MAA123 Grundläggande vektoralgebra

Storlek: px
Starta visningen från sidan:

Download "MAA123 Grundläggande vektoralgebra"

Transkript

1 Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Tentamen Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Del 1 3 ger maximalt 8 poäng vardera. För godkänt fordras minst 5 poäng. Del 4 ger maximalt 12 poäng. Förutsatt att du är godkänd på de andra delarna av tentamen ger minst 5 poäng här betyg 4 och minst 9 poäng betyg 5. Frågor kan ställas till: Hillevi Gavel, som nås på Övriga anvisningar: Skriv läsbart. Förklara alla resonemang som inte är trivialt uppenbara. Se till att det framgår vad svaret på frågan är. Om du inte kan lösa en uppgift fullständigt men har några idéer, skriv då ner dem. Det kan ge delpoäng. OBS! De första tre delarna av tentamen gäller också som examination av kursmomenten ÖVN1, ÖVN2 respektive ÖVN3. Om du redan är godkänd på något av dessa moment så ska du inte skriva motsvarande del av tentan. (Du är godkänd på ett moment om du blev godkänd på motsvarande test under kursens gång eller på motsvarande del i oktober eller januari.)

2 MAA123 Tentamen Sida 2 (av 6) Del 1 Denna del ska inte skrivas av de som redan är godkända på ÖVN1. 1 (a) Beräkna inversen för nedanstående matris: (b) Lös nedanstående ekvationssystem: x 2y+ 8z=2 2x 4y+15z=1 x+3y 11z=0 Se till att det klart och tydligt framgår vad lösningen är! 2 Här har vi en lista på ett antal räkneregler. En del av dem är korrekta, andra är felaktiga. (En regel är korrekt om den alltid gäller.) Ange för varje regel om den är rätt eller fel. (a) A(BC)=(AB)C (b) AI=A 1 (c) AB = BA (d) AM 0 = M 0 (e) Om AB= M 0 så måste A= M 0 eller B= M 0 (±0,4p) (±0,4p) (±0,4p) (±0,4p) (±0,4p) Alla bokstäver står för matriser, och matrisernas storlek är sådan att operationerna är möjliga att genomföra. M 0 är nollmatrisen. Motivering behövs ej. Obs! Ett felaktigt svar ger minuspoäng. Totalpoängen för uppgiften blir dock aldrig lägre än noll, och avrundas till heltal. 3 Nedanstående tre matriser representerar tre ekvationssystem. Skriv upp systemens lösningsmängder på formen x=..., y=..., z=..., eller förklara varför lösning saknas: (a) (b) (c) (Poängsumman avrundas till heltal.) Var god vänd!

3 MAA123 Tentamen Sida 3 (av 6) 4 Vi har matriserna A= B= [ ] Matrisen X uppfyller XA= B Vad är X?

4 u 1 u 2 MAA123 Tentamen Sida 4 (av 6) Del 2 Denna del ska inte skrivas av de som redan är godkända på ÖVN2. 5 (a) Vad är en vektor för något? Ge en förklaring som du själv skulle ha kunnat förstå innan du läste den här kursen. (b) Vad är en skalär för något? (Samma instruktion i övrigt.) 6 Vi har nedanstående tre matriser: A= 2 0 B= 1 1 C= Beräkna det(abc) 7 I nedanstående bild har vi ritat representanter för fem vektorer. Om vi använder basen B={u 1, u 2 }, vilka koordinater har då (a) v 1? (b) v 2? (c) v 3? (Summan avrundas till närmsta heltal.) v 3 v 1 v 2 8 Vi har vektorerna u=(4, 2, 3) och v=( 8, 4, 6) (angivna i samma bas). Är vektorerna linjärt oberoende? Motivera!

5 MAA123 Tentamen Sida 5 (av 6) Del 3 Denna del ska inte skrivas av de som redan är godkända på ÖVN3. 9 Vi har linjerna l 1 : (x, y, z)=( 5, 2, 0)+t( 3, 1, 2) l 2 : (x, y, z)=(1, 0, 4)+t(3, 1, 2) (angivna i samma koordinatsystem). Ärl 1 ochl 2 två olika linjer eller samma linje? Motivera! 10 Då man arbetar med vektorer använder man bland annat skalärprodukt (dot product) och vektorprodukt (cross product). Dessa räknesätt har likartade räkneregler, men de är inte helt lika. (a) Skriv upp någon räkneregel som är i princip likadan för skalärprodukt och för vektorprodukt. (b) Skriv upp någon räkneregel som inte är likadan för skalärprodukt och för vektorprodukt. 11 En triangel har hörn i punkterna P 1 : ( 3, 4, 2), P 2 : ( 1, 4, 5) och P 3 : ( 3, 7, 1). Bestäm triangelns area. (ON-system.) 12 Vi har linjen och planet l : (x, y, z)=( 3, 4, 1)+t(1, 0, 1) Π : 2x+y+z 5=0 Bestäm vinkeln mellan linjen och planet. Om de är parallella, bestäm istället avståndet. (ON-system.)

6 MAA123 Tentamen Sida 6 (av 6) Del 4 Den här delen kan du enbart tillgodoräkna dig om du också har klarat de andra delarna. Om du inte redan är godkänd på delarna 1 till 3 ska du i första hand satsa på dem. 13 Vi har ekvationssystemet λx+y+5z=4 x+y+3z=λ x+λy+4z=λ Lös ekvationssystemet för alla värden påλ. (4p) 14 u, v och z är tre olika komplexa tal. De uppfyller uz=v 2 uv=z 2 Visa att talen ligger som hörn i en liksidig triangel i det komplexa talplanet. (4p) 15 Vi har en 3 3-matris A med följande egenskaper: Om vi tar en punkt P : (x, y, z) så kommer x A y z att ge oss koordinaterna för den punkt i planetπ : x+2y+3z=0 som ligger närmast P. Vad är matrisen A? (4p)

7 Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Test Detta test är examination på ÖVN1. Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Detta test ger maximalt 8 poäng. För godkänt fordras minst 5 poäng. Frågor kan ställas till: Hillevi Gavel, som nås på Övriga anvisningar: Skriv läsbart. Förklara alla resonemang som inte är trivialt uppenbara. Se till att det framgår vad svaret på frågan är. Om du inte kan lösa en uppgift fullständigt men har några idéer, skriv då ner dem. Det kan ge delpoäng. 1.1 Vi har här två matriser: A = B = Beräkna, eller förklara varför det är omöjligt: (a) A + B (b) AB 1.2 (a) Lös nedanstående ekvationssystem med Gauss-Jordans metod: x + 4y = 2 2x 7y = 4 3x + 10y = 6 Se till att det klart och tydligt framgår vad lösningen är! (b) Visa att din lösning är korrekt. Om systemet saknar lösning, förklara hur du såg det. 1.3 Din kompis har löst en matrisekvation så här: XA = B XAA 1 = A 1 B XI = A 1 B X = A 1 B Han har nu räknat ut A 1 och tagit fram X. Men svaret stämmer inte då han sätter in det i ursprungsekvationen. Han ber dig om hjälp. Vad har han gjort för fel, och hur ska han rätta till det? Var god vänd!

