Blixtkurs i komplex integration
|
|
- Mikael Karlsson
- för 6 år sedan
- Visningar:
Transkript
1 Blixtkurs i komplex integration Sven Spanne 8 oktober 996 Komplex integration Vad är en komplex kurvintegral? Antag att f z är en komplex funktion och att är en kurva i det komplexa talplanet. Man kan då beräkna den komplexa kurvintegralen av f över så här; gå genom kurvan under ett intervall a t b, dvs z z t genomlöper kurvan. Sampla intervallet som a t 0 t t n b. Det ger punkterna z k z t k på kurvan. Då är f z dz k k f z k z k f z k z k t k t k a b f z dz dt dt z z 2 z 0 z 3 z n z n Vad gör man om man kan reella kurvintegraler? Dela upp f och z i real- och imaginärdel, f u iv, z x iy, dz dx idy. Då är f z dz u iv dx idy udx vdy i vdx udy och alltså f z dz udx vdy i vdx udy Kan man sin Analys B så kan man kanske räkna ut de två reella kurvintegralerna till höger. Det enda exemplet Räknar man ut komplexa integraler med definitionen? Nej, det slipper man nästan alltid göra. Här nedan finns det enda (nästan) nödvändiga exemplet. Exempel Beräkna integralen av f z z a över cirkeln : z a r genomlöpt ett varv i positiv led.
2 KOMPLEX INTEGRATION 2 Kurvan ges av z a re it, 0 t 2π. Detta ger dz dt rieit och alltså är z a dz 2π re it rieit dt 0 0 2π idt 2πi r a Lägg märke framför allt till att värdet inte beror av hur stor cirkelns radie är. Alla integraler blir noll! Använder man Greens formel på uttrycken ovan finner man att f z dz 0 om är en sluten kurva f z är analytisk överallt innanför (och på) kurvan. (Detta kallas för auchys integralsats, sats 3.3). Alla integraler blir lika! Antag nu att två kurvor och 2 har samma begynnelsepunkt och samma slutpunkt. Om f z är analytisk överallt mellan kurvorna, så är 2 f z dz 2 f z dz Detta följer av att kurvan 2 (först, sedan 2 baklänges) är sluten och f z är analytisk överallt innanför den. Alltså är 2 0 enligt auchys integralsats. (Om de båda kurvorna skär varandra i fler punkter än början och slut får man tänka några ögonblick till.) Anm. I sats 3.6 finns beskrivet ett antal relationer mellan olika egenskaper hos f som har med analyticitet och integration att göra.
3 2 RESIDYKALKYL 3 Att återbilda funktioner Om är en sluten positivt orienterad kurva (som inte skär över sig själv) f z är analytisk innanför (och på) a är en punkt innanför så är f a 2πi f z z a dz Man kan alltså rekonstruera f innanför kurvan med hjälp endast av dess värden på kurvan. Formeln kallas för auchys integralformel (sats 3.8). Härledningen går mycket förkortat till ungefär så här (med r : z a r): f z z a dz f a f z r z a dz dz f a 2πi r z a r a Först flyttar vi integrationsvägen till en liten cirkel kring a, sedan använder vi att f z f a om z a. 2 Residykalkyl Inte alla integraler är noll! Integraler över en sluten kurva är som synes ovan inte alltid noll och kan därför vara användbara. Anledningen är då att f z inte är analytisk överallt innanför kurvan. Det enklaste fallet, och det enda vi skall se på här, är att f z är analytisk utom i ett antal enstaka punkter. I allmänhet svarar dessa punkter mot nollställen i en nämnare, och de kallas då för funktionens poler. I figuren är polerna markerade med kryss. I fall där funktionen är analytisk utom i ett antal poler finns effektiva metoder att beräkna integralens värde utan att man behöver leta efter primitiva funktioner etc. Detta är en favoritmetod bland tekniker för att beräkna integraler.
