ekvationssystemen grafiskt x+y = 2 x 2y = 1 x+4y = 5 x+y = 2 x 2y = 1 x+6y = 5 Läxa 1. VT 191. En person har åtagit sig att fullborda ett arbete på 50 arbetsdagar och använder i början man vid detsamma. När 28 arbetsdagar förgått, är endast halva arbetet verkställt. Hur mycket behöver han öka arbetsstyrkan för att kunna fullgöra sitt åtagande? Läxa 14. Vid en utställning sänktes inträdesbiljetten med 25% efter första veckan. Under andra veckan ökades inkomsten med 8%. Med hur många procent hade antalet besökare ökat? Läxa Lösning 1. Vi utläser lösningen x = och y = 9 från diagrammet. Genom att sätta in lösningen i ekvationerna ser vi att avläsningen är korrekt. Svar: x = och y = 9. Läxa Lösning 2. Uppgiften är inte svårare än de tidigare efter att vi förenklat ekvationerna x 6 4y 20 = 8y+x = 11 så får vi 4y+x = 2 8y+x = 11 Additionsmetoden ger 2( 4y+x) = 2 2 8y+x = 11 och 8y+6x = 46 8y+x = 11 Efter addition får vi 7x = 5 x = 5 Håkan Strömberg 7 KTH STH

Så får vi fram y = 8y+5 = 11 som ger y = 2 Svar: x = 5, y = 2. Läxa Lösning. Vilken metod ska vi välja? Varför inte substitutionsmetoden. Vi löser ut x ur andra ekvationen 6x+8y = 12 Som vi så sätter in in första som till sist ger x = 6 4 2 Svar: y = och x = 2. 1(6 4y) x = 12 8y 6 x = 6 4y +15y = 19 ( ) 1(6 4y) +15y = 19 78 52y+45y = 57 7y = 21 y = Läxa Lösning 4. Antag att han har k kor och h höns. Vi får då följande ekvationssystem. x+y = 2 4x+2y = 66 Från första ekvationen får vi y = 2 x som vi sätter in i den andra och får Insatt i y = 2 10, ger y = 1 Svar: Han har 10 kor och 1 höns. 4x+2(2 x) = 66 4x+46 2x = 66 2x = 20 x = 10 Läxa Lösning 5. Vi startar med att fixa bort nämnarna ( ) 10 x+ 15y 10 = 10 7 ( 5x y ) = 1 som ger 0x+15y = 70 15x y = 1 Genom additionsmetoden får vi som ger 0x+15y = 70 2(15x y) = 2 1 17y = 68 y = 4 y = 4 insatt i någon av de tidigare ekvationerna får vi 15x 4 = 1 x = 1 Svar: y = 4 och x = 1 Håkan Strömberg 8 KTH STH

Läxa Lösning 6. Antag att han tjänade x kronor/timmen under ordinarie arbete och y kronor/timmen under övertidsarbetet. Vi får då följande system: 48x+5y = 19 40x+4y = 160 Additionsmetoden ger 4(48x+5y) = 4 19 5(40x+4y) = 5 160 eller som ger Övertidsersättningen är 192x 20y = 772 200x + 20y = 800 8x = 28 x =.5 40.5+4y = 160 4y = 160 140 y = 5 Svar: De olika timlönerna är.50 kr respektive 5.00 kr Läxa Lösning 7. Först gör vi oss av med nämnarna ( x 5 5 + 4y 7 ( 5x 48 6 + y 8 ) ) = 5 ( ) 8 5 = 48 ( ) 61 8 som övergår i 21x+20y = 266 40x + 18y = 66 Nu tillämpar vi additionsmetoden 18(21x +20y) = 18 266 20(40x+18y) = 20 66 som ger 78x+60y = 4788 800x 60y = 720 och Till sist får vi så Svar: x = 6 och y = 7. 422x = 252 x = 6 21 6x+20y = 266 20y = 266 126 y = 7 Läxa Lösning 8. Detta är ett linjärt ekvationssystem med 4 obekanta, trots att vi lovat att det inte skulle förekomma fler än 2 obekanta. Nu är det ju så att detta system kan lösas med huvudräkning. Tekniken som man ska använda är så kallad bakåtsubstitution. Eftersom u = 1 ser vi enkelt, från den tredje ekvationen, att z = 2. Lika enkelt ser vi från den andra ekvationen att y = och från den första får vi då x++2+1= 10, ger x = 4. Bakåtsubstitution ingår som ett moment i lösandet av större ekvationssystem. Mer om detta i er matematiska framtid. Svar: x = 4, y =, z = 2 och u = 1. Håkan Strömberg 9 KTH STH