8 MAA123 Sida 2 (av 2) 1.4 (a) Beräkna inversen till nedanstående matris (förutsatt att det är möjligt): A = Se till att det klart och tydligt framgår vad svaret är! (b) Visa att den beräknade inversen är korrekt eller förklara hur du såg att det inte finns någon.

9 Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Test Detta test är examination på ÖVN2. Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Detta test ger maximalt 8 poäng. För godkänt fordras minst 5 poäng. Frågor kan ställas till: Hillevi Gavel, som nås på Övriga anvisningar: Skriv läsbart. Förklara alla resonemang som inte är trivialt uppenbara. Se till att det framgår vad svaret på frågan är. Om du inte kan lösa en uppgift fullständigt men har några idéer, skriv då ner dem. Det kan ge delpoäng. 2.1 Vi har vektorerna u=(1, 4, 2), v=( 3, 2, 4) och w=( 1, 5, 8) (angivna i samma bas). Skriv w som linjärkombination av u och v, om det är möjligt. Förklara annars varför det inte går. 2.2 Har nedanstående ekvationssystem entydig lösning? 7x 2z= 5 3x+y+4z= 8 4x 2z= 3 Motivera! 2.3 Nedan har vi ritat representanter för ett antal vektorer i planet: u 3 u 4 u 2 u 1 Nu vill vi ha en bas. (a) Kan man använda{u 1, u 2 } som bas för vektorerna i planet? (b) Kan man använda{u 1, u 3 } som bas för vektorerna i planet? (c) Kan man använda{u 2, u 3, u 4 } som bas för vektorerna i planet? Motivering behövs ej, men är inte förbjuden. Poängsumman avrundas till närmsta heltal. Var god vänd!

10 MAA123 Sida 2 (av 2) 2.4 Vi har följande matriser: A= 5 2 B= 1 1 C= Beräkna det(abc)

11 Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Test Detta test är examination på TEN2 del A. Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Detta test ger maximalt 8 poäng. För godkänt fordras minst 5 poäng. Frågor kan ställas till: Hillevi Gavel, som nås på Övriga anvisningar: Skriv läsbart. Förklara alla resonemang som inte är trivialt uppenbara. Se till att det framgår vad svaret på frågan är. Om du inte kan lösa en uppgift fullständigt men har några idéer, skriv då ner dem. Det kan ge delpoäng. OBS! Om du blir godkänd (dvs. får minst 5 poäng) så kan du skriva del B vid tentatillfället 1 november. Detta kan ge dig högre betyg på kursen. (Om du inte blir godkänd nu får du skriva om del A då.) 3.1 Vi har punkterna P 1 : (4, 0, 1) P 2 : (2, 2, 3) P 3 : ( 1, 3, 2) Ta fram den parameterfria ekvationen för det plan som innehåller punkterna. 3.2 Här har vi en lista på ett antal räkneregler. En del av dem är korrekta, andra är felaktiga. (En regel är korrekt om den alltid gäller.) Ange för varje regel om den är rätt eller fel. (a) u v = u v cos α (där α är vinkeln mellan u och v) (b) u v = u v sin α (c) u 0 = 0 (d) Om u v = 0 så måste någon av u och v vara 0 (e) u (v + w) = u v + u w (±0,4p) (±0,4p) (±0,4p) (±0,4p) (±0,4p) Alla bokstäver står för vektorer. Motivering behövs ej, men se till att det klart framgår vad som är svar på vilken fråga. Obs! Ett felaktigt svar ger minuspoäng. (Inget svar alls ger 0 p.) Totalpoängen för uppgiften blir dock aldrig lägre än noll, och avrundas till heltal. 3.3 Punkterna P 1, P 2, P 3 och P 4 är hörn på en parallellogram, och ligger i den ordningen. De första punkternas koordinater är: P 1 : (6, 4, 3), P 2 : (5, 2, 3), P 3 : (4, 2, 0). Bestäm parallellogrammens area. (ON-system) 3.4 Vi har planen Π 1 : 3x 2y + 4z = 6 och Π 2 : 2x + 3y + 3z = 1 (angivna i samma ONsystem). Bestäm vinkeln mellan planen. Om de är parallella, bestäm istället avståndet.

12 Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Tentamen Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Information finns på de respektive delskrivningarna. Frågor kan ställas till: Hillevi Gavel, som nås på Övriga anvisningar: Skriv läsbart. Förklara alla resonemang som inte är trivialt uppenbara. Se till att det framgår vad svaret på frågan är. Om du inte kan lösa en uppgift fullständigt men har några idéer, skriv då ner dem. Det kan ge delpoäng. OBS! Del 1 och 2 är omexamination av kursmomenten ÖVN1 och ÖVN2. Om du redan är godkänd på något av dessa moment så ska du inte skriva motsvarande del av tentan. Del 3 är omexamination TEN2 del A, som gavs 18 oktober. Om du fick minst 5 poäng då eller är godkänd på ÖVN3 sedan föregående läsår så ska du inte skriva denna del. Del 4 är TEN2 del B, den del som kan ge överbetyg. Den är frivillig.

13 MAA123 Tentamen Sida 2 (av 5) Del 1: ÖVN 1 Denna del är är omexamination av ÖVN1 och ska inte skrivas av de som redan är godkända på ÖVN1. För godkänt fordras minst 5 poäng. 1 (a) Beräkna inversen till nedanstående matris (förutsatt att det är möjligt): A= Se till att det klart och tydligt framgår vad svaret är! (b) Visa att den beräknade inversen är korrekt eller förklara hur du såg att det inte finns någon. 2 (a) Lös nedanstående ekvationssystem med Gauss-Jordans metod: x 4y+ 2z+5w= 0 x+5y+ z 6w= 6 2x 6y+10z+8w= 10 Se till att det klart och tydligt framgår vad lösningen är! (b) Visa att din lösning är korrekt. Om systemet saknar lösning, förklara hur du såg det. 3 (a) Vilken typ av linjära ekvationssystem är det som kan ha icke-triviala lösningar? (b) Vad är en icke-trivial lösning för något? 4 Vi har matriserna 1 2 A= B= 6 2 Vi vet att B= AX Vad är matrisen X?