4 3 ANVÄNDNINGAR AV RESIDYSATSEN 4 2. Residysatsen Idén för metoden är samma som i beviset av auchys integralformel. Man flyttar integrationskurvan utan att gå över singulariteter (punkter där f ej är analytisk). Då ändras inte integralens värde. Som framgår av figuren kan man ersätta det ursprungliga -et med små cirklar, en kring varje pol. z z z n Detta kan skrivas 2 n Nu inför man en speciell beteckning. Med residyn av funktionen f i punkten z talet Res f z f z dz z a 2πi a r a menas Förutsättningarna är a r är en (liten) cirkel med radie r och medelpunkt a, genomlöpt ett varv i positiv led funktionen f z är analytisk överallt innanför a r men ej (nödvändigtvis) i z a. Då beror värdet av integralen inte på r. (Faktorn 2πi gör det lättare att beräkna residyerna.) Resultatet är Residysatsen: Beräkning av residyer f z dz 2πi n k Res f z z z k För beräkning av residyer finns ett antal regler, som kan återfinnas på formelbladet. Ännu enklare är att använda Maple, som har en funktion residue som tar fram residyerna direkt. 3 Användningar av residysatsen Residysatsen har många användningar, men vi skall här bara se på några beräkningar av integraler över ett reellt intervall. Här måste man på något sätt fixa till en sluten kurva från det reella intervallet. Det finns två varianter:
5 3 ANVÄNDNINGAR AV RESIDYSATSEN 5 En reell integral, t ex över intervallet 0 t 2π, tolkas om som en integral över enhetscirkel (baklänges parametrisering) som sedan beräknas med residysatsen. En reell integral över hela reella axeln (generaliserad från till ) är gränsvärde av en integral från R till R då R. Integralen över R R utökas till en sluten kurva genom tillägg av en stor halvcirkel, vars bidrag sedan försvinner då R. I det senare fallet gäller det att verkligen verifiera att bidraget från den tillagda halvcirkeln försvinner, annars får man fel värde eller tror sig ha funnit ett värde på en divergent integral. I R R Rationella funktioner Se även avsnitt 3.6. Vi visar nedan hur man med Maple och residysatsen kan beräkna en relativt komplicerade integraler. Exempel 2 Beräkna integralen x 2 4 x 2 2 dx Lösning: Integranden har enkelpoler i i och dubbelpoler i 2i. Vi väljer att sluta integrationsvägen med en stor halvcirkel i övre halvplanet. i 2i 2i i I R R Integralen kan alltså beräknas med formlerna g z g x dx z 2 z πi Res z i g z Resg z z 2i Vi låter Maple beräkna den dels med sin egen metod (som här bygger på primitiva funktioner), dels med residykalkyl: readlib(residue); proc(f,a)... end
6 3 ANVÄNDNINGAR AV RESIDYSATSEN 6 g:=z->/(+z^2)/(4+z^2)^2; g : z z 2 4 z 2 2 Int(g(x),x=-infinity..infinity)=int(g(x),x=-infinity..infinity); x 2 4 x 2 2 dx 5 44 π 2*Pi*I*(residue(g(z),z=I)+residue(g(z),z=2*I)); Det blir lyckligtvis samma svar π Fouriertransformer Integraler av typen ovan går att klara med partialbråksuppdelning, även om det är jobbigare än med residymetoden. Nu kommer vi till en typ där det inte finns någon elementär primitiv funktion alls. En integral av typen e itx f x dx kallas för en Fourierintegral. (Parametern t svarar mot lärobokens ξ men är lättare att skriva för teknologer.) Den påminner om Fourierkoefficienterna, men är utsträckt över hela reella axeln i stället för över ett periodintervall. Om f t ex är en rationell funktion så beräknas Fourierintegralen med fördel med residymetoden, men här uppstår ett nytt problem. Antag att vi lägger till en halvcirkel i övre halvplanet. Kan verkligen integralen över den tillagda halvcirkeln försummas, dvs är e itz f z litet på halvcirkeln? Det visar sig (se läroboken) att detta hänger mest på exponentialfaktorn. Om z x iy så är itz itx ty och vi får e itz e Re itz e ty Om t 0 så är allt gott och väl, även y är positivt i övre halvplanet och e ty är litet där. Vi kan då använda residyformeln e ixt f x dx 2πi Rese itz f z t 0 z Imz 0 Om t 0 så fungerar det däremot inte. Man måste då i stället lägga till en halvcirkel i nedre halvplanet. Detta innebär att integrationskurvan R går runt i negativ led, vilket måste kompenseras med ett minustecken i residyformeln, som i detta fall alltså får utseendet e ixt f x dx R 2πi Rese itz f z t 0 z Imz 0 R
7 3 ANVÄNDNINGAR AV RESIDYSATSEN 7 Exempel 3 Vi beräknar Fourierintegralen e itx x 2 dx Lösning: Integranden är f z z 2 med poler i z i. I övre halvplanet ligger polen i och i undre halvplanet polen i. Maplekommandot i I R i R 2*Pi*I*residue(exp(I*t*z)/(z^2+),z=I); ger svaret πe t, vilket alltså är svaret då t 0. Maplekommandot i R i I R -2*Pi*I*residue(exp(I*t*z)/(z^2+),z=-I); ger svaret πe t, vilket är svaret då t 0. Integralens värde har alltså olika utseenden för t 0 och t 0. Med hjälp av absolutbelopp kan här de båda fallen sammanföras i en enda formel. Svar: Integralens värde är πe t. Observera att Maple ofta ger fel svar om man försöker räkna ut sådana integraler direkt! Kommandot int(exp(i*x)/(+x^2),x=-infinity..infinity) (alltså t ) ger svaret 0 som är helt fel! Trigonometriska integraler Idén är att en trigonometrisk integral av formen 0 2π R cost sint dt kan överföras på en komplex integral över enhetscirkeln z, och denna beräknas sedan lätt med residykalkyl. Parametriseringen är ju z re it, 0 t 2π. Detta ger dz ie it dt izdt sint e it it e 2i 2i z z cost e it it e 2 2 z z Exempel 4 Beräkna integralen Substitutionerna ovan ger efter förenkling I där är enhetscirkeln. I 0 4 2i z z 2π 4 sint dt iz dz 2 z 2 8iz dz
8 3 ANVÄNDNINGAR AV RESIDYSATSEN 8 Vi vill använda residysatsen och behöver därför nämnarens poler. Lösning av ekvationen ger z 2 8iz 0 z 2 4i Roten z medan z 2 alltså i 4 i 4 6 i 4 5 ligger utanför enhetscirkeln 5 ligger inuti. Residysatsen ger I 2 2πi Res z z 2 z 2 8iz 5 4πi Res z z 2 z 2 8iz i 4 5 i 4 5 Detta uttryck kan mycket lätt beräknas med residyregel 4 på formelbladet, om man vill träna komplex räkning för hand. Annars ger Maple svaret med kommandot -4*Pi*I*residue(/(z^2-8*I*z-),z=I*(4-sqrt(5))); I 2 5 π 5
Blixtkurs i komplex integration
Blxtkurs komplex ntegraton Sven Spanne 7 oktober 998 Komplex ntegraton Vad är en komplex kurvntegral? Antag att f z är en komplex funkton och att är en kurva det komplexa talplanet. Man kan då beräkna
Instuderingsfrågor i Funktionsteori
Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du
3. Analytiska funktioner.
33 Fysikens matematiska metoder : Studievecka 3. 3. Analytiska funktioner. Varför komplexa tal? Syfte : Att ur vissa funktioners uppträdande utanför reella axeln ( Nollställen poler m.m) kunna sluta sig
Läsanvisningar till kapitel
Läsanvisningar till kapitel 6. 6.7 6. Residuesatsen Hela kapitel 6 handlar om att beräkna olika typer av integraler på så gott som samma vis. Om ni kommmer ihåg från förra avsnittet om Laurentserieutvecklingar,
Lösningsmetodik för FMAF01: Funktionsteori
Lösningsmetodik för FMAF0: Funktionsteori Johannes Larsson, I2 0 mars 204 Allmänt Detta är lösningsmetoder för de vanligaste tentauppgifterna, grupperade efter hur ofta de kommer på tentan och därmed också
Bo E. Sernelius Residuer och Poler 27
Komple Analys Bo E Sernelius Residuer och Poler 7 RESIDUER OCH POLER I detta kapitel studerar vi de punkter där en funktion inte är analytisk Vi inför begreppet pol och lär oss räkna ut residuen i en pol