Läxa Lösning 9. Antag att han gick med x km/tim och cyklade med y km/tim. Från den bekanta formeln s = t v, kan vi lösa ut t = s v. Vi får då ekvationssystemet 12 x + 24 y = 4.5 14 x + 16 y = 4.5 Bästa sättet att lösa detta system är att substituera a = 1 x och b = 1 y. Vi får 12a+24b = 4.5 14a+16b = 4.5 Med additionsmetoden får vi 7(12a+24b) = 7 4.5 6(14a+16b) = 6 4.5 eller 84a 168b = 1.5 84a+96b = 27 Då b = 1 y 72b = 4.5 b = 4.5 72 får vi y = 16. Sätter vi in y = 16 direkt i 12 x + 24 16 = 4.5 12 x = 4.5 1.5 x = 12 x = 4 Svar: Gånghastigheten är 4 km/tim. Cykelhastigheten är 16 km/tim. Läxa Lösning 10. Vi kan utan vidare bestämma ekvationerna för de två linjerna. Den första har m-värde 14 = 0 + m, ger m = 14 och ekvationen y = x 14. Den andra har m-värde 0 = ( 2) 8 + m, ger m = 16 och ekvationen y = 2x + 16. Återstår att lösa ekvationssystemet y = x 14 Enkel substitution ger y = 2x+16 x 14 = 2x+16 5x = 0 x = 6 x = 6 insatt i första ekvationen ger y = 6 14 ger y = 4. Att vi troligtvis räknat rätt ser vi i grafen Håkan Strömberg 10 KTH STH

Läxa Lösning 11. Antag att han köpte x bananer och y apelsiner. Det är inte svårt att teckna ekvationen 7x+6y = 4 Men sen? Att problemet är meningsfullt beror på att antalet bananer och apelsiner måste vara heltal. Denna typ av ekvationer kallas diofantiska och nämns aldrig i gymnasiematematiken. Här har vi grafen Hur kan vi utläsa svaret? Jo, en lösning finns där linjen skär en gitterpunkt. Gitterpunkterna i diagrammet är skärningen mellan blå linjer. I dessa punkter är alltid antalet bananer och apelsiner heltal. Vi avläser svaret 4 bananer och 1 apelsin. Normalt finns det flera lösningar. Ja, det finns för vår ekvation oändligt många lösningar om man tillåter ett negativt antal bananer och/eller apelsiner. Nog om diofantiska ekvationer. Läxa Lösning 12. Vi får följande grafer Båda systemen har tre ekvationer men endast två obekanta. Ett sådant system kallas överbestämt. För att det ska finnas en lösningen måste alla tre linjerna gå genom en gemensam punkt. Så är fallet i det vänstra systemet Punkten är (1,1). I det högra systemet finns ingen gemensam punkt för de tre linjerna och systemet saknar därför lösning. Läxa Lösning 1. Antag att han behövde anställa x man ytterligare. 28 mandagar fixade hälften av jobbet. Den andra häften klarades av på (+x) 22 mandagar. Vi får ekvationen Svar: Han behövde anställa 9 man till. 28 = (+x)22 924 = 726 + 22x x = 924 726 22 x = 9 Läxa Lösning 14. Vi vet inget om biljettpriset (p), eller antalet besökare (b) men kan ändå ställa upp en ekvation. Antag att antalet besökare ökade med tillväxtfaktorn x. Första veckan var intäkten p b. Andra veckan 0.75p x b. Detta ger ekvationen Svar: Antalet besökare steg med 44%. 1.08 p b = 0.75 p x b 1.08 = 0.75 x x = 1.08 0.75 x = 1.44 Håkan Strömberg 11 KTH STH