14 MAA123 Tentamen Sida 3 (av 5) Del 2: ÖVN2 Denna del är omexamination av ÖVN2 och ska inte skrivas av de som redan är godkända på ÖVN2. För godkänt fordras minst 5 poäng. 5 Vi har vektorerna u=(0, 3, 2), v=(2, 2, 1) och w=(6, 0, 1) (angivna i samma bas). Skriv w som linjärkombination av u och v, om det är möjligt. Förklara annars varför det inte går. 6 (a) Beräkna determinanten för nedanstående matris: (b) Är matrisen inverterbar? Motivera! 7 (a) Om man säger vektorerna u, v och w är en linjärt oberoende mängd, exakt vad menar man med det? (Vi söker alltså den formella definitionen.) (b) Hur brukar man rent praktiskt göra för att avgöra om mängden är linjärt oberoende eller inte? 8 I nedanstående bild har vi ritat representanter för fem vektorer. v 2 v 1 w u 2 u 1 (a) Ange koordinaterna för w i basen B 1 ={u 1, u 2 }. (b) Ange koordinaterna för w i basen B 2 ={v 1, v 2 }.

15 MAA123 Tentamen Sida 4 (av 5) Del 3: TEN2 del A Denna del är omexamination av TEN2 del A och ska inte skrivas av de som fick minst 5 p på skrivningen 18 oktober, och inte heller av de som läste kursen förra läsåret och som är godkända på ÖVN3. För godkänt fordras minst 5 poäng. 9 (a) Vad menas med en riktningsvektor för en linje? (b) Vad menas med en normalvektor till ett plan? Rita gärna figur! 10 Vi har två vektorer, u och v. u =4, v =3. Vinkeln mellan dem är 150. Bestäm (a) u v (b) u v För full poäng måste svaren ges på enklast möjliga form. 11 Vi har planenπ 1 : (x, y, z)=(0, 3, 2)+ s( 4, 0, 3)+t(1, 5, 2) ochπ 2 : 3x y+4z+11=0 (angivna i samma ON-system). ÄrΠ 1 ochπ 2 två olika plan eller samma plan? Motivera! 12 Vi har linjerna l 1 : (x, y, z)=( 2, 1, 3)+t(1, 0, 2) l 2 : (x, y, z)=(7, 6, 2)+t(1, 4, 1) (angivna i samma ON-system). Bestäm avståndet mellan dem.

16 MAA123 Tentamen Sida 5 (av 5) Del 4: TEN2 del B Om du är godkänd på del 3 så kan den här delen ge dig överbetyg på kursen. Det är frivilligt att skriva den. Väljer du att inte göra det så får du slutbetyg poäng här ger betyg 4 och 9 12 poäng ger betyg 5 på tentan. 13 En elementär matris är en matris som man fått genom att göra exakt en elementär radoperation på enhetsmatrisen. Om man multiplicerar en matris med en elementär matris (från vänster) så blir slutresultatet att man har genomfört radoperationen på matrisen ifråga. Alla inverterbara matriser kan skrivas som produkt av elementära matriser (ungefär som att alla heltal större än ett kan skrivas som produkt av primtal, med skillnaden att det med matriserna går att göra på flera olika sätt). Skriv matrisen A= som produkt av elementära matriser. (4p) 14 Om man vet vad u v och u w är, och dessutom känner v och w, räcker detta för att ta reda på u? Om ja: hur gör man? Om nej: exakt vad kan man få reda på, och vad skulle man behöva veta mer för att entydligt bestämma u? (4p) 15 Anta att z 1, z 2 och z 3 är tre olika komplexa tal som uppfyller z 1 z 2 = i(z 3 z 2 ). Beräkna z 1 z 3 z 1 z 2 (4p)

17 Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra ÖVN1, ÖVN2, TEN Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Information finns på de respektive delskrivningarna. Frågor kan ställas till: Hillevi Gavel, som nås på Övriga anvisningar: Skriv läsbart. Förklara alla resonemang som inte är trivialt uppenbara. Se till att det framgår vad svaret på frågan är. Om du inte kan lösa en uppgift fullständigt men har några idéer, skriv då ner dem. Det kan ge delpoäng. OBS! Del 1 och 2 är omexamination av kursmomenten ÖVN1 och ÖVN2. Om du redan är godkänd på något av dessa moment så ska du inte skriva motsvarande del av tentan. Del 3 är omexamination TEN2 del A. Om du är godkänd på TEN2 eller på ÖVN3 sedan föregående läsår så ska du inte skriva denna del. Del 4 är TEN2 del B, den del som kan ge överbetyg. Den är frivillig, men kan bara skrivas av de som inte redan är godkända på TEN2.

18 MAA123 Tentamen Sida 2 (av 6) Del 1: ÖVN 1 Denna del är är omexamination av ÖVN1 och ska inte skrivas av de som redan är godkända på ÖVN1. För godkänt fordras minst 5 poäng. 1 Vi har här två matriser: 2 1 A= 0 4 B= Beräkna, eller förklara varför det är omöjligt: (a) A+ B (b) AB 2 Lös nedanstående tre ekvationssystem på ett effektivt sätt: 2x+5y=4 2a+5b=25 2s+5t= 18 x+2y=1 a+2b=10 s+2t= 7 Se till att det klart och tydligt framgår vad lösningen är! (För full poäng måste lösningsmetoden vara väl vald.) 3 Matrismultiplikation är ett räknesätt som på många sätt påminner om vanlig multiplikation av tal. Många räkneregler och principer är likadana. Men det överensstämmer inte helt och hållet. (a) Säg något (räkneregel, princip, problemlösningsmetod) som är precis likadant för vanlig multiplikation och matrismultiplikation. (b) Säg något som inte är precis likadantför vanlig multiplikation och matrismultiplikation. 4 (a) Beräkna inversen till nedanstående matris, om det är möjligt: A= Se till att det framgår vad svaret är! (b) Hur många lösningar har nedanstående ekvationssystem? y+5z= 123 3x+9y 5z= 456 x+3y 2z= 789 Motivera!

19 MAA123 Tentamen Sida 3 (av 6) Del 2: ÖVN2 Denna del är omexamination av ÖVN2 och ska inte skrivas av de som redan är godkända på ÖVN2. För godkänt fordras minst 5 poäng. 5 Vad innebär det att en bas är ortonormerad? (Vi vill ha själva definitionen.) 6 Vi har två 3 3-matriser, A och B. det(a)=5, det(b)= 2. Kan man med denna information beräkna (a) det(3a) (b) det(ba) Om ja, vad blir det? Om nej, förklara varför inte. 7 Vi har vektorerna u=(3, 0, 4), v=(1, 3, 2) och w=( 2, 0, 4) (angivna i samma bas). Är vektorerna linjärt oberoende? Motivera! 8 Denna uppgift ska lösas på nästa blad av skrivningen. Bladet ska rivas av och lämnas in med de övriga lösningspappren.