1. Lös ekvationen (2 i) sin z + cos z = 2 i. Svara med komplexa tal på formen a + bi. u(x, y) = φ(x)(1 y),
Tentamensproblem 003-0-3 Lös ekvationen ( i) sin z + cos z = i Svara med komplexa tal på formen a + bi Bestäm alla analytiska funktioner f = u + iv med realdel u(x, y) = φ(x)( y), där φ är en två gånger
Tentamen, Matematik påbyggnadskurs, 5B1304 fredag 20/ kl
Institutionen för Matematik KTH Mattias Dahl Tentamen, Matematik påbyggnadskurs, 5B134 fredag /8 4 kl. 14. 19. Lösningar 1. Lös differentialekvationen x 3 y + x y xy + y x 3 ln x, x >. Lösning: Motsvarande
KRAMERS-KRONIGS DISPERSIONSRELATIONER
Bo E. Sernelius Kramers-Kronigs Dispersionsrelationer 33 KRAMERS-KRONIGS DISPERSIONSRELATIONER I detta kapitel diskuterar vi vad som händer om en pol finns på integrationskonturen och vi härleder Kramers-Kronigs
Harmoniska funktioner
Harmoniska funktioner Lars Hörmander vt 98 Definitioner och grundläggande egenskaper Enligt definitionen är en analytisk funktion f i Ω C en C lösning till Cauchy-Riemanns differentialekvation f z =. Enligt
k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) =
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Funktionsteori 5 9 kl 4 9 Hjälpmedel: Bifogat formelblad. Lösningarna skall vara försedda med ordentliga motiveringar. Skriv fullständiga meningar och
Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik
KTH -matematik Problem i matematik EPR & MAT Flervariabelanalys Problem inför KS.. Låt F(, y, z) + y 3z + och G(, y, z) 3 + y 3 4z +. Visa att i en omgivning av punkten (,, ) definieras genom ekvationerna
Matematiska institutionen. Tentamen i Komplex analys (TATA45) kl v = Imf = coshxsiny +e y sinx+xy +1.
Linköpings universitet Matematiska institutionen Kurskod: TATA45 Provkod: TEN1 Tentamen i Komplex analys (TATA45) 2017-04-21 kl 14.00 19.00 Inga hjälpmedel är tillåtna. Fullständiga lösningar krävs. Varje
Tentamen i Komplex analys, SF1628, den 21 oktober 2016
Institutionen för matematik KTH Håkan Hedenmalm Tentamen i Komplex analys, SF68, den oktober 06 Skrivtid 4.00-9.00. Inga hjälpmedel är tillåtna. Skriv tydliga lösningar med utförliga motiveringar. För
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y
Lösningsförslag för omtentamen i Komplex analys, SF1628, 21/
Institutionen för matematik KTH Håkan Hedenmalm Lösningsförslag för omtentamen i Komplex analys, SF1628, 21/12 2016 Skrivtid 08.00-13.00. Inga hjälpmedel är tillåtna. Skriv tydliga lösningar med utförliga
18 Kurvintegraler Greens formel och potential
Nr 8, 6 april -5, Amelia 8 Kurvintegraler Greens formel och potential 8. Greens formel Vi studerar i detta avsnitt kurvor i planet, i R. En kurvintegral är som vi sett en integral på en kurva i planet.
AB2.4: Kurvintegraler. Greens formel i planet
AB2.4: Kurvintegraler. Greens formel i planet Kurvintegralener Kurvor på parameterform Låt xyz vara ett cartesiskt koordinatsystem i rummet. En rymdkurva på parameterform ges av tre ekvationer x = x(t),
Blandade A-uppgifter Matematisk analys
TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x
Föreläsning 9: Komplexa tal, del 2
ht016 Föreläsning 9: Komplexa tal, del Den komplexa exponentialfunktionen För att definiera den komplexa exponentialfunktionen utgår vi ifrån att den ska följa samma regler som för reella tal. Vi minns
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Möbiusavbildningar. 1 Inledning. Låt a, b, c och d vara komplexa tal och antag att ad bc = 0. Då kallas. Definition 1.
Möbiusavbildningar Lars-Åke Lindahl 1 Inledning Definition 11 avbildningen en Möbiusavbildning Låt a, b, c och d vara komplexa tal och antag att ad bc = 0 Då kallas Tz = az + b cz + d (Om ad bc = 0 är
Vektoranalys, snabbrepetition. Vektorfält
Vektorfält Ett vektorfält F är en funktion F : R 2 R 2. (Eller mer allmänt en funktion R n R n.) Observera att F(x, y) har två komponenter, som båda beror av x och y. Låt oss kalla dessa komponenter för
Matematiska institutionen. Tentamen i Komplex analys (TATA45) kl xsinx (x 2 +1) 2 dx. p(z) = z 3 +(2 2i)z 2 +2iz +4
Linköpings universitet Matematiska institutionen Kurskod: TATA45 Provkod: TEN1 Tentamen i Komplex analys (TATA45) 219-1-15 kl 14. 19. Inga hjälpmedel är tillåtna. Fullständiga lösningar krävs. Varje uppgift
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
TATM79: Föreläsning 3 Komplexa tal
TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive
Poincarés modell för den hyperboliska geometrin
Poincarés modell för den hyperboliska geometrin Niklas Palmberg, matrikelnr 23604 Uppsats för kandidatexamen i naturvetenskaper Matematiska institutionen Åbo Akademi 12.2.2001 Innehåll 1 Presentation av
SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017
Institutionen för matematik SF626 Flervariabelanals Bedömningskriterier till tentamen Onsdagen den 5 mars 207 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad
Läsanvisningar till kapitel 3
Kapitel 3 Läsanvisningar till kapitel 3 Den moderna vägen till holomorficitet dess konsekvenser Vi ska i detta kapitel definiera ett begrepp som kallas holomoficitet, det kommer visa sig att vara precis
Vi har. x (xy2 ) + y ( yz2 ) + z (zx2 ) = y 2 z 2 + x 2 = x 2 + y 2 z 2, xy 2 yz 2 zx 2
Lektion 6, Flervariabelanals den februari 6.. Beräkna div F och rot F av F e + e. Divergensen och rotationen ges av div F F,,,, + + + +, rot F F,,,, e e e z, +,,,. rot F F,, e e e z z, z, z z z, + z, z
SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att
SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w
SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
SAMMANFATTNING TATA41 ENVARIABELANALYS 1
SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1
Möbiusgruppen och icke euklidisk geometri
94 Möbiusgruppen och icke euklidisk geometri Lars Gårding Lunds Universitet Meningen med detta förslag till enskilt arbete är att alla uppgifter U redovisas skriftligt med fulla motiveringar och att alla
Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z)
Kap. 15.1 15.2, 15.4, 16.3. Vektorfält, integralkurva, konservativa fält, potential, linjeintegraler av vektorfält, enkelt sammanhängande område, oberoendet av vägen, Greens formel. A 1701. Undersök om
Kurvlängd och geometri på en sfärisk yta
325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,
Tentamensuppgifter, Matematik 1 α
Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,
Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
Tentamen: Lösningsförslag
Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:
x ( f u 2y + f v 2x) xy = 24 och C = f
Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd
Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.
Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer
Läsanvisningar till kapitel
Läsanvisningar till kapitel 5. 5.8 5. Följder och serier Detta avsnitt är repetition, och jag hoppas att ni snart kan snappa upp det som står däri. Speciellt viktigt är det att komma ihåg vad en geometrisk
Lösningar till Matematisk analys
Lösningar till Matematisk analys 685. Sätt fx x. Rotationskroppens volym är π fx dx π ] x 6 dx π 7 x7 π 7. Rotationskroppens area är summan av arean av kroppens mantelyta och arean av kroppens cirkulära
Dubbelintegraler och volymberäkning
ubbelintegraler och volymberäkning Volym och dubbelintegraler över en rektangel Alla funktioner nedan antas vara kontinuerliga. Om f (x) i intervallet [a, b], så är arean av mängden {(x, y) : y f (x),
Läsanvisningar till kapitel 4
Kapitel 4 Läsanvisningar till kapitel 4 Taylors sats samt Cauchyuppskattningar och några konsekvenser Taylorserier är något ni är bekannt med sedan era reellanalyskurser. Höjdpunkten i detta avsnitt säger
1 Primitiva funktioner
Primitiva funktioner Definition. F ( är en primitiv funktion till f( om F ( f(. Antag att vi har hittat en primitiv funktion F ( till f(. Finnsdetflerprimitivafunktionerochvilken form har de i så fall?
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av
SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.