20 Kod: Code Kurskod: Course code Bladnr: Page nr Uppgift nr: Task nr Kursnamn: Course title 8 Detta papper ska rivas av och lämnas in tillsammans med de övriga lösningspappren. Glöm inte att fylla i sidhuvudet! I figuren har vi ritat representanter för vektorerna u 1 och u 2. Rita in representanter för de vektorer som i basen{u 1, u 2 } har följande koordinater: (a) (0, 4) (b) (3, 5) (c) ( 4, 2) Se till att det klart framgår vilket svar som hör till vilken fråga! Poängen avrundas till närmsta heltal. u 1 u 2

21 MAA123 Tentamen Sida 5 (av 6) Del 3: TEN2 del A Denna del är omexamination av TEN2 del A och ska inte skrivas av de som redan är godkända på TEN2 och inte heller av de som läste kursen förra läsåret och som är godkända på ÖVN3. För godkänt fordras minst 5 poäng. 9 Vi har punkten P : (5, 5, 7), linjenl : (x, y, z)=( 4, 1, 3)+t(3, 2, 1) och planet Π : x+y+z=8 (angivna i samma koordinatsystem). (a) Ligger P pål? Motivera! (b) Ligger P iπ? Motivera! 10 Vi har vektorerna u = (1, 3, 5) och v = ( 2, 4, 6) (angivna i samma ON-bas). (a) Ange en vektor som är vinkelrät mot både u och v. (b) Ange någon annan vektor som också är vinkelrät mot både u och v. 11 (a) Rita en bild som visar vad som menas med projektionen av vektorn v på vektorn u, proj u v. Se till att det klart framgår vilken vektor som är vilken! Rättningsnorm: Det måste verkligen framgå vilken vektor i bilden som är vilken. Och bilden ska föreställa projektionen på u och inte på v. (b) Med vilken formel kan man beräkna proj u v? (Motivering behövs ej.) 12 Ta fram skärningslinjen mellan planenπ 1 : x+2y 8z=0 ochπ 2 : 2x+y 10z= 3 (angivna i samma ON-system). Om det inte finns någon skärningslinje, bestäm istället avståndet.

22 MAA123 Tentamen Sida 6 (av 6) Del 4: TEN2 del B Denna del kan endast skrivas av de som inte redan har betyg på TEN2. Om du skriver godkänt på del 3 så kan den här delen ge dig överbetyg på kursen. Det är frivilligt att skriva den. Väljer du att inte göra det så får du slutbetyg poäng här ger betyg 4 och 9 12 poäng ger betyg 5 på tentan. 13 Vi har vektorerna u = (1, 2, 2) och v = (1, 1, 0) (angivna i samma ON-bas). Bestäm en vektor w som uppfyller följande: (a) Vinkeln mellan u och w är 60. (b) Vinkeln mellan v och w är 45. (c) Normen för w är 2. (4p) 14 Anledningen till att man använder polär form för komplexa tal är att man får det trevliga sambandet produktens belopp är lika med produkten av beloppen, produktens argument är lika med summan av argumenten. Bevisa att detta verkligen stämmer! (4p) 15 Hitta alla 2 2-matriser A som uppfyller A 2 = M 0 där M 0 är nollmatrisen. (A 2 betyder A gånger A.) (4p)

23 Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Test Detta test är examination på ÖVN1. Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Detta test ger maximalt 8 poäng. För godkänt fordras minst 5 poäng. Frågor kan ställas till: Hillevi Gavel, som nås på telefon Övriga anvisningar: Skriv läsbart. Förklara alla resonemang som inte är trivialt uppenbara. Se till att det framgår vad svaret på frågan är. Om du inte kan lösa en uppgift fullständigt men har några idéer, skriv då ner dem. Det kan ge delpoäng. 1.1 Vi har här två matriser: A = B = Beräkna, eller förklara varför det är omöjligt: (a) A + B (b) AB 1.2 (a) Lös nedanstående ekvationssystem med Gauss-Jordans metod: 3x 15y + 9z = 21 3x + 6y 9z = 21 2x + 10y 6z = 14 Uträkningen ska finnas med, och svaret ska ges på formen x =..., y =..., z =... eller bestå av ordet olösligt. (b) Visa att din lösning är korrekt. Om systemet saknar lösning, förklara hur du såg det. 1.3 (a) Vad är transponatet till en matris A? Ange beteckning och formell definition. (b) Vad är inversen till en matris A? Ange beteckning och formell definition. 1.4 Matrisen X uppfyller X = [ 9 15 ] Vad är X?

24 Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Test Detta test är examination på ÖVN1. Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Detta test ger maximalt 8 poäng. För godkänt fordras minst 5 poäng. Frågor kan ställas till: Hillevi Gavel, som nås på Övriga anvisningar: Skriv läsbart. Förklara alla resonemang som inte är trivialt uppenbara. Se till att det framgår vad svaret på frågan är. Om du inte kan lösa en uppgift fullständigt men har några idéer, skriv då ner dem. Det kan ge delpoäng. 2.1 Vi har vektorerna u=(5, 2, 3), v=(2, 4, 2) och w=(4, 8, 0) (angivna i samma bas). Skriv w som linjärkombination av u och v, om det är möjligt. Förklara annars varför det inte går. 2.2 Vi har matrisen A= (a) Beräkna det A. (b) Är A inverterbar? Motivera! 2.3 Vi har vektorerna u och v, där u =10 och v =15. Mellan vilka gränser ligger u+v? 2.4 Denna uppgift ska lösas på nästa sida av skrivningen. Sidan ska rivas av och lämnas in med de övriga lösningspappren.

25 Kod: Code Kurskod: Course code Bladnr: Page nr Uppgift nr: Task nr Kursnamn: Course title 2.4 Denna sida ska rivas av och lämnas in tillsammans med de övriga lösningspappren. Glöm inte att fylla i sidhuvudet! I figuren har vi ritat representanter för vektorerna u 1 och u 2. Rita in representanter för de vektorer som i basen{u 1, u 2 } har följande koordinater: (a) v 1 = (4, 3) (b) v 2 = ( 3, 4) (c) v 3 = (5, 1) Se till att det klart framgår vilket svar som hör till vilken fråga! Poängen avrundas till närmsta heltal. u 1 u 2

26 Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Test Detta test är examination på ÖVN3. Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Detta test ger maximalt 8 poäng. För godkänt fordras minst 5 poäng. Frågor kan ställas till: Hillevi Gavel, som nås på Övriga anvisningar: Skriv läsbart. Förklara alla resonemang som inte är trivialt uppenbara. Se till att det framgår vad svaret på frågan är. Om du inte kan lösa en uppgift fullständigt men har några idéer, skriv då ner dem. Det kan ge delpoäng. 3.1 Vi har linjerna l 1 : (x, y, z) = ( 4, 2, 3) + t(3, 0, 2) och l 2 : (x, y, z) = (2, 2, 7)+t( 3, 0, 2) (i samma koordinatsystem). Är dessa linjer olika eller samma? Motivera! 3.2 En triangel har hörn i punkterna P : (3, 4, 0), Q : (3, 2, 5) och R : (4, 4, 7). Bestäm triangelns area. (ON-system) 3.3 Skalärprodukt är ett räknesätt som har stora likehter med vanlig multiplikation. Men det är inte precis likadant. (a) Säg något (räkneregel, princip, problemlösningsmetod) som fungerar precis likadant för skalärprodukt och vanlig multiplikation. (b) Säg något som inte fungerar likadant för skalärprodukt och vanlig multiplikation. 3.4 Vi har planen Π 1 : x + 2y 2z = 0 och Π 2 : x 2y + 2z = 18. Om planen skär varandra, bestäm vinkeln mellan dem. Bestäm i annat fall avståndet. (ONsystem)

27 Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Tentamen Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Information finns på de respektive delskrivningarna. Frågor kan ställas till: Hillevi Gavel, som nås på Övriga anvisningar: Skriv läsbart. Förklara alla resonemang som inte är trivialt uppenbara. Se till att det framgår vad svaret på frågan är. Om du inte kan lösa en uppgift fullständigt men har några idéer, skriv då ner dem. Det kan ge delpoäng. OBS! Del 1 och 2 är omexamination av kursmomenten ÖVN1 och ÖVN2. Om du redan är godkänd på något av dessa moment så ska du inte skriva motsvarande del av tentan. Del 3 är omexamination TEN2 del A, som gavs 25 maj. Om du fick minst 5 poäng då eller är godkänd på ÖVN3 sedan föregående läsår så ska du inte skriva denna del. Del 4 är TEN2 del B, den del som kan ge överbetyg. Den är frivillig.

28 MAA123 Tentamen Sida 2 (av 5) Del 1: ÖVN 1 Denna del är är omexamination av ÖVN1 och ska inte skrivas av de som redan är godkända på ÖVN1. För godkänt fordras minst 5 poäng. 1 (a) Beräkna inversen till nedanstående matris (förutsatt att det är möjligt): A= Se till att det klart och tydligt framgår vad svaret är! (b) Visa att den beräknade inversen är korrekt eller förklara hur du såg att det inte finns någon. 2 Matrisen X uppfyller 1 0 X 3 1 =[ 1 2 ] 0 2 Vad är X? 3 (a) Lös nedanstående ekvationssystem med Gauss-Jordans metod: x 7y+2z+ 3w= 4 2x+11y+5z 12w= 8 x 5y 4z+ 7w= 0 Uträkningen ska finnas med, och svaret ska ges på formen x=..., y=..., z=..., w=... eller bestå av ordet olösligt. (b) Visa att din lösning är korrekt. Om systemet saknar lösning, förklara hur du såg det. 4 Vi har en m n-matris A och en p q-matrix B. (a) Vad krävs av talen m, n, p och q för att A+ B ska gå att beräkna, och vilken storlek får A+ B? (b) Vad krävs av talen m, n, p och q för att AB ska gå att beräkna, och vilken storlek får AB?

29 MAA123 Tentamen Sida 3 (av 5) Del 2: ÖVN2 Denna del är omexamination av ÖVN2 och ska inte skrivas av de som redan är godkända på ÖVN2. För godkänt fordras minst 5 poäng. 5 Vi har vektorerna u=(4, 2, 5), v=(2, 2, 6) och w=( 3, 1, 2) (angivna i samma bas). Är vektorerna linjärt oberoende? Motivera! 6 A är en 3 3-matris. det A=4. Ange (a) det( 2A) (b) det(a 1 ) (c) det(a T ) (Poängsumman avrundas till närmsta heltal.) 7 Nedanstående bild innehåller representanter för vektorerna u och v. Rita av den på ditt skrivpapper. u v Illustrera hur man tar fram en representant för (a) u+v (b) u v OBS! Lösningen ska vara grafisk. Det ska alltså inte finnas med någon beräkning, utan det ska framgå hur man med enbart penna och linjal tar fram en bild av svaret. Se också till att det framgår vad som är svaret! 8 (a) Vad fordras för att en grupp vektorer ska gå att använda som en bas för rummet? (b) Vad använder man en bas till?

30 MAA123 Tentamen Sida 4 (av 5) Del 3: TEN2 del A Denna del är omexamination av TEN2 del A och ska inte skrivas av de som fick minst 5 p på skrivningen 23 maj, och inte heller av de som läst kursen tidigare och som är godkända på ÖVN3 eller TEN2. För godkänt fordras minst 5 poäng. 9 u =10, v =2 och vinkeln mellan vektorerna är 135. Bestäm (a) u v (b) u v 10 PlanetΠkan på parameterform skrivasπ : (x, y, z)=( 5, 2, 4)+ s( 1, 3, 0)+ t(2, 5, 1). SkrivΠpå ekvationsform (utan parameterar). Du kan utgå från ONsystem. 11 Två av de fyra nedan givna uttrycken är felaktiga. Tala om vilka två och vad det är för fel på dem. (i) (u v) w (ii) (u v) w (iii) au+bv (iv) u v v Se till att det framgår vilket uttryck som hör ihop med vilken förklaring. 12 Skär linjerna l 1 : (x, y, z) = ( 5, 1, 7)+t(3, 1, 2) och l 2 : (x, y, z) = ( 6, 8, 7) + t( 4, 2, 3) varandra, och i så fall vardå?