Patologiska funktioner. (Funktioner som på något vis inte beter sig väl)
Patologiska funktioner (Funktioner som på något vis inte beter sig väl) Dirichletfunktionen Inte kontinuerlig någonstans Inte Riemannintegrerbar Weierstrass funktion Överallt kontinuerlig Inte deriverbar
23 Konservativa fält i R 3 och rotation
Nr 23, 7 maj -5, Amelia 2 23 Konservativa fält i R 3 och rotation 23. Potential 23.. Två dimensioner (2D) I två dimensioner definierade vi ett vektorfält som konservativt om kurvintegralen av fältet endast
Tillämpningar av komplex analys på spektralteori
Tillämpningar av komple analys på spektralteori Anders Källén, baserat på föreläsningar hösten 1979 av Lars Hörmander MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I det här dokumentet härleds
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära
Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på
Lösningar till Matematisk analys 4,
Lösningar till Matematisk analys 4, 05054. a Sätt a k k + k +, b k k e /k Serien k a k är positiv. Vi har att och c k k! 4 k k! för k,,... a k k + k + k k för stora k k och mera precist att / a k k k +
Parametriserade kurvor
CTH/GU LABORATION 4 TMV37-4/5 Matematiska vetenskaper Inledning Parametriserade kurvor Vi skall se hur man ritar parametriserade kurvor i planet samt hur man ritar tangenter och normaler i punkter längs
= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och
har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)
Referens :: Komplexa tal
Referens :: Komplexa tal Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. Definition av komplexa tal Definition 1. Ett komplext tal z är ett tal på formen
4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y
UPPSALA UNIVERSITET Matematiska institutionen Styf Prov i matematik BASKURS DISTANS 011-03-10 Lösningar till tentan 011-03-10 Del A 1. Lös ekvationen 5 + 4x 1 5 x. ( ). Lösning. Högerledet han skrivas
Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.
Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x
Tentan , lösningar
UPPALA UNIVERITET MATEMATIKA INTITUTIONEN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 2008 Tentan 2008-12-16, lösningar 1. Avgör om det finns någon punkt på ytan (x 1) 2 + 2(y 1) 2 + 2z 8 som är
KOMPLEX ANALYS EXEMPELSAMLING. Augusti 2006 GRUNDLÄGGANDE EGENSKAPER. 1. Beräkna real- och imaginärdel av. 1 1 i. ( i i c) 1 + i.
KOMPLEX ANALYS EXEMPELSAMLING. Augusti 6 GRUNDLÄGGANDE EGENSKAPER.. Beräkna real- och imaginärdel av a) i b) ( i ) 3 c) + i ( 3 ) 3 i d) ( i 5 + ) i 9 +. Bestäm absolutbelopp och argument av a) i 3 b)
Transformer och differentialekvationer (MVE100)
Chalmers tekniska högskola och Göteborgs universitet Matematik 25 januari 2011 Transformer och differentialekvationer (MVE100 Inledning Fouriertransformen Fouriertransform är en motsvarighet till Fourierserier
SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
KOMPLETTERANDE UPPGIFTER TILL MATEMATISK ANALYS - EN VARIABEL AV FORSLING OCH NEYMARK
KOMPLETTERANDE UPPGIFTER TILL MATEMATISK ANALYS - EN VARIABEL AV FORSLING OCH NEYMARK ELIN GÖTMARK MATS JOHANSSON INSTITUTIONEN FÖR MATEMATIK OCH MATEMATISK STATISTIK UMEÅ UNIVERSITET Date: 3 augusti 202.
Svar till S-uppgifter Endimensionell Analys för I och L
Svar till S-uppgifter Endimensionell Anals för I och L S a) ja, ja, ja, nej, ja S4 N = A(I σ MZ), Z = I (σ A N), A = I MA S5 Du har väl inte verkligen multiplicerat ut alla termer? a) resp. b) 4 resp.
Tentamen i matematik. f(x) = 1 + e x.
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +
Läsanvisningar till kapitel 4 i Naturlig matematik
Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här
Lektion 1. Bo Bernhardsson FRT130 Control Theory, Lecture 1
Lektion 1 Kursinnehåll - kursprogram - schema Det praktiska - boken - idag sid 71-101 Mattebakgrund - Spannes Blixtkurs Laplacetransform AK 17 Koppling till tillståndsbeskrivning AK 18 Betoning av transienter
Kursstart. Kursen startar tisdagen den 10 oktober kl i sal MA236 i MIT-huset. Schemat kan erhållas från matematiska institutionens hemsida.