31 MAA123 Tentamen Sida 5 (av 5) Del 4: TEN2 del B Om du är godkänd på del 3 så kan den här delen ge dig överbetyg på kursen. Det är frivilligt att skriva den. Väljer du att inte göra det så får du slutbetyg poäng här ger betyg 4 och 9 12 poäng ger betyg 5 på TEN2. (Om du redan har betyg på TEN2 så kan du inte skriva den här delen.) 13 Lös nedanstående matrisekvation, eller förklara varför den är olösbar: X X= (4p) 14 (a) Beskriv någon metod för att bestämma avståndet mellan en punkt och ett plan. Beskrivningen ska vara så tydlig att en kurskamrat som inte läst just det avsnittet (men har läst allt annat i kursen) skulle kunna lösa ett problem med hjälp av din beskrivning. Det ska också framgå varför metoden ger rätt svar. (3p) (b) Beskriv någon annan metod att lösa samma problem. Här räcker det att beskrivningen är så pass tydlig att en lärare kan förstå vad du menar. 15 De komplexa talen 0, z och w är hörnpunkter på en triangel i det komplexa talplanet. Visa att denna triangel är liksidig om och endast om z 2 = w 2 = 2 Re(zw). (4p)

MAA123 Grundläggande vektoralgebra

MAA123 Grundläggande vektoralgebra Test 1 2009.09.14 08.30 09.30 Poäng: Detta test ger maximalt 8 poäng. För godkänt fordras minst 5 poäng. Frågor kan ställas till: Hillevi Gavel, som nås på 073 763 27 88 Övriga anvisningar: Skriv läsbart.

Läs mer

MAA123 Grundläggande vektoralgebra

MAA123 Grundläggande vektoralgebra Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Tentamen 2011.08.11 08.30 11.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

MAA123 Grundläggande vektoralgebra

MAA123 Grundläggande vektoralgebra Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Test 1 Lösningsförslag 2009.09.14 08.30 09.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA123 Algebra för ingenjörer Tentamen 10.08.25 08.30 11.30 Hjälpmedel: Endast skrivmaterial (gradskiva tillåten). Poängfördelning

Läs mer

MAA123 Grundläggande vektoralgebra

MAA123 Grundläggande vektoralgebra Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Tentamen TEN4 Lösningsförslag 2012.01.09 14.30 16.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva

Läs mer

MAA123 Grundläggande vektoralgebra

MAA123 Grundläggande vektoralgebra Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Tentamen TEN4 Lösningsförslag 2012.06.07 08.30 10.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva

Läs mer

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning? Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2

Läs mer

MAA123 Grundläggande vektoralgebra

MAA123 Grundläggande vektoralgebra Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Tentamen Lösningsförslag 2011.08.11 08.30 11.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva

Läs mer

Beräkna determinanten för produkten MMM Skissa, och bestäm arean av, det i det komplexa talplanet belägna området

Beräkna determinanten för produkten MMM Skissa, och bestäm arean av, det i det komplexa talplanet belägna området MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA1 Grundläggande vektoralgebra, TEN5 alt.

Läs mer

3i)z 2013(1 ) och ge i det komplexa talplanet en illustration av lösningsmängden.

3i)z 2013(1 ) och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN6 alt.

Läs mer

1. Beräkna determinanten

1. Beräkna determinanten MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA3 Grundläggande vektoralgebra, TEN6 alt.

Läs mer

Studiehandledning till. MAA123 Grundläggande vektoralgebra

Studiehandledning till. MAA123 Grundläggande vektoralgebra Studiehandledning till MAA13 Grundläggande vektoralgebra vid kurstillfället i period 4 läsåret 013/14 Version 014-05- Information om kursen MAA13 Avsikt Avsikten med kursen MAA13 Grundläggande vektoralgebra

Läs mer

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden.

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra TEN4 Datum:

Läs mer

3. Vilka taltripler (x, y, z) satisfierar ekvationssystemet 3x + 2y 3z = 3 2x + y + 4z = 7

3. Vilka taltripler (x, y, z) satisfierar ekvationssystemet 3x + 2y 3z = 3 2x + y + 4z = 7 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN5 alt.

Läs mer

2. Vilka taltripler (x, y, z) satisfierar ekvationssystemet x + 2y 13z = 4 4x y + 17z = 5

2. Vilka taltripler (x, y, z) satisfierar ekvationssystemet x + 2y 13z = 4 4x y + 17z = 5 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Grundläggande vektoralgebra TEN3 Datum:

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Svar till tentan. Del A. Prov i matematik Linj. alg. o geom

Uppsala Universitet Matematiska Institutionen Bo Styf. Svar till tentan. Del A. Prov i matematik Linj. alg. o geom Uppsala Universitet Matematiska Institutionen Bo Styf Prov i matematik Linj. alg. o geom. 1 2011-05-07 Svar till tentan. Del A 1. För vilka värden på a är ekvationssystemet { ax + y 1 2x + (a 1y 2a lösbart?

Läs mer

{ (1 + i)z iw = 2, iz + (2 + i)w = 5 + 2i, där i är den imaginära enheten. Ange rötterna z och w på rektangulär form.

{ (1 + i)z iw = 2, iz + (2 + i)w = 5 + 2i, där i är den imaginära enheten. Ange rötterna z och w på rektangulär form. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Grundläggande vektoralgebra Datum: 7

Läs mer

2. Lös ekvationen z i = 2 z + 1 och ge i det komplexa talplanet en illustration av lösningsmängden.

2. Lös ekvationen z i = 2 z + 1 och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA3 Grundläggande vektoralgebra, TEN6 alt.

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag 0.06. 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

(a) Bestäm för vilka värden på den reella konstanten c som ekvationssystemet är lösbart. (b) Lös ekvationssystemet för dessa värden på c.

(a) Bestäm för vilka värden på den reella konstanten c som ekvationssystemet är lösbart. (b) Lös ekvationssystemet för dessa värden på c. UPPSALA UNIVERSITET Matematiska institutionen Jörgen Östensson Prov i matematik X, geo, frist, lärare LINJÄR ALGEBRA och GEOMETRI I 200 0 08 Skrivtid: 8.00.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

MVE520 Linjär algebra LMA515 Matematik, del C

MVE520 Linjär algebra LMA515 Matematik, del C MATEMATIK Chalmers tekniska högskola Tentamen MVE52 Linjär algebra LMA55 Matematik, del C Hjälpmedel: inga Datum: 28-8-29 kl 8 2 Telefonvakt: Sebastian Jobjörnsson ankn 6457 Examinator: Håkon Hoel Tentan

Läs mer

Betygsgränser: För betyg. Vem som har. Hjälpmedel: av papperet. Uppgift. 1. (4p) 0. (2p) 3 (2p) Uppgift. 2. (4p) B-2C om. vektor A (1p) b) Bestäm k så

Betygsgränser: För betyg. Vem som har. Hjälpmedel: av papperet. Uppgift. 1. (4p) 0. (2p) 3 (2p) Uppgift. 2. (4p) B-2C om. vektor A (1p) b) Bestäm k så Kurs: HF90 Matematik, Moment TEN (Linjär Algebra) ) Datum: 4 augusti 08 Skrivtid 08:00 :000 Examinator: Armin Halilovic För godkänt betyg krävss 0 av maxx 4 poäng. Betygsgränser: För betyg A, B, C, D,

Läs mer

Kontrollskrivning i Linjär algebra ,

Kontrollskrivning i Linjär algebra , LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: TATA Provkod: KTR Kontrollskrivning i Linjär algebra 7 8, 8. Inga hjälpmedel. Ej räknedosa. På uppgift skall endast svar ges. Varje

Läs mer

Bestäm den matris B som löser ekvationen = 1 2

Bestäm den matris B som löser ekvationen = 1 2 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN5 alt.

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista

Läs mer

x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z

x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z Ett nytt försök med att ta fram inversen till en matris Innan vi startar med att bestämma inversen till en matris måste vi veta varför vi skulle kunna behöva den. Vi har A x b som är resultatet av en omskrivning

Läs mer

Modul 1: Komplexa tal och Polynomekvationer

Modul 1: Komplexa tal och Polynomekvationer Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +

Läs mer

4x az = 0 2ax + y = 0 ax + y + z = 0

4x az = 0 2ax + y = 0 ax + y + z = 0 LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 206-03-4 kl 8 3 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter

Läs mer

= ( 1) ( 1) = 4 0.

= ( 1) ( 1) = 4 0. MATA15 Algebra 1: delprov 2, 6 hp Fredagen den 17:e maj 2013 Skrivtid: 800 1300 Matematikcentrum Matematik NF Lösningsförslag 1 Visa att vektorerna u 1 = (1, 0, 1), u 2 = (0, 2, 1) och u 3 = (2, 2, 1)

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

Lösningar till utvalda uppgifter i kapitel 1

Lösningar till utvalda uppgifter i kapitel 1 Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln

Läs mer

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:

Läs mer

1 Linjära ekvationssystem. 2 Vektorer

1 Linjära ekvationssystem. 2 Vektorer För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX

Läs mer

z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t)

z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t) Tentamenskrivning MATA15 Algebra: delprov 2, 6hp Fredagen den 16 maj 2014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Låt l vara linjen genom punkten (5, 4, 4) som är vinkelrät mot planet 2x+2y +3z

Läs mer

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 010 kl 14.00-19.00. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen. Betygsgränser:

Läs mer

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u = Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

1 Vektorer i koordinatsystem

1 Vektorer i koordinatsystem 1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en

Läs mer

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor TENTAMEN Matematik Kurskod HF903 Skrivtid 3:5-7:5 Onsdagen 5 september 03 Tentamen består av 3 sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av 3 uppgifter som totalt kan

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2 SF64 Algebra och geometri Lösningsförslag till tentamen 4--4 DEL A. I rummet R har vi punkterna P = (,, 4) och Q = (,, ), samt linjen L som ges av vektorerna på formen t t, t där t är en reell parameter.

Läs mer

MMA127 Differential och integralkalkyl II

MMA127 Differential och integralkalkyl II Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6 Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av

Läs mer

Vektorgeometri och funktionslära

Vektorgeometri och funktionslära Vektorgeometri och funktionslära Xantcha 009 Del A: Beräkningsdel Räkningar behöver inte redovisas. Samtliga uppgifter måste vara korrekta om tentamen skall godkännas (möjligen kan något slarvfel tolereras),

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Föreläsning 2 David Rydh Institutionen för matematik KTH 28 augusti 2018 Detta gjorde vi igår Punkter Vektorer och skalärer, multiplikation med skalär Linjärkombinationer, spannet

Läs mer

Tentamen 1 i Matematik 1, HF1903, för BD10 onsdag 22 september 2010, kl

Tentamen 1 i Matematik 1, HF1903, för BD10 onsdag 22 september 2010, kl entamen i Matematik, HF9, för D onsdag september, kl 8.. Hjälpmedel: Endast formelblad (miniräknare är inte tillåten) För godkänt krävs poäng av möjliga poäng (betygsskala är,,,d,e,fx,f). Den som uppnått

Läs mer

SKRIVNING I VEKTORGEOMETRI Delkurs

SKRIVNING I VEKTORGEOMETRI Delkurs SKRIVNING I VEKTORGEOMETRI Delkurs 1 2015 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN3 Lösningsförslag.6.8 4.3 6.3 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 Problem 1. Avgör för vilka värden på a som ekvationssystemet nedan har oändligt antal lösningar. Ange lösningarna i dessa fall! Lösning: Genom x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 1 2 3 1 a 11 2 1 1 =

Läs mer

Vektorgeometri. En vektor v kan representeras genom pilar från en fotpunkt A till en spets B.

Vektorgeometri. En vektor v kan representeras genom pilar från en fotpunkt A till en spets B. Vektorgeometri En vektor v kan representeras genom pilar från en fotpunkt A till en spets B. Två pilar AB, A B tilllhör samma vektor om de har samma riktning och samma längd. Vi skriver v = AB = B A B

Läs mer

October 9, Innehållsregister

October 9, Innehållsregister October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................

Läs mer

Enhetsvektorer. Basvektorer i två dimensioner: 1 1 Basvektorer i tre dimensioner: Enhetsvektor i riktningen v: v v

Enhetsvektorer. Basvektorer i två dimensioner: 1 1 Basvektorer i tre dimensioner: Enhetsvektor i riktningen v: v v Vektoraddition u + v = u + v = [ ] u1 u 2 u 1 u 2 + u 3 + [ v1 v 2 ] = v 1 v 2 = v 3 [ u1 + v 1 u 2 + v 2 u 1 + v 1 u 2 + v 2 u 3 + v 3 ] Multiplikation med skalär α u = α [ u1 u 2 α u = α ] = u 1 u 2

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014 SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 214 Skrivtid: 14.-19. Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN Lösningsförslag 0.08.06 08.0 0.0 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem

Läs mer

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa

Läs mer

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF624 Algebra och geometri Lösningsförslag till tentamen 22--6 DEL A Planet H ges av ekvationen x + 2y + z =, och planet W ges på parameterform som 2t 4s, t + 2s där s och t är reella parametrar (a) Bestäm

Läs mer

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 08.00-1.00. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. Bonuspoäng

Läs mer

Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd.

Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd. Tentamen i Linjär algebra, HF94 Datum: 4 okt 8 Skrivtid: 4:-8: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C,

Läs mer

SF1624 Algebra och geometri Lösningsförsag till modelltentamen

SF1624 Algebra och geometri Lösningsförsag till modelltentamen SF1624 Algebra och geometri Lösningsförsag till modelltentamen DEL A (1) a) Definiera begreppen rektangulär form och polär form för komplexa tal och ange sambandet mellan dem. (2) b) Ange rötterna till

Läs mer

TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Tisdagen 31 maj Tentamen består av 3 sidor

TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Tisdagen 31 maj Tentamen består av 3 sidor TENTAMEN Linjär algebra och analys Kurskod HF1006 Skrivtid 8:15-13:00 Tisdagen 31 maj 2011 Tentamen består av 3 sidor Hjälpmedel: Mathematica samt allt tryckt material Tentamen består av 12 uppgifter,

Läs mer

1 som går genom punkten (1, 3) och är parallell med vektorn.

1 som går genom punkten (1, 3) och är parallell med vektorn. KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med

Läs mer

Detta cosinusvärde för vinklar i [0, π] motsvarar α = π 4.

Detta cosinusvärde för vinklar i [0, π] motsvarar α = π 4. LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 8-- kl 4-9 a) Triangelns area är en halv av parallellograms area som spänns upp av tex P P (,, ) och P P (,, ), således area av P P P (,, ) (,,

Läs mer

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = 62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

{ 1, om i = j, e i e j = 0, om i j.

{ 1, om i = j, e i e j = 0, om i j. 34 3 SKALÄPRODUKT 3. Skaläprodukt Definition 3.. Skalärprodukten mellan två vektorer u och v definieras där θ är vinkeln mellan u och v. u v = u v cos θ, Anmärkning 3.. Andra beteckningar för skalärprodukt

Läs mer

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att Här följer 3 problem att lösa. Längre bak i dokumentet finns utförliga penna-papper lösningar. Filen Föreläsning08.zip finns motsvarande lösningar utförda med Mathematica. Problem 1. Bestäm a så att avståndet

Läs mer

. Bestäm Rez och Imz. i. 1. a) Låt z = 1+i ( b) Bestäm inversen av matrisen A = (3p) x + 3y + 4z = 5, 3x + 2y + 7z = 3, 2x y + z = 4.

. Bestäm Rez och Imz. i. 1. a) Låt z = 1+i ( b) Bestäm inversen av matrisen A = (3p) x + 3y + 4z = 5, 3x + 2y + 7z = 3, 2x y + z = 4. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 3 oktober 2014 Skrivtid:

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade

Läs mer

1. (a) (1p) Undersök om de tre vektorerna nedan är linjärt oberoende i vektorrummet

1. (a) (1p) Undersök om de tre vektorerna nedan är linjärt oberoende i vektorrummet 1 Matematiska Institutionen, KTH Lösningar till tentamensskrivning på kursen Linjär algebra, SF1604, för CDA- TE, CTFYS och vissa CL, fredagen den 13 mars 015 kl 08.00-13.00. Examinator: Olof Heden. OBS:

Läs mer

Linjär Algebra M/TD Läsvecka 1

Linjär Algebra M/TD Läsvecka 1 Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.08.09 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Tjugofemte föreläsningen Mats Boij Institutionen för matematik KTH 10 december, 2009 Tentamens struktur Tentamen består av tio uppgifter uppdelade på två delar, Del A och Del

Läs mer

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 15 mars 2012 kl

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 15 mars 2012 kl Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra, SF604, den 5 mars 202 kl 08.00-3.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN3 Lösningsförslag 0.03.30 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

M = c c M = 1 3 1

M = c c M = 1 3 1 N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny

Läs mer

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

En vektor är mängden av alla sträckor med samma längd och riktning.

En vektor är mängden av alla sträckor med samma längd och riktning. En vektor är mängden av alla sträckor med samma längd och riktning. Slappdefinition En vektor är en riktad sträcka som får parallellförflyttas. Tänk på vektorn som en pil. Betecknar vektorer med små bokstäver

Läs mer

Slappdefinition. Räkning med vektorer. Bas och koordinater. En vektor är mängden av alla sträckor med samma längd och riktning.

Slappdefinition. Räkning med vektorer. Bas och koordinater. En vektor är mängden av alla sträckor med samma längd och riktning. Slappdefinition En vektor är mängden av alla sträckor med samma längd och riktning. En vektor är en riktad sträcka som får parallellförflyttas. Tänk på vektorn som en pil. Betecknar vektorer med små bokstäver

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

Eftersom ON-koordinatsystem förutsätts så ges vektorernas volymprodukt av:

Eftersom ON-koordinatsystem förutsätts så ges vektorernas volymprodukt av: MATA15 Algebra, delprov, 6 hp Lördagen den 8:e december 01 Skrivtid: 800 100 Matematikcentrum Matematik NF Lösningsförslag 1 Ligger punkterna P 1 = (0, 1, 1), P = (1,, 0), P = (, 1, 1) och P 4 = (, 6,

Läs mer

Explorativ övning Vektorer

Explorativ övning Vektorer Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken

Läs mer

Linjär algebra och geometri 1

Linjär algebra och geometri 1 UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Ryszard Rubinsztein Oswald Fogelklou Linjär algebra och geometri 1 för K1, W1, KandKe1 Höstterminen 2009 Kurslitteratur H.Anton, C.Rorres, Elementary Linear

Läs mer

Linjär algebra och geometri 1

Linjär algebra och geometri 1 UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Ryszard Rubinsztein Oswald Fogelklou Linjär algebra och geometri 1 för K1, W1, KandKe1 Höstterminen 2008 Kurslitteratur H.Anton, C.Rorres, Elementary Linear

Läs mer

2x+y z 5 = 0. e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,5) n 3 = n 1 n 2 =

2x+y z 5 = 0. e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,5) n 3 = n 1 n 2 = Problem 1. Nedan presenteras ekvationen för en rät linje och ett plan i rummet. Du ska avgöra om linjen är vinkelrät mot planet. x = 2 4t y = 3 2t z = 1+2t 2x+y z 5 = 0 Lösning: Linjen har riktningsvektorn

Läs mer

Tentamen TMV140 Linjär algebra Z

Tentamen TMV140 Linjär algebra Z Tentamen TMV40 Linjär algebra Z 307 kl. 08.30 2.30 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, 0703 088 304 Hjälpmedel: Inga, ej heller räknedosa För godkänt

Läs mer

8(x 1) 7(y 1) + 2(z + 1) = 0

8(x 1) 7(y 1) + 2(z + 1) = 0 Matematiska Institutionen KTH Lösningsförsök till tentamensskrivningen på kursen Linjär algebra, SF60, den juni 0 kl 08.00-.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag.8. 8.. Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna tentamen

Läs mer