Kursinformation för Komplex analys, 3p, ht 2006. Civ.ing. (Teknisk Fysik) Ingår som ett moment i kursen Fysikens matematiska metoder, 10p. Ulf Backlund Kursstart Kursen startar tisdagen den 10 oktober
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,
Introduktion till Komplexa tal
October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5
Komplexa tal. z 2 = a
Moment 3., 3.2.-3.2.4, 3.2.6-3.2.7, 3.3. Viktiga exempel 3.-3.8, 3.9,3.20 Handräkning 3.-3.0, 3.5a-e, 3.7, 3.8, 3.25, 3.29ab Datorräkning Komplexa tal Inledning Vi skall i följande föreläsning utvidga
För ett andra ordningens system utan nollställen, där överföringsfunktionen är. ω 2 0 s 2 + 2ζω 0 s + ω0
Övning 5 Introduktion Varmt välkomna till femte övningen i glerteknik AK! Håkan Terelius hakante@kth.se petition lativ dämpning För ett andra ordningens system utan nollställen, där överföringsfunktionen
En vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas.
Max och min för trigonometriska funktioner En vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas. Ta t.ex y = 12 sin(3x-90) När man ska studera
För att uttrycka den primitiva funktionen i den ursprungliga variabeln sätter vi in θ = arcsin 2x. Lektion 14, Envariabelanalys den 23 november 1999
Lektion 4, Envariabelanalys den november 999 6.. Beräkna d 4. Det första vi observerar i integralen är uttrycket i nämnaren, 4. När ett uttryck av den här typen förekommer i en rationell integrand kan
Inociell Lösningsmanual Endimensionell analys. E. Oscar A. Nilsson
Inociell Lösningsmanual Endimensionell analys E. Oscar A. Nilsson January 31, 018 Dan Brown "The path of light is laid, a secret test..." Tillägnas Mina vänner i Förord Detta är en inociell lösningsmanual
Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:
Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en
SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016
Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
ENDIMENSIONELL ANALYS DELKURS A3/B kl HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS A/B 5 6 5 kl 8 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.. a) Bestäm Maclaurinpolynomet
Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik
Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel
Föreläsning 1. Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida
Föreläsning 1 Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida http://www2.math.uu.se/ rikardo/ baskursen/index.html Mängdlära * En "samling" av tal kallas för en mängd.
LMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
1.1 Stokes sats. Bevis. Ramgard, s.70
1 Föreläsning 7 1.1 tokes sats ats 1 åt vara en yta i R med randen. Vi antar att orienteringen på och är vald på ett sådant sätt att om man går längs i den valda riktningen då ligger till vänster (på vänstersidan).
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
BERÄKNING AV KURVINTEGRALER (LINJEINTEGRALER)
BERÄKNING AV KURVINTEGRALER (LINJEINTEGRALER) Låt FF = (PP(xx, yy, z, QQ(xx, yy, z, RR(xx, yy, z) vara ett kontinuerligt vektorfält ( d v s en vektorfunktion) definierat i en öppen mängd Ω. Låt γ vara
LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13
LUNS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR FLERIMENSIONELL ANALYS, FMA40 04-0- kl 8. Vi börjar med att rita triangelskivan. Linjen genom, och, har ekvationen y x+, linjen genom, och, har ekvationen y 4
Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS
UPPSALA UNIVERSITET Matematiska institutionen Styf Övningstenta BASKURS DISTANS 011-0-7 Lösningar till övningstentan Del A 1. Lös ekvationen 9 + 5x = x 1 ( ). Lösning. Genom att kvadrera ekvationens led
Lösningar till tentamen i kursen Envariabelanalys
Lösningar till tentamen i kursen Envariabelanalys Måndagen den 4 maj, klockan 8:-3:. Bestäm gränsvärdena a) Ñ lnp 3 q b) Ñ8 lnp 3 q. Lösning..a) Gränsvärdet är på formen { så vi kan använda l Hospitals
MVE465. Innehållsförteckning
Lösningar på övningsuppgifter Detta dokument innehåller mina renskrivna lösningar på övningsuppgifter i kursen Linjär algebra och analys fortsättning (). Jag kan inte lova att samtliga lösningar är välformulerade
Mer om generaliserad integral
Föreläsning XI Mer om generaliserad integral Ex 64: Givet h(x) = ( x 2 5x + 2 ) e x/2. (a) Bestäm en p.f. till h(x). (b) Beräkna h(x)dx. (a) Vi har här en integrand som är en produkt av ett polynom av
Kontrollskrivning KS1T
Